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Introduction: Heterotic line bundle models
Data to define a heterotic line bundle model we need: 

- A Calabi-Yau 3-fold X

- vanishing slopes µ(La) ≡ c1(La) ∧ J2 !
= 0

- Anomaly:                                   
  in practice:                      

c2(TX)− c2(V )− c2(Ṽ ) = [C]
c2(V ) ≤ c2(TX)

- A line bundle sum                      on    ,
              , so structure group is  

XV = L1 ⊕ · · ·⊕ L5

c1(V ) = 0

S(U(1)5) ⊂ SU(5) ⊂ E8
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Introduction: Heterotic line bundle models
Data to define a heterotic line bundle model we need: 
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The associated 4d GUT theories:

Gauge group SU(5)× S(U(1)5)
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The associated 4d GUT theories:

Gauge group SU(5)× S(U(1)5)

typically
anomalous
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The associated 4d GUT theories:

Gauge group SU(5)× S(U(1)5)

typically
anomalous

matter multiplets: 10a, 1̄0a, 5a,b, 5̄a,b, 1a,b = Sα
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The associated 4d GUT theories:

Gauge group SU(5)× S(U(1)5)

multiplet S(U(1)5) charge associated line bundle L contained in

10ea
ea La V

1̄0−ea
−ea L∗

a V ∗

5̄ea+eb
ea + eb La ⊗ Lb ∧2V

5−ea−eb
−ea − eb L∗

a ⊗ L∗

b ∧2V ∗

1ea−eb
ea − eb La ⊗ L∗

b V ⊗ V ∗

1−ea+eb
−ea + eb L∗

a ⊗ Lb

Table 1: Multiplet content, charges and associated line bundles of the SU(5) × S(U(1)5) GUT

theory. The indices a, b, . . . are in the range 1, . . . , 5 and ea denotes the standard five-dimensional

unit vector in the ath direction. The number of each type of multiplet is obtained from the first

cohomology, H1(X,L), of the associated line bundle L.

The further breaking of the GUT theory to the standard model proceeds in the standard way via Wilson

lines. For the bundle V to descend to the quotient Calabi-Yau manifold, X/Γ, it has to be equivariant under

the symmetry Γ [39], a property which can be explicitly checked for line bundles using the methods described in

Ref. [12]. Note that for an equivariant line bundle, L, the cohomology groups Hi(X,L) form representations

under the group Γ. A Wilson line on the quotient, pointing into the standard hypercharge direction then

breaks the GUT group into the standard model group times the massive S(U(1)5) symmetry. Let us consider

a standard model multiplet with Wilson line representation RW which originates from a GUT multiplet with

associated line bundle, L. The number of these multiplets can be computed from the Γ invariant part of

H1(X,L)⊗RW . In essence, once the GUT multiplet content is known, computing the particle content after

Wilson line breaking is a matter of applying representation theory of the finite group Γ.

3 Additional U(1) symmetries and Green-Schwarz mechanism

We turn now to the fate of the four additional U(1) symmetries in S(U(1)5) ∼= U(1)4 which arise in our

models. The Green-Schwarz mechanism in heterotic theories has been understood for many years (see [40]

and [26,41–43] for some recent papers on the subject). It is known that Abelian factors in the bundle structure

group give rise to a gauging of certain axion shift symmetries in the four dimensional effective theory. In our

context, for each line bundle, La, in V , the Kähler axions, χi, the supersymmetric partners of the Kähler

moduli, ti, acquire the following transformation4

δχi = −ci1(La)ηa , (3.5)

with transformation parameter ηa. Note that, from Eq. (2.2), only four of these transformation, corresponding

to the four U(1) symmetries, are independent. Each such transformation leads to a D-term which schematically

reads

Da =
µ(La)

κ
−
∑

I

QaI |CI |
2 . (3.6)

Here, κ = dijktitjtk is the Kähler moduli space pre-potential with the triple intersection numbers dijk of X

and CI are matter fields and bundle moduli with charges QaI under S(U(1)5). The slope, µ(La), of the line

bundle La is defined as

µ(La) = ci1(La)κi with κi = dijkt
jtk . (3.7)

4The equations below receive a one loop correction due to a non-trivial shift of the dilatonic and M5-brane axions. This has been

explicitly studied in Ref. [26,42] but will be neglected in the present context as it does not affect our discussion.

