Higgs pair production at the LHC \& ILC from general potential

Yukihiro Mimura

 (National Taiwan University)

Based on

(with N. Haba, K. Kaneta, and R. Takahashi)
arXiv:1311.0067
(with Enkhbat Tsedenbaljir, Haba, Kaneta)

Introduction (Higgs forces)

Higgs potential and the cubic Higgs coupling
Non-perturbative Higgs model in SUSY QCD

Pair-Higgs production
$p p \rightarrow g g \rightarrow h h$
$e^{+} e^{-} \rightarrow h h \bar{\nu} \nu \quad e^{+} e^{-} \rightarrow Z h h$
Conclusion

Discovery of the Higgs boson

The Nobel Prize in Physics 2013

Photo: Pnicolet via
Wikimedia Commons
François Englert

The Nobel Prize in Physics 2013 was awarded jointly to François Englert and Peter W. Higgs "for the theoretical discovery of a mechanism that contributes to our understanding of the origin of mass of subatomic particles, and which recently was confirmed through the discovery of the predicted fundamental particle, by the ATLAS and CMS experiments at CERN's Large Hadron Collider"

SM Higgs?

We need to look at it carefully.

"Higgs Force?"

There are 4 forces :
ElectroMagnetic, Weak, Strong, and Gravity
$(\rightarrow$ Gauge interaction : successful!)

What is "Higgs force"?

"Higgs Force?"

1. Self-interaction

To stabilize the Higgs potential and give a vacuum expectation value.
2. Yukawa Interaction

To give masses to fermions
3. Electroweak Interaction To give masses to W/Z bosons

"Higgs Forces"

1. Higgs self-coupling

How does the Higgs field acquire a VEV ?

$$
V=m_{H}^{2}|H|^{2}+\lambda|H|^{4} \quad m_{H}^{2}<0
$$

2. Couplings to fermions (Yukawa coupling) $Y_{t} \overline{q_{3 L}} t_{R} H$

How does the Higgs VEV give masses to fermions?
3. Couplings to gauge bosons $\quad \mathcal{L}=\left|\left(\partial-i \frac{g}{2} W^{a} \tau^{a}-i \frac{g^{\prime}}{2} B\right) H\right|^{2}$

$\mathrm{W}, \mathbf{Z ~ H} \rightarrow \mathbf{b} \overline{\mathrm{b}}$ Preliminary $\mu=0.2_{-0.6}^{+0.7}$		\longrightarrow	ATLAS-CONF-2013-0
$\begin{array}{\|l} \hline \mathrm{H} \rightarrow \tau \tau \quad \text { (} 8 \mathrm{TeV}: \mathbf{1 3} \mathrm{fb} \\ \text { Preliminary } \\ \mu=0.7_{-0.6}^{+0.7} \\ \hline \end{array}$			ATLAS-CONF-2012-160
$\begin{array}{llccc} \sqrt{s}=7 \mathrm{TeV} \int \mathrm{Ldt}=4.6-4.8 \mathrm{fb}^{-1}-0.5 & 0 & 0.5 & 1 & 1.5 \\ \sqrt{s}=8 \mathrm{TeV} \int \mathrm{Ldt}=13-20.7 \mathrm{fb}^{-1} & & \text { Signal strength }(\mu) \end{array}$			

- Combined $\mu \rightarrow$ Best accuracy but no strong physics motivation:
- ATLAS ($\gamma \gamma, W^{*}$ * and ZZ*) *)
$\mu=(1.33 \pm 0.20)(1.23 \pm 0.18$ including bb and $\tau \tau)$
- CMS ($\gamma \gamma, \tau \tau, \mathbf{b b}, \mathbf{W W}^{*}$ and ZZ*) $\left.^{*}\right)$
$\mu=(0.80 \pm 0.14)$
- TEVATRON (bb, $\gamma \gamma, \tau \tau, W^{*}$)
$\mu=(1.44 \pm 0.60)$

Compatible with SM Higgs boson expectation: Accuracy ~ 15\%

"Higgs Forces"

