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Introduction

Planck results are compatible with inflationary paradigm
Tighter constraints on viable inflationary models
Power loss in the lowest multipole interval

Such a deviation from expected results may encode some guantum
gravitational (QG) effect

One would naively expect QG to affect more the dynamics of short
wavelength modes of the spectrum of inflationary perturbations

However long wavelength modes exit the horizon at earlier stages during
inflation and re-enter later...

...the high curvature/high energy effects may affect their evolution for a
longer period of time w.r.t. short wavelength modes!



Wheeler deWitt approach

General Relativity is invariant upon re-parametrization (z*,t) — (2*,1)

The Hamiltonian of space-time d.o.f. is proportional to a linear combination
of first class constraints

Hgr = / d*x (N*H; + NH)

In particular the time reparametrization invariance is associated with the
super-Hamiltonian constraint H =0

On a homogeneous and isotropic space-time
ds® = —n(7)%dm* + a(7)?6;;dx" dz?

the super-Hamiltonian constraint is non trivial and at the quantum level
plays the role of the time independent Schroedinger equation.



Wheeler deWitt approach

The canonical guantization prooeeds In a standard way
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Note: in order to get rid of the volume of 3-space and to keep the correct
dimensionality after quantization we absorb V13a = a ([a] = M~

d
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The WdW equation is the quantized Hamiltonian constraint
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with H =

¥(a) is the wave function of the Universe



The Matter-Gravity System

Inflaton field is added ¢(Z,n) = ¢o(n) + 0o (Z, n)
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The full “effective” action can be written as
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The inhomogeneous parts of the field and the metric are described by the
Sasaki-Mukhanov variable v(Z,n) = a(n)d¢(Z,n) in the uniform curvature
gauge

d
Approx: m, = —MpZaa/n — —z%

The WdW equation for the matter-gravity system is:
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Born-Oppenheimer Approx.

BO approximation has been widely applied to Quantum Chemistry for calculating the

spectra of complex atoms and molecules
(M. Born and J.R. Oppenheimer, Ann. Physik 84, 457 - 1927)

It is applied when the Quantum System can be divided in “fast” (light) + “slow” (heavy)
degrees of freedom (such as electrons and nuclei in Q.Chem.)

In the matter-gravity system gravity is the heavy d.o.f. associated to the Planck mass
(T. Banks, 1985; R. Brout, 1987; R. Brout and G. Venturi, 1989)

One can make the ansatz ¥ (a, o, {vr}) = ¥(a)x (a, o, {vi}) = H Xk (a; k)
b0 = Vo
The BO decomposition of the system is:
where
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Equation for homogeneous gravity

for each
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k-mode
\ Equation for matter (homogeneous mflatlon + cosm. perturbatlons)



Semiclassical limit and time emergence
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The equation for gravity is [ + (HM) >] ) =

On neglecting the r.h.s. and taking the semiclassical limit

3(a) = (ma) ™ exp (i dma) - wa<a>:i¢szz<ﬁ<M>>

a/2 1 Z (M)

A time parameter related to the scale factor also appears 1 < a(n) = 5~ = — -

One recovers the Friedmann equation  —

The equation for matter is Schwinger-Tomonaga namely the time dependent
Schroedinger equation (TDSE) plus correction

; s 1M ¢ / A A
where:  [xy), = et/ I H IXn)dn’ |5y (O)s = s(Xk|O|Xk)s

Q.G. corrections encoded in the operator W= —5 - +




Scalar fields evolution

Each k-mode evolves independently. In particular we assume that homogeneous parts
are classical and determine the overall background evolution!

Inhomogeneities evolve according to the standard dynamics by neglecting the
contributions of order @ (MP_Z)
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The solutions of the TDSE with Hamiltonian A\ = Q’f | 2’“ oF
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can be generated by the invariant operators I, I : f\vac} =0

Invariant definition Linear invariant operator
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p satisfies the Pinney equation p” + w?p = —
p

The properly normalized Bunch-Davies vacuum is given by:
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Two Point Function

 The spectrum of scalar fluctuations is related to observable quantities
p(n) = s(0]0%[0)s = (%) 0)s > [vac)
« When QG effects are taken into account the vacuum satisfies the non linear eq.

