

Measurements of vector bosons and vector bosons plus jet production with the ATLAS detector

Jiri Hejbal on behalf of the ATLAS Collaboration PASCOS 2013, Taiwan

Motivation

- Drell-Yan production of W and Z bosons can be used to test perturbative QCD calculations
- W+jets a Z+jets production represents important source of background to SM measurements including Higgs physics and searches
- Testing ground for parton distribution functions (PDFs)
- Test of Monte-Carlo modeling (Parton Shower and Matrix Element)

Neutral-current DY process

Charged-current DY process

Overview of ATLAS results

Results produced by ATLAS experiment at LHC in proton-proton collisions

- at centre-of-mass energy of Vs = 7 TeV
- data correspond to an integrated luminosity of 5 fb⁻¹

Z+jets

- test of pQCD calculations with large higher order corrections
- background for SM and BSM processes
- Increased statistics allow to measure production up to 7 jets in association with Z boson

Measurements (chosen for the presentation):

- cross section as a function of inclusive jet multiplicity
- ratio of cross sections for successive inclusive and exclusive jet multiplicities
- differential cross section as a function of jet and Z transverse momentum, jet rapidity, scalar pT sum of leptons and jets (H₁)

Backgrounds:

- For jet multiplicity ≥ 2 dominate t production
 - derived from tt-enriched sample in data
- Increasing with with jet multiplicity from 2% to 20%

Z+jets

Cross section for inclusive jet multiplicities

Ratio of cross sections for

successive inclusive jet multiplicities

- The MC@NLO models higher jet multiplicities by parton shower expected offsets to the data
- Good agreement with BlackHat+Sherpa calculations and with predictions from ALPGEN, SHERPA
- Ratio of successive multiplicities gives a more precise result due to cancelations in syst. uncertainties

Z+jets - angular distributions

Leading Jet Rapidity (Z+≥1jet)

∆|y|(leading,2nd leading jet) (Z+≥2jet)

- BlackHat and SHERPA overestimate cross section in the forward region
- Effect reproduced in distribution of leading and second leading jet separation in Z+≥2jets

Z + forward jets

- A veto on a third jet is used to reject Z+jets background in VBF Higgs analysis
- VBF signature: Two forward jets (large $\Delta y(j,j)$ separation), high di-jet mass, central jet gap
- Study of Z+jets events with VBF selection allows to estimate 3rd jet veto efficiency

Fraction of events passing veto on 3rd jet in central region, as function of the third jet p_T threshold

ϕ^* in Z/ γ^*

- ϕ^* is optimal observable to probe low p_{τ} domain of Z/ γ^* production
- Depends exclusively on the directions of the leptons \rightarrow reduce experimental uncertainties
- The results are compared to QCD calculations and to predictions from different MCs

High-mass Drell-Yan

- Cross-sections are measured for $p_{_{\rm T}}$ > 25 GeV, $|\eta|$ < 2.5 and 116 < M < 1500 GeV
- Results compared to NNLO QCD calculations using FEWZ framework, including NLO EW corrections and with different NNLO PDFs
- Resulting predictions for all PDFs are consistent with the measured cross sections
- With more statistics and measurement precision the data have potential to constrain9 PDFs for large x

W+c

- Sensitive to strange quark distribution function
- Probe potential s/s asymmetry
- Charge correlation between W[±] and D^{(*)[∓]} used to extract single-charm component
- subtracted same-sign contribution (OS-SS)

Measurements:

- Integrated measurement by W charge
- W charge ratio
- Differential cross sections as function of pT of D meson and η of lepton

Example of production processes:

W+c

- The measurements agree well with epWZ and NNPDF2.3coll (s-quark enhanced PDFs)
- Larger discrepancies are seen with MSTW2008, HERAPDF15 and NNPDF2.3 (1.5σ 2.7σ)
- Experimental uncertainty dominated by tracking efficiency systematics (7%)
- Studies of dependence of the NLO prediction on the choice of $\mu_{\rm F}$ and $\mu_{\rm R}$: +8%/-6% uncert.

11

• Asymmetry ratio R_c^{\pm} sensitive to s / \overline{s} ratio, results consistent with all PDFs

W+b

- Important test for pQCD in presence of HF quarks
- Background to Higgs (WH, ZH), single-top
- b-tagging used to discriminate signal processes
- Large Backgrounds: ~ 85% after selection

Measurement:

- inclusive cross section (1,2 jets)
- differential cross section in b-jet pT

Example of production processes:

- + double parton interaction (DPI)
- W and b-jets are produced from different parton-parton interactions within the same pp collision

W+b

Measured fiducial cross-sections

W+b-jets cross-section as a function of b-jet p_T in1-jet fiducial region2-jet fiducial region

- Comparison to LO prediction (ALPGEN)
 - scaled to NNLO (for inclusive W)
- Comparison to NLO prediction (MCFM and Powheg)
 - MCFM corrected for hadronization effects and DPI
 - Powheg corrected for DPI
- ~ 30 % uncertainty is assigned to the DPI correction

- Data/MC increases with pT
- Total uncertainty in prediction
 - from variations of the μ_R and μ_F scales, PDF set, DPI model and nonperturbative corrections $_{13}$

W+b

W+b-jets cross-section without single-top subtraction as a function of b-jet p_T

• b-jet p_T differential cross-section have significantly reduced uncertainties with respect to the single-top subtracted ones ¹⁴

Forward-backward asymmetry in Z/γ^*

- Measurement of forward-backward asymmetry in $\ell \ell$ pairs in Z/γ^*
- The goal is to measure the weak mixing angle
- Decay angle cos Θ* measured in the Collins-Soper (CS) frame

Forward-backward asymmetry in Z/γ^*

- Measurement of asymmetry: $A_{FB} = \frac{\sigma_F \sigma_B}{\sigma_F + \sigma_B}$
- Comparison with PYTHIA prediction of unfolded A_{FR}
- Systematic uncertainties are from unfolding, MC dependence and higher order QCD and EW corrections, PDFs, MC statistics, backrounds and others

Forward-backward asymmetry in Z/γ^*

- Uncertainty dominated by PDFs
- $\sin^2 \Theta_w^{\text{eff}}$ is extracted from A_{FB} spectra by fitting with MC templates obtained by varying the input value of the weak mixing angle

Summary

- Measurements of the production of vector bosons and vector bosons in association with jets at vs = 7 TeV at ATLAS presented
- Z+jets studies provide important tests of pQCD
 - good agreement with theoretical predictions using ME+PS
- Very precise measurements on ϕ^* in Z \rightarrow II decays presented
- W + heavy flavor studies presented
 - W+b measurement consistent with NLO pQCD (4FNS+5FNS) predictions
 - W+c measurement favour enhanced s-quark PDF
- First ATLAS measurement of weak mixing angle analyzing A_{FR} in Z \rightarrow II decays