1. Higgs self-coupling

How does the Higgs field acquire a VEV ?

$$
V=m_{H}^{2}|H|^{2}+\lambda|H|^{4} \quad m_{H}^{2}<0
$$

2. Couplings to fermions (Yukawa coupling) $Y_{t} \overline{q_{3 L}} t_{R} H$

How does the Higgs VEV give masses to fermions?
3. Couplings to gauge bosons

$$
\mathcal{L}=\left|\left(\partial-i \frac{g}{2} W^{a} \tau^{a}-i \frac{g^{\prime}}{2} B\right) H\right|^{2}
$$

Probing the Higgs self-interaction

Pair Production of the Higgs boson at the LHC

Probing the Higgs self-interaction

$$
\begin{array}{r}
V=m_{H}^{2}|H|^{2}+\lambda|H|^{4} \\
m_{H}^{2}<0
\end{array}
$$

$$
\begin{gathered}
\langle H\rangle=\binom{v / \sqrt{2}}{0} \quad v=246 \mathrm{GeV} \\
\langle V\rangle=\frac{m_{H}^{2}}{2} v^{2}+\frac{\lambda}{4} v^{4}
\end{gathered}
$$

Minimization condition:

$$
\frac{\partial\langle V\rangle}{\partial v}=m_{H}^{2} v+\lambda v^{3}=0
$$

$$
\begin{gathered}
V=V\left(|H|^{2}\right) \quad H=\binom{(v+h+i \chi) / \sqrt{2}}{\chi^{-}} \\
|H|^{2}=\frac{v^{2}}{2}+v h+\frac{h^{2}+\chi^{2}}{2}+\chi^{+} \chi^{-}
\end{gathered}
$$

$$
V=V\left(\frac{v^{2}}{2}\right)+V^{\prime}\left(\frac{v^{2}}{2}\right)\left(v h+\frac{h^{2}+\chi^{2}}{2}+\chi^{+} \chi^{-}\right)
$$

$$
+\frac{1}{2} V^{\prime \prime}\left(\frac{v^{2}}{2}\right)\left(v h+\frac{h^{2}+\chi^{2}}{2}+\chi^{+} \chi^{-}\right)^{2}+\cdots
$$

Stationary condition : $V^{\prime}\left(v^{2} / 2\right)=0$
Mass of physical Higgs $(h): m_{h}^{2}=v^{2} V^{\prime \prime}\left(v^{2} / 2\right)$

$$
\begin{aligned}
V & =V\left(|H|^{2}\right) \Longrightarrow m_{h}^{2}=v^{2} V^{\prime \prime} \\
V & =v\left(\frac{v^{2}}{2}\right)+V^{\prime}\left(\frac{v^{2}}{2}\right)\left(v h+\frac{h^{2}}{2}+\frac{\chi^{2}}{2}+\chi^{+} \chi^{-}\right) \\
& +\frac{1}{2} v^{\prime \prime}\left(\frac{v^{2}}{2}\right)\left(v h+\frac{h^{2}}{2}+\frac{\chi^{2}}{2}+\chi^{+} \chi^{-}\right)^{2} \\
& +\frac{1}{6} v^{\prime \prime \prime}\left(\frac{v^{2}}{2}\right)\left(v h+\frac{h^{2}}{2}+\frac{\chi^{2}}{2}+\chi^{+} \chi^{-}\right)^{3}+\cdots \\
-\mathcal{L} \supset \quad & V^{\prime \prime} v h\left(\frac{\chi^{2}}{2}+\chi^{+} \chi^{-}\right)+\frac{1}{2} V^{\prime \prime}\left(\frac{\chi^{2}}{2}+\chi^{+} \chi^{-}\right)^{2} \\
& +\frac{1}{2}\left(V^{\prime \prime}+\frac{1}{3} v^{2} V^{\prime \prime \prime}\right) v h^{3} \\
& +\frac{1}{2}\left(V^{\prime \prime}+v^{2} V^{\prime \prime \prime}\right)\left(\frac{\chi^{2}}{2}+\chi^{+} \chi^{-}\right) h^{2} .
\end{aligned}
$$

$$
V=V\left(|H|^{2}\right)
$$

Mass of physical Higgs $(h): m_{h}^{2}=v^{2} V^{\prime \prime}\left(v^{2} / 2\right)$