(2i<ﬁ>og () + ¢’ (n)) (d% — <d%>o) +9(n) (CZ; — <j;>o)] 0)5

« We translate the eq. for the vacuum |0)into an eq. for p(n) 90) = SNran




Two Point Function

The spectrum of scalar fluctuations is related to observable quantities

p(n) = 8<O|@2|0>8 — <@2>0 0)s <> |vac)

When QG effects are taken into account the vacuum satisfies the non linear eq.
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« We translate the eq. for the vacuum |0)into an eq. for p(n)




Two Point Function

The spectrum of scalar fluctuations is related to observable quantities

p(n) = S<O|@2|O>s — <@2>0 0)s <> |vac)

When QG effects are taken into account the vacuum satisfies the non linear eq.

(2iti)og () + 5/ ) (25 = (20 ) +9(0) (25— 2500 )| 01

d A
0=i—0)s — H|0)s —
ZdnH 0)

« We translate the eq. for the vacuum |0)into an eq. for p(n)
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Two Point Function

The spectrum of scalar fluctuations is related to observable quantities

p(n) = 8<O|@2|0>8 — <@2>0 0)s <> |vac)

When QG effects are taken into account the vacuum satisfies the non linear eq.
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« We translate the eq. for the vacuum |0)into an eq. for p(n)
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Two Point Function

 The spectrum of scalar fluctuations is related to observable quantities
p(n) = s(0]0%[0)s = (%) 0)s > [vac)
« When QG effects are taken into account the vacuum satisfies the non linear eq.
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« We translate the eq. for the vacuum |0)into an eq. for p(n)
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Two Point Function

 The spectrum of scalar fluctuations is related to observable quantities
p(n) = 5{0[9%10)s = (8%)o 0)s > |vac)

« When QG effects are taken into account the vacuum satisfies the non linear eq.
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« We translate the eq. for the vacuum |0)into an eq. for p(n) 90) = SNran
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Two Point Function

The spectrum of scalar fluctuations is related to observable quantities

p(n) = 8<O|@2|0>8 — <@2>0 0)s <> |vac)

When QG effects are taken into account the vacuum satisfies the non linear eq.
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« We translate the eq. for the vacuum |0)into an eq. for p(n)
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Two Point Function

 The spectrum of scalar fluctuations is related to observable quantities
p(n) = 5{0[9%10)s = (8%)o 0)s > |vac)

« When QG effects are taken into account the vacuum satisfies the non linear eq.
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« We translate the eq. for the vacuum |0)into an eq. for p(n) 90) = SNran

Purely imaginary function of eta

R(O) = —(O), (<2ig<H>o + g') (D)o + g(0%) — c.c.) + (2ig<H>o + g’) (08,)0 + 9(002) — c.c.



Solutions for p(eta)

Finding the exact solution for p(7) is a hopeless task

A perturbative approach is needed and sufficient given the present precision of
cosmological data:

+ Neglect QG effects (Mp — oo, R(O) — 0) and find the zero order vacuum
solution

 FEvaluate QG corrections for the zero order vacuum
e Express results up to the Mp 2 order

First method

2
The approximate solution is p ~ p'* + Mp~?p!) = % + Mp %pV)

On using |vac) the QG corrections can be expressed through

A

R(O) — MP_QFR;O(pa :0/7 77) + O (MP—4) — MP—QFR;O(papla 77) + O (MP—4)

One finally has the non linear equation

d>p d d 1 @ (p°+4w’p®—1
o= TP ydp pd ' (p )
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Solutions for p(eta)

Second method

One can explicitly use the exact (or approx.) solution for p(n) and write

R(0) = Mp *fr.5(n) + O (Mp~*)

This method is exactly equivalent but is preferred if the analytical expression for p(n)
can be obtained

The first method can be used for numerical results

In any case one needs to specity
* the background (homogeneous) evolution
e the initial conditions

Initial conditions: BD vacuum seems appropriate (and generally adopted for
cosmological perturbations)

 BD at the unperturbed level means (type I)

« BD at the perturbed level means (type Il) p(—o0) =1/ (2k)



Application to De Sitter

. 1 2
Background evolution:  a(n) = _H—U W= \/k2 - —
Y

1 1

The unperturbed BD vacuum solution correspondsto p = \/E - k372
n

The full equation for p(n) is very compact and can be exactly solved

d>p ( 5 2j> dp 8 AH?
— = 4k - + =D+ =0
dn? n?) dn  n3  Mpkin3

1
2k4n?

t's solutionis p = {c+ (1 + k*n%) + cos (2kn) [2cokn — c— (K*n* — 1) ]