5

typically
anomalous

matter multiplets: 10a, 1̄0a, 5a,b, 5̄a,b, 1a,b = Sα
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5

families and
mirror families

= 3|Γ|
= 0

⇒ 3|Γ|

typically
anomalous

matter multiplets: 10a, 1̄0a, 5a,b, 5̄a,b, 1a,b = Sα
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          : line bundle model,          : non-Abelian bundle  �Sα� = 0 �Sα� �= 0
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U(1) symmetries constrain 4d theory, e.g. superpotential: 

W = µ(S)HH̄ + Y
(d)
pq (S)H5

p
10q + Y

(u)
pq (S)10p10q + · · ·
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U(1) symmetries constrain 4d theory, e.g. superpotential: 

W = µ(S)HH̄ + Y
(d)
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Arena: complete intersection CY manifolds (CICYs)
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(Anderson, He, Lukas, 2008)

Focus on favourable Cicys: H1,1(X) = Span(Ji|X)
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Line bundles on CY manifolds

Line bundles, L, are classified by their first Chern class:

c1(L) = kiJi , ki ∈ Z

Write               where           is an integer vector.  L = OX(k) k = (ki)
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Line bundles on CY manifolds

Line bundles, L, are classified by their first Chern class:

c1(L) = kiJi , ki ∈ Z

Write               where           is an integer vector.  L = OX(k) k = (ki)

Rank 5 line bundle sum: 

h1,1(X)× 5 (kia)Described by                integer matrix   

V =
5�

a=1

OX(ka) c1(V ) ∼
5�

a=1

ka
!
= 0

No a priori bounds on    , so for                      we have  kia −kmax ≤ kia ≤ kmax

∼ (2kmax + 1)4h
1,1(X) line bundle sums V
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Scan for favourable Cicys with              (60 spaces) andh1,1(X) ≤ 5

Last year:

bundleskmax = 2, 3 −→ ∼ 1012
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These models and their details are available at:

*standard model: SM gauge group times (anomalous) U(1)s, exact MSSM
matter spectrum, one or more pairs of Higgs doublets, no exotics charged
under standard model group. 
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An exhaustive scan over favourable Cicys 

Aim: Find all viable line bundle SU(5) GUT models (and later all 
standard models) on favourable Cicys with freely-acting symmetries.
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standard models) on favourable Cicys with freely-acting symmetries.

Requires scanning over 68 Cicys with               and h1,1(X) ≤ 6

kmax ∼ 10 −→ ∼ 1040 bundles
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An exhaustive scan over favourable Cicys 

Aim: Find all viable line bundle SU(5) GUT models (and later all 
standard models) on favourable Cicys with freely-acting symmetries.

Requires scanning over 68 Cicys with               and h1,1(X) ≤ 6

kmax ∼ 10 −→ ∼ 1040 bundles

Feasible because some constraints can be checked while line
bundle sum is built up, e.g if

h1(X,L) > 3|Γ|

we do not need to consider line bundle    (too many families).L
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How do we know we have found all viable models?

Scan over all      with               and find number of viable 
models as a function of       : 

(kia) |kia| ≤ kmax

kmax
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Table 6: Number of models as a function of kmax on CICYs with h1,1(X) = 6. Total
number of models: 41036

X, |Γ| km = 1 km = 2 km = 3 km = 4 km = 5 km = 6 km = 7 km = 8 km = 9
km = 10,

11, 12, 13

3413, 3 0 2278 2897 2906 2906 2906

4190, 2 11 766 1175 1243 1246 1247 1249 1249 1249

5273, 2 29 4895 7149 7738 7799 7810 7810 7810

5302, 2 0 4314 5978 6360 6369 6369 6369

5302, 4 0 11705 16988 17687 17793 17838 17868 17868 17868

5425, 2 0 2381 3083 3305 3337 3337 3337

5958, 2 0 148 224 240 253 253 253

6655, 5 0 92 178 189 194 194 198 201 202 203

6738, 2 1 2733 4116 4346 4386 4393 4399 4399 4399

7 An Example

For illustration, we would like to present a model from our database, which is accessible here [60]. The example

is based on the Cicy with number 7447, defined by the configuration matrix and line bundle sum

X =

P1

P1

P1

P1

P1





1 1

1 1

1 1

1 1

1 1





5,45

−80

, V =





−1 −2 1 1 1

0 −2 −1 1 2

0 2 −1 1 −2

0 2 0 0 −2

1 0 0 −2 1




.