Cubic Wigs coupling : $\lambda_{h h h}$

$$
\begin{array}{r}
\lambda_{h h h}=3 v V^{\prime \prime}+v^{2} V^{\prime \prime \prime}=\frac{3 m_{h}^{2}}{v}\left(1+v^{2} \frac{V^{\prime \prime \prime}}{3 V^{\prime \prime}}\right) \\
\equiv C_{h}
\end{array}
$$

Pair production of the Higgs boson at the LHC

Pair production of the Higgs boson at the LHC

Gluon fusion

Pair production of the Higgs boson at the LHC

(double) Higgs-strahlung

Pair production of the Higgs boson at the LHC

vector boson fusion

Pair production of the Higgs boson at the LHC

$$
\lambda_{h h h}=3 \frac{m_{h}^{2}}{v}\left(1+\frac{1}{3} v^{2} \frac{V^{\prime \prime \prime}}{V^{\prime \prime}}\right) \quad C_{h}=\frac{1}{3} v^{2} \frac{V^{\prime \prime \prime}}{V^{\prime \prime}}
$$

(Model-independent parameter)

$$
g g \rightarrow h h
$$

Let us understand the C_{h} dependence!

Gluon-Gluon-Higgses effective interactions (Hagiwara-Murayama):

$$
\begin{aligned}
& \mathcal{L}_{\text {eff }}=\frac{\alpha_{s}}{12 \pi}(\log H) G_{\mu \nu}^{a} G^{a \mu \nu} \\
& =\frac{\alpha_{s}}{12 \pi}\left(\frac{h}{v}-\frac{h^{2}}{2 v^{2}}+\frac{h^{3}}{3 v^{3}}-\cdots\right) G_{\mu \nu}^{a} G^{a \mu \nu}
\end{aligned}
$$

$$
\mathcal{M}(g g \rightarrow h h)=\frac{\alpha_{s}}{3 \pi v^{2}}\left(-1+\frac{3 m_{h}^{2}\left(1+C_{h}\right)}{\hat{s}-m_{h}^{2}}\right)
$$

(neglecting top momentum)

$$
\begin{aligned}
\sigma(p p \rightarrow h h) & =\int_{4 m_{h}^{2} / s}^{1} d \tau \frac{d \mathcal{L}^{g g}}{d \tau} \hat{\sigma}(g g \rightarrow h h, \hat{s}=\tau s) \\
\mathcal{M}(g g \rightarrow h h) & =\frac{\alpha_{s}}{3 \pi v^{2}}\left(-1+\frac{3 m_{h}^{2}\left(1+C_{h}\right)}{\hat{s}-m_{h}^{2}}\right) \quad \hat{s} \geq\left(2 m_{h}\right)^{2} \\
\mathcal{M} & =0 \text { at } \hat{s}=\left(4+3 C_{h}\right) m_{h}^{2}
\end{aligned}
$$

(Plehn-Spira-Zerwas, Djouadi-Kilian-Muhlleitner-Zerwas, ...) (For 125 GeV Higgs, Shao-Li-Li-Wang, Goertz-Papaefstathiou-Yang-Zurita, ...)

Want a negative C_{h} ?

Toy potential to enlarge the cross section :

$$
\begin{gathered}
V=V\left(|H|^{2}\right)=m^{2}|H|^{2}+\Lambda^{4-2 a}\left(|H|^{2}\right)^{a} . \\
\Longleftrightarrow \quad \frac{v^{2}}{2} \frac{V^{\prime \prime \prime}}{V^{\prime \prime}}=a-2 \\
C_{h}=\frac{1}{3} v^{2} \frac{V^{\prime \prime \prime}}{V^{\prime \prime}}=\frac{2}{3}(a-2)
\end{gathered}
$$

Run-away potential $(a<0)$ makes C_{h} negative.