H2
+sin (2kn) [co (K*n? — 1) + 2c_kn] M QUQ}’

Imposing the initial conditions of typel: ¢ =cy =0, cy =k




Application to De Sitter

Analytical (qualitative) results for modes outside the Horizon: k/aH<<1

Exact DS

DS plus QG corrections

DS in long wavelength limit (FLAT)

DS plus QG corrections in long

k

wavelength limit

0.1 02 03

Terms which
contribute

04
k2 1

1 -
a2H2 CL2 ]‘CMPZ

—

For k large the QG corrections are negligible! (no trans-Planckian problem!)
For k small we observe a power-loss w.r.t. standard de Sitter flat spectrum

The QG correction evolve in time as the sub-leading term



Application to De Sitter

Numerical (qualitative) results for modes outside the Horizon: k/aH<<1

20

‘Mp =10, H =1

10+

0.1 02 [k 03

 Numerical results (red) of the full
equation for p

* Initial conditions of type Il
 Deviation at small k

« Power enhancement w.r.t. the pure de
Sitter case

DS plus QG corrections

1 DS in long wavelength limit (FLAT)

There’'s a mismatch between the two estimates but different initial conditions!

Such a mismatch is originated by slightly different way to fix initial conditions:
* Analytical case: BD vacuum is the unperturbed initial state (type 1)
 Numerical case: BD vacuum is the perturbed initial state (type Il)

 The above difference is in the small k region!



Application to De Sitter

Consider the exact analytical spectrum we obtained:

o K aHP (K 1
v p— —p p— I —_
272 47?2 a2H?  g2kMp?
Long Short Quantum
WL WL Grav.
behav. behav. Correction

The following relation must hold for QG correction to be observable

J2 1 1 H?2 )1/3
<4 <1 :> <Lk K
a? H? a2Mp2k a2Mp? (Mp2

NOTE: if QG effects are observable in Long WL regime they dominate over Short WL
term forever! BD vacuum is modified by QG corrections!

One can make a different choice of integration constants, consistent with out approx.:
c.=c=0, cy =k+ (H*/Mp?) c(k)

Choose c(k) to eliminate the pathological behavior at k/aH>>1



Application to De Sitter

These modified initial conditions and the above requirement may be equivalent to fixing type
Il initial conditions!

B a*H*? <1 k? 1 Cc(k) H*  c(k)k? >

VT 4g2 a?H?  @2kMp2  k Mp? | a2kMp?

Take c(k) = 1/k? and the final result is:

The modified spectrum is different from the
previous analytical estimate 20f

The modified spectrum is exactly that obtained
In the numerical solution with type Il initial
conditions!

Similar results: 1ol

D.Bini, G.Esposito, C.Kiefer,
M.Kraemer and F.Pessina (2013)

G.L.Alberghi, R.Casadio, A.Tronconi

(2006) 1k -

G. Calcagni (2012) 0.1 02 I 0.3 04




Comparison with observations?

«  The spectrum is evaluated around some pivot scale & ~ k, ~ 0.002 Mpc™*
 First one need to adjust dimensions (a length scale is hidden)
For the type Il case

1 H? ko\° H?
> 0QG = <—) with  (H/Mp)* <1076

]fS MP2 k MP2
ko~ 1.4-10"*Mpc™! (smaller observable mode) dog ~ 3.4 - 10~10
ko ~ ki (comparable with the pivot scale) 0ga = 107°

For the type | case
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Comparison with observations?

«  The spectrum is evaluated around some pivot scale & ~ k, ~ 0.002 Mpc™*
 First one need to adjust dimensions (a length scale is hidden)
For the type Il case
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Conclusions

We calculated the quantum gravitational corrections to the spectrum of cosmological
perturbations through the canonical quantization of the full matter gravity system

On adopting a BO decomposition we could decouple the dynamics of the homogeneous
d.o.f. and that of scalar perturbations

We were able to obtain exact equations governing the dynamics of perturbations and that of
the two-point function

These equations can be solved, depending on the background evolution, via an analytical
or a numerical approach

We studied two different prescriptions for initial conditions (type | and type Il)

The machinery was applied to the simplified but still important de Sitter case

Initial conditions crucially determine the evolution

Small k-modes are more affected by QG effects as expected

Power enhancement or power loss can be obtained depending on initial conditions
Still QG corrections are small compared to the precision of present experiments

The method can be easily generalized to other cases (and that is what we are doing now):
gravitational waves, power law inflation, slow-roll inflation
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