According to Ref. [53], the manifold X can be smoothly quotiented by a group of order 4. The columns of

the second matrix correspond to the first Chern classes of the five line bundles composing V . The dimension

h•(X,V ) =
�
h0(X,V ), h1(X,V ), h2(X,V ), h3(X,V )

�
of the bundle cohomologies for V are explicitly given by

h•(X,V ) = (0, 12, 0, 0)

h•(X,∧2V ) = (0, 15, 3, 0)

The model has a chiral asymmetry of 12, which, after quotienting, is reduced to 3. It contains a number

of 5 − 5 pairs, which after introducing Wilson lines lead to one (or possibly more than one) pair of Higgs

doublets.

The above example is interesting as it satisfies the anomaly cancellation condition without the addition of

any 5-branes. In this case,

c2(TX).Ji = c2(V ).Ji = (24, 24, 24, 24, 24)

As the ranks of V and TX are the same, and their second Chern classes match, one could study the

interesting problem1 of deforming V to TX, which would bring us back to the standard embedding. Our

database contains 348 such models which saturate the inequality 4.4.

1This idea was suggested to one of us by S.-T. Yau in a private communication.
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#models

total

Number of consistent SU(5) GUT models with correct indices:

1̄0 5− 5̄After demanding absence of     and presence of         pair:  

34989 models

http://www-thphys.physics.ox.ac.uk/projects/CalabiYau/linebundlemodels/index.html

Available at:

Roughly, a factor 10 more models per CY for each
additional Kahler parameter!

Have started a similar programme on CY manifolds defined in
toric 4-folds (Kreuzer-Skarke list) -> Chuang Sun’s talk
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An example
CY data: ü Cicy 7862,  Symmetry 3

X =

2
2
2
2

hHXL = -128 h1,1HXL = 4 h2,1HXL = 68 c2HTXL = 824, 24, 24, 24<

k = 12 t1 t2 t3+12 t1 t2 t4+12 t1 t3 t4+12 t2 t3 t4

symmetry: 3 order: 4

Abelian: True block diagonal: True factors: 82, 2<

Action on coordinates: :

1 0 0 0 0 0 0 0
0 -1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 -1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 -1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 -1

,

0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

>

Action on polynomials: 8H 1 L, H 1 L<
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Action on polynomials: 8H 1 L, H 1 L<

CY: tetra-quadric in P1 × P1 × P1 × P1
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topological data
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bundle data: 

Z2 xZ2 models with non-zero up Yukawa rank and dim 4 proton decay operators forbidden at Abelian locus
In[52]:= l4sel = Quiet@Select@l4models, HYuRank ê. ÒL@@2DD > 0 && HDim4ProtonQ ê. ÒL@@1DD ã True &DD;

In[53]:= Length@l4selD

Out[53]= 4

In[54]:= For@i = 1, i § Length@l4selD, i++, PrintLineModel@l4sel@@iDD, OutFormat Ø "full"DD

ü Model number 1,   Identifier {7862, 4, 3}
ü Basic properties

standard model? True massless UH1L: 1 number of 5 5 pairs: 3 c2HVL = 824, 8, 20, 12<

V: HkiaL =

-1 -1 0 1 1
0 -3 1 1 1
0 2 -1 -1 0
1 2 0 -1 -2

Cohomology of V:

L2 = 8-1, -3, 2, 2< h@L2D = 80, 8, 0, 0< h@L2,RD = 880, 0, 0, 0<, 82, 2, 2, 2<, 80, 0, 0, 0<, 80, 0, 0, 0<<
L5 = 81, 1, 0, -2< h@L5D = 80, 4, 0, 0< h@L5,RD = 880, 0, 0, 0<, 81, 1, 1, 1<, 80, 0, 0, 0<, 80, 0, 0, 0<<
L2µL4 = 80, -2, 1, 1< h@L2µL4D = 80, 4, 0, 0< h@L2µL4,RD = 880, 0, 0, 0<, 81, 1, 1, 1<, 80, 0, 0, 0<, 80, 0, 0, 0<<
L2µL5 = 80, -2, 2, 0< h@L2µL5D = 80, 3, 3, 0< h@L2µL5,RD = 880, 0, 0, 0<, 80, 1, 1, 1<, 80, 1, 1, 1<, 80, 0, 0, 0<<
L4µL5 = 82, 2, -1, -3< h@L4µL5D = 80, 8, 0, 0< h@L4µL5,RD = 880, 0, 0, 0<, 82, 2, 2, 2<, 80, 0, 0, 0<, 80, 0, 0, 0<<
L1µL2* = 80, 3, -2, -1< h@L1µL2*D = 80, 0, 12, 0< h@L1µL2*,RD = 880, 0, 0, 0<, 80, 0, 0, 0<, 83, 3, 3, 3<, 80, 0, 0, 0<<
L1µL5* = 8-2, -1, 0, 3< h@L1µL5*D = 80, 0, 12, 0< h@L1µL5*,RD = 880, 0, 0, 0<, 80, 0, 0, 0<, 83, 3, 3, 3<, 80, 0, 0, 0<<
L2µL3* = 8-1, -4, 3, 2< h@L2µL3*D = 80, 20, 0, 0< h@L2µL3*,RD = 880, 0, 0, 0<, 85, 5, 5, 5<, 80, 0, 0, 0<, 80, 0, 0, 0<<
L2µL4* = 8-2, -4, 3, 3< h@L2µL4*D = 80, 12, 0, 0< h@L2µL4*,RD = 880, 0, 0, 0<, 83, 3, 3, 3<, 80, 0, 0, 0<, 80, 0, 0, 0<<
L3µL5* = 8-1, 0, -1, 2< h@L3µL5*D = 80, 0, 4, 0< h@L3µL5*,RD = 880, 0, 0, 0<, 80, 0, 0, 0<, 81, 1, 1, 1<, 80, 0, 0, 0<<

Wilson line: 880, 0<, 80, 1<< Equivariant structure: 880, 0<, 80, 0<, 80, 0<, 80, 0<, 80, 0<< Higgs pairs: 1

Downstairs spectrum: :2 102, 105, 52,4, 2 54,5, H2,5, H2,5, 3 S2,1, 3 S5,1, 5 S2,3, 3 S2,4, S5,3> Phys. Higgs: :H2,5, H2,5>

Transfer format: 886, 1, 1, 4, 6, 5, 9, 9, 8, 10, 1, 7, 17<, 86, 6, -1, -1, -1, -1<<

rkHYHuLL = 82, 2< rkHYHdLLL = 80, 0< dim. 4 operators absent: 8True, True< dim. 5 operators absent: 8True, True<

ü Operators
basic superpotential terms:

H10p10q: YHuL =
H 0 L H 0 L H 1 L

H 0 L H 0 L H 1 L

H 1 L H 1 L H 0 L

H5p10q: YHdL =
H 0 L H 0 L H 0 L

H 0 L H 0 L H 0 L

H 0 L H 0 L H 0 L

HH: m = 81<

Wsing = 80<

R-parity violating terms in superpotential:

HLp: r =

0
S2,4
S2,4

10p5q5r: l = 88880<, 80<, 80<<, 880<, 80<, 80<<, 880<, 80<, 80<<<, 8880<, 80<, 80<<, 880<, 80<, 80<<, 880<, 80<, 80<<<, 8880<, 80<, 80<<, 880<, 80<, 80<<, 880<, 80<, 80<<<<

Dimension 5 operators in superpotential:

5p10q10r10s: l' = 888880<, 80<, 80<<, 880<, 80<, 80<<, 880<, 80<, 80<<<, 8880<, 80<, 80<<, 880<, 80<, 80<<, 880<, 80<, 80<<<, 8880<, 80<, 80<<, 880<, 80<, 80<<, 880<, 80<, 80<<<<,
88880<, 80<, 80<<, 880<, 80<, 80<<, 880<, 80<, 80<<<, 8880<, 80<, 80<<, 880<, 80<, 80<<, 880<, 80<, 80<<<, 8880<, 80<, 80<<, 880<, 80<, 80<<, 880<, 80<, 80<<<<, 88880<, 80<, 80<<, 880<, 80<, 80<<, 880<, 80<, 80<<<, 8880<, 80<, 80<<, 880<, 80<, 80<<, 880<, 80<, 80<<<, 8880<, 80<, 80<<, 880<, 80<, 80<<, 880<, 80<, 80<<<<<

D-terms:

FI-terms: kiaki =

4 t1 t2 + 4 t1 t3 - 4 t2 t4 - 4 t3 t4
16 t1 t2 - 4 t1 t3 + 4 t2 t3 - 4 t1 t4 + 4 t2 t4 - 16 t3 t4

-4 t1 t2 + 4 t1 t3 - 4 t2 t4 + 4 t3 t4
-8 t1 t2 + 8 t3 t4

-8 t1 t2 - 4 t1 t3 - 4 t2 t3 + 4 t1 t4 + 4 t2 t4 + 8 t3 t4

singlet D-terms: qaaSaS
b
=

-S2,1 S†2,1 -S5,1 S†5,1
S2,1 S†2,1 +S2,3 S†2,3 +S2,4 S†2,4

-S2,3 S†2,3 -S5,3 S†5,3
-S2,4 S†2,4

S5,1 S†5,1 +S5,3 S†5,3

Kinetic terms:

GM term: m
è
= 80<

5p5q †: KH5L = 9981<, 9S2,1 S†5,1, S2,3 S†5,3=, 9S2,1 S†5,1, S2,3 S†5,3==, 99S5,1 S†2,1, S5,3 S†2,3=, 81<, 81<=, 99S5,1 S†2,1, S5,3 S†2,3=, 81<, 81<==

10p10q †: KH10L = 9981<, 81<, 9S5,1 S†2,1, S5,3 S†2,3==, 981<, 81<, 9S5,1 S†2,1, S5,3 S†2,3==, 99S2,1 S†5,1, S2,3 S†5,3=, 9S2,1 S†5,1, S2,3 S†5,3=, 81<==

LpH†: r
`
=

9S2,4 S5,1 S†2,1, S2,4 S5,3 S†2,3=
9S2,4=
9S2,4=
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bundle data: 

Z2 xZ2 models with non-zero up Yukawa rank and dim 4 proton decay operators forbidden at Abelian locus
In[52]:= l4sel = Quiet@Select@l4models, HYuRank ê. ÒL@@2DD > 0 && HDim4ProtonQ ê. ÒL@@1DD ã True &DD;

In[53]:= Length@l4selD

Out[53]= 4

In[54]:= For@i = 1, i § Length@l4selD, i++, PrintLineModel@l4sel@@iDD, OutFormat Ø "full"DD

ü Model number 1,   Identifier {7862, 4, 3}
ü Basic properties

standard model? True massless UH1L: 1 number of 5 5 pairs: 3 c2HVL = 824, 8, 20, 12<

V: HkiaL =

-1 -1 0 1 1
0 -3 1 1 1
0 2 -1 -1 0
1 2 0 -1 -2

Cohomology of V:

L2 = 8-1, -3, 2, 2< h@L2D = 80, 8, 0, 0< h@L2,RD = 880, 0, 0, 0<, 82, 2, 2, 2<, 80, 0, 0, 0<, 80, 0, 0, 0<<
L5 = 81, 1, 0, -2< h@L5D = 80, 4, 0, 0< h@L5,RD = 880, 0, 0, 0<, 81, 1, 1, 1<, 80, 0, 0, 0<, 80, 0, 0, 0<<
L2µL4 = 80, -2, 1, 1< h@L2µL4D = 80, 4, 0, 0< h@L2µL4,RD = 880, 0, 0, 0<, 81, 1, 1, 1<, 80, 0, 0, 0<, 80, 0, 0, 0<<
L2µL5 = 80, -2, 2, 0< h@L2µL5D = 80, 3, 3, 0< h@L2µL5,RD = 880, 0, 0, 0<, 80, 1, 1, 1<, 80, 1, 1, 1<, 80, 0, 0, 0<<
L4µL5 = 82, 2, -1, -3< h@L4µL5D = 80, 8, 0, 0< h@L4µL5,RD = 880, 0, 0, 0<, 82, 2, 2, 2<, 80, 0, 0, 0<, 80, 0, 0, 0<<
L1µL2* = 80, 3, -2, -1< h@L1µL2*D = 80, 0, 12, 0< h@L1µL2*,RD = 880, 0, 0, 0<, 80, 0, 0, 0<, 83, 3, 3, 3<, 80, 0, 0, 0<<
L1µL5* = 8-2, -1, 0, 3< h@L1µL5*D = 80, 0, 12, 0< h@L1µL5*,RD = 880, 0, 0, 0<, 80, 0, 0, 0<, 83, 3, 3, 3<, 80, 0, 0, 0<<
L2µL3* = 8-1, -4, 3, 2< h@L2µL3*D = 80, 20, 0, 0< h@L2µL3*,RD = 880, 0, 0, 0<, 85, 5, 5, 5<, 80, 0, 0, 0<, 80, 0, 0, 0<<
L2µL4* = 8-2, -4, 3, 3< h@L2µL4*D = 80, 12, 0, 0< h@L2µL4*,RD = 880, 0, 0, 0<, 83, 3, 3, 3<, 80, 0, 0, 0<, 80, 0, 0, 0<<
L3µL5* = 8-1, 0, -1, 2< h@L3µL5*D = 80, 0, 4, 0< h@L3µL5*,RD = 880, 0, 0, 0<, 80, 0, 0, 0<, 81, 1, 1, 1<, 80, 0, 0, 0<<

Wilson line: 880, 0<, 80, 1<< Equivariant structure: 880, 0<, 80, 0<, 80, 0<, 80, 0<, 80, 0<< Higgs pairs: 1

Downstairs spectrum: :2 102, 105, 52,4, 2 54,5, H2,5, H2,5, 3 S2,1, 3 S5,1, 5 S2,3, 3 S2,4, S5,3> Phys. Higgs: :H2,5, H2,5>

Transfer format: 886, 1, 1, 4, 6, 5, 9, 9, 8, 10, 1, 7, 17<, 86, 6, -1, -1, -1, -1<<

rkHYHuLL = 82, 2< rkHYHdLLL = 80, 0< dim. 4 operators absent: 8True, True< dim. 5 operators absent: 8True, True<

ü Operators
basic superpotential terms:

H10p10q: YHuL =
H 0 L H 0 L H 1 L

H 0 L H 0 L H 1 L

H 1 L H 1 L H 0 L

H5p10q: YHdL =
H 0 L H 0 L H 0 L

H 0 L H 0 L H 0 L

H 0 L H 0 L H 0 L

HH: m = 81<

Wsing = 80<

R-parity violating terms in superpotential:

HLp: r =

0
S2,4
S2,4

10p5q5r: l = 88880<, 80<, 80<<, 880<, 80<, 80<<, 880<, 80<, 80<<<, 8880<, 80<, 80<<, 880<, 80<, 80<<, 880<, 80<, 80<<<, 8880<, 80<, 80<<, 880<, 80<, 80<<, 880<, 80<, 80<<<<

Dimension 5 operators in superpotential:

5p10q10r10s: l' = 888880<, 80<, 80<<, 880<, 80<, 80<<, 880<, 80<, 80<<<, 8880<, 80<, 80<<, 880<, 80<, 80<<, 880<, 80<, 80<<<, 8880<, 80<, 80<<, 880<, 80<, 80<<, 880<, 80<, 80<<<<,
88880<, 80<, 80<<, 880<, 80<, 80<<, 880<, 80<, 80<<<, 8880<, 80<, 80<<, 880<, 80<, 80<<, 880<, 80<, 80<<<, 8880<, 80<, 80<<, 880<, 80<, 80<<, 880<, 80<, 80<<<<, 88880<, 80<, 80<<, 880