Pair-Higgs production is enlarged.

Chiral symmetry breaking via non-perturbative potential

NP potential

Quadratic mass

(D'Hoker-YM-Sakai)

SUSY QCD (Seiberg et al, 90's)

$S U\left(N_{c}\right) \times S U\left(N_{f}\right) \times S U\left(N_{f}\right) \times U(1)_{B}$

$Q:\left(\mathbf{N}_{\mathbf{c}}, \mathbf{N}_{\mathbf{f}}, \mathbf{1},+1\right), \quad \bar{Q}:\left(\overline{\mathbf{N}}_{\mathbf{c}}, \mathbf{1}, \mathbf{N}_{\mathbf{f}},-1\right)$.

$$
W \propto \frac{\Lambda^{3+\frac{2 N_{f}}{N_{c}-N_{f}}}}{(\operatorname{det} \bar{Q} Q)^{\frac{1}{N_{c}-N_{f}}}}
$$

for $N_{c}>N_{f}$

Non-perturbative Higgs model

(Haba-Okada)
Higgs fields are moduli of SUSY QCD.
$S U\left(N_{c}\right) \times S U(2)_{L} \times U(1)_{Y} \times S U(3)_{c}$
Hypercolor

$$
\Lambda H_{1}^{a}=\bar{Q}_{1} Q^{a}, \quad \Lambda H_{2}^{a}=\bar{Q}_{2} Q^{a}
$$

$$
W=\frac{\Lambda^{3+2 \kappa}}{\left(H_{1} \cdot H_{2}\right)^{\kappa}} \quad \kappa=\frac{1}{N_{c}-2}
$$

$$
C_{h} \simeq-\frac{5}{3}-\frac{4}{3} \kappa
$$

NP potential

SUSY breaking mass

(D'Hoker-YM-Sakai)

Pair production of the Higgs boson at the LHC

$\sigma(p p \rightarrow g g \rightarrow h h)_{\mathrm{SM}, 14 \mathrm{TeV}}^{\mathrm{NLO}}=30-40(\mathrm{fb})$

$$
\sigma(p p \rightarrow h h j j)_{\mathrm{SM}, 14 \mathrm{TeV}}=1.6(\mathrm{fb})
$$

Pair production of the Higgs boson at the ILC

(double Higgs-strahlung)

(WW fusion)

$$
V=V\left(|H|^{2}\right) \Longrightarrow m_{h}^{2}=v^{2} V^{\prime \prime}
$$

$$
\begin{aligned}
-\mathcal{L} \supset \quad & V^{\prime \prime} v h\left(\frac{\chi^{2}}{2}+\chi^{+} \chi^{-}\right)+\frac{1}{2} V^{\prime \prime}\left(\frac{\chi^{2}}{2}+\chi^{+} \chi^{-}\right)^{2} \\
& +\frac{1}{2}\left(V^{\prime \prime}+\frac{1}{3} v^{2} V^{\prime \prime \prime}\right) v h^{3} \\
& +\frac{1}{2}\left(V^{\prime \prime}+v^{2} V^{\prime \prime \prime}\right)\left(\frac{\chi^{2}}{2}+\chi^{+} \chi^{-}\right) h^{2} .
\end{aligned}
$$

Higgs-NG interaction:

$$
-\mathcal{L} \supset \frac{m_{h}^{2}}{v} h\left(\frac{\chi^{2}}{2}+\chi^{+} \chi^{-}\right)+\frac{m_{h}^{2}}{2 v^{2}}\left(1+3 C_{h}\right) h^{2}\left(\frac{\chi^{2}}{2}+\chi^{+} \chi^{-}\right)
$$

$$
-\mathcal{L} \supset \frac{m_{h}^{2}}{v} h\left(\frac{\chi^{2}}{2}+\chi^{+} \chi^{-}\right)+\frac{m_{h}^{2}}{2 v^{2}}\left(1+3 C_{h}\right) h^{2}\left(\frac{\chi^{2}}{2}+\chi^{+} \chi^{-}\right)
$$

$$
\mathcal{M}\left(\chi^{+} \chi^{-} \rightarrow h h\right)=\frac{m_{h}^{2}}{v^{2}}\left(1+3 C_{h}+\frac{3\left(1+C_{h}\right) m_{h}^{2}}{s-m_{h}^{2}}+\frac{m_{h}^{2}}{t-M_{W}^{2}}+\frac{m_{h}^{2}}{u-M_{W}^{2}}\right) .
$$

Equivalence theorem:

$$
\mathcal{M}\left(W_{L}^{+} W_{L}^{-} \rightarrow h h\right)=\mathcal{M}\left(\chi^{+} \chi^{-} \rightarrow h h\right)+O\left(M_{W}^{2} / s\right)
$$

$$
\lambda_{h h h}=\frac{3 m_{h}^{2}}{v}\left(1+C_{h}\right)
$$

H. Baer et al, Physics Chapter of the ILC Detailed Baseline Design Report

Mass Coupling Relation

After Nominal Full ILC Program

$\delta \lambda_{h h h} / \lambda_{h h h}=20 \%$

"Higgs Forces"

1. Higgs self-coupling

How does the Higgs field acquire a VEV ?

$$
V=m_{H}^{2}|H|^{2}+\lambda|H|^{4} \quad m_{H}^{2}<0
$$

2. Couplings to fermions (Yukawa coupling) $Y_{t} \overline{q_{3 L}} t_{R} H$

How does the Higgs VEV give masses to fermions?
3. Couplings to gauge bosons $\quad \mathcal{L}=\left|\left(\partial-i \frac{g}{2} W^{a} \tau^{a}-i \frac{g^{\prime}}{2} B\right) H\right|^{2}$

Non-canonical kinetic term

(Chivukula-Koulovassilopoulos,...)

$$
\mathcal{L}_{\text {kin }}=F\left(\frac{|H|^{2}}{v^{2} / 2}\right) D_{\mu} H^{\dagger} D^{\mu} H
$$

In SM, $F(x)=1$.

$$
\begin{gathered}
\left(M_{W}^{2} W^{+} W^{-}+\frac{M_{Z}^{2}}{2} Z^{2}\right)\left(1+G^{\prime}(1) \frac{2 h}{v}+\left(G^{\prime}(1)+2 G^{\prime \prime}(1)\right) \frac{h^{2}}{v^{2}}+\cdots\right) \\
G(x)=x F(x)
\end{gathered}
$$

In $\mathrm{SM}, G^{\prime}=1, G^{\prime \prime}=0$.

Non-canonical kinetic term

(Chivukula-Koulovassilopoulos,...)

$$
\mathcal{L}_{\text {kin }}=F\left(\frac{|H|^{2}}{v^{2} / 2}\right) D_{\mu} H^{\dagger} D^{\mu} H
$$

$$
\text { In SM, } F(x)=1 \text {. }
$$

$\left(M_{W}^{2} W^{+} W^{-}+\frac{M_{Z}^{2}}{2} Z^{2}\right)\left(1+G^{\prime}(1) \frac{2 h}{v}+\left(G^{\prime}(1)+2 G^{\prime \prime}(1)\right) \frac{h^{2}}{v^{2}}+\cdots\right)$

CMS: Evidence for V-boson mediated production 3.2 σ
ATLAS: Evidence for VBF production (VH "profiled") 3.3 σ
$\Longrightarrow G^{\prime}(1) \sim 1($ or -1$)$

$$
\left(M_{W}^{2} W^{+} W^{-}+\frac{M_{Z}^{2}}{2} Z^{2}\right)\left(1+G^{\prime}(1) \frac{2 h}{v}+\left(G^{\prime}(1)+2 G^{\prime \prime}(1)\right) \frac{h^{2}}{v^{2}}+\cdots\right)
$$

$h V V$ coupling will be measured accureately.

$g(h A A) /\left.g(h A A)\right|_{S M}{ }^{-1}$ LHC/ILC1/ILC/ILCTeV

$$
\begin{gathered}
\text { LHC }=300 / \mathrm{fb} \\
\text { ILC }=\text { TDR }
\end{gathered}
$$

$\left(M_{W}^{2} W^{+} W^{-}+\frac{M_{Z}^{2}}{2} Z^{2}\right)(1+\underbrace{G^{\prime}(1)} \frac{2 h}{v}+\underbrace{\left(\left(G^{\prime}(1)+2 G^{\prime \prime}(1)\right.\right.}_{=1} \frac{h^{2}}{v^{2}}+\cdots)$
Ratio of cross sections

Ratio of cross sections $\quad \sigma\left(e^{+} e^{-} \rightarrow h h \nu \bar{\nu}\right) / \sigma(\mathrm{SM})$

Ratio of cross sections
 $\sigma\left(e^{+} e^{-} \rightarrow h h Z\right) / \sigma(\mathrm{SM})$

$\sqrt{s}=500 \mathrm{GeV} \quad \sqrt{s}=1 \mathrm{TeV}$

$$
H=\bar{Q} Q \quad \Longrightarrow \quad K=\operatorname{tr} \sqrt{H^{\dagger} H}
$$

(Affleck-Dine-Seiberg)
We obtain: $K=2 \sqrt{\left|H_{1}\right|^{2}+\left|H_{2}\right|^{2}+2 \sqrt{H_{1} \cdot H_{2}}}$
$\mathcal{L}_{\text {kin }}=\frac{K}{2} D H_{i}^{*} D H_{i}+\frac{2}{K}\left(\left(H_{i} D H_{i}^{*}\right)\left(H_{j}^{*} D H_{j}\right)-(H \cdot D H)(H \cdot D H)^{*}\right)$
$\mathcal{L}_{Z}=\frac{M_{Z}^{2}}{2} Z_{\mu} Z^{\mu}\left(1+3 \sin (\beta-\alpha) \frac{h}{v}+3 \frac{h^{2}}{v^{2}}+\cdots\right)$
Cf. In 2HDM,

$$
\mathcal{L}_{Z}=\frac{M_{Z}^{2}}{2} Z_{\mu} Z^{\mu}\left(1+2 \sin (\beta-\alpha) \frac{h}{v}+\frac{h^{2}}{v^{2}}\right)
$$

Summary

- We still have missing pieces for the "Higgs forces".
- It is important to probe the self-Higgs coupling.
- Non-perturbative Higgs model in SUSY QCD is proposed.
- Possible enhancement of pair-Higgs production is discussed.
- We look forward to more data to probe the "Higgs forces".

$$
O(100) \mathrm{fb}^{-1} \text { at the LHC; ILC (at Tohoku?) }
$$

Dynamical Higgsino mass term

$$
\begin{aligned}
& \frac{\partial^{2} W}{\partial H_{u}^{+} \partial H_{d}^{-}} \tilde{H}_{u}^{+} \tilde{H}_{d}^{-} \quad \text { (VEV-dependent) } \\
& =-\kappa \Lambda^{3+2 \kappa}\left(H_{u}^{0} H_{d}^{0}\right)^{-\kappa-1} \tilde{H}_{u}^{+} \tilde{H}_{d}^{-} \\
& =-\kappa \Lambda\left(\frac{\Lambda^{2}}{v_{u} v_{d}}\right)^{1+\kappa}\left(1-(\kappa+1) \frac{2}{v} \frac{\cos (\alpha+\beta)}{\sin 2 \beta} h+\cdots\right) \tilde{H}_{u}^{+} \tilde{H}_{d}^{-}
\end{aligned}
$$

$$
\frac{g_{h \tilde{H}^{+} \tilde{H}^{-}}}{m_{\tilde{H}^{+}}}=-(\kappa+1) \frac{2}{v} \underbrace{\frac{\cos (\alpha+\beta)}{\sin 2 \beta}}_{\simeq 1(\text { for } \sin (\beta-\alpha) \simeq 1)}
$$

Higgs to diphoton decay width

$$
\Gamma(h \rightarrow \gamma \gamma)=\frac{\alpha^{2} m_{h}^{3}}{1024 \pi^{3}} \frac{g_{h V V}}{m_{V}^{2}} Q_{V}^{2} A_{1}\left(\tau_{V}\right)+\frac{2 g_{h f f}}{m_{f}} N_{c, f} Q_{f}^{2} A_{1 / 2}\left(\tau_{f}\right)
$$

$$
\frac{g_{h W W}}{m_{W}^{2}}=2 \frac{g_{h t \bar{t}}}{m_{t}}=\frac{2}{v}
$$

For chiral fermions:

$$
\begin{aligned}
g_{h f \bar{f}} & =(\text { Yukawa }) / \sqrt{2} \\
m_{f} & =(\text { Yukawa }) v / \sqrt{2}
\end{aligned}
$$

Tree-level Higgs potential in SM:

$$
\begin{gathered}
V=m_{H}^{2}|H|^{2}+\lambda|H|^{4} \\
V(x)=m_{H}^{2} x+\lambda x^{2} \\
V^{\prime \prime}=2 \lambda, \quad V^{\prime \prime \prime}=0 \\
\Rightarrow m_{h}^{2}=2 \lambda v^{2}, \quad C_{h}=0 \\
\lambda_{h h h}=3 v V^{\prime \prime}=\frac{3 m_{h}^{2}}{v}
\end{gathered}
$$

$$
V(x)=m_{H}^{2} x+\lambda x^{2}-\frac{3}{16 \pi^{2}} y_{t}^{4} x^{2}\left(\ln \frac{y_{t}^{2} x}{Q^{2}}-\frac{3}{2}\right)
$$

One-loop effective potential from top quark loop

$$
V^{\prime \prime \prime}\left(v^{2} / 2\right)=-3 y_{t}^{2} /\left(4 \pi^{2} v^{2}\right)
$$

$$
\begin{aligned}
\lambda_{h h h}=\frac{3 m_{h}^{2}}{v}(1+ & \left.v^{2} \frac{V^{\prime \prime \prime}}{3 V^{\prime \prime}}\right) \\
& \equiv C_{h} \\
& =-\frac{m_{t}^{4}}{\pi^{2} v^{2} m_{h}^{2}} \simeq-0.1
\end{aligned}
$$

$$
\left(M_{W}^{2} W^{+} W^{-}+\frac{M_{Z}^{2}}{2} Z^{2}\right)\left(1+G^{\prime}(1) \frac{2 h}{v}+\left(G^{\prime}(1)+2 G^{\prime \prime}(1)\right) \frac{h^{2}}{v^{2}}+\cdots\right)
$$

Toy examples

$$
\begin{aligned}
& F(x)=1+a \ln x \\
& \Rightarrow G^{\prime}(1)=1+a \quad G^{\prime}(1)+2 G^{\prime \prime}=1+3 a
\end{aligned}
$$

$$
F(x)=x^{n}
$$

$$
G^{\prime}(1)=1+n
$$

$$
G^{\prime}(1)+2 G^{\prime \prime}=1+n(2 n+3)
$$

$$
n=-2
$$

$$
G^{\prime}(1)=-1
$$

$$
G^{\prime}(1)+2 G^{\prime \prime}=3
$$

$h \rightarrow-h \quad \Rightarrow \quad$ Single production is same as SM

Energy distribution of Z in $e^{+} e^{-} \rightarrow Z h h$

$$
x_{z} \equiv 2 E_{Z} / \sqrt{s}
$$

Energy distribution of Z in $e^{+} e^{-} \rightarrow Z h h$

$$
x_{z} \equiv 2 E_{Z} / \sqrt{s}
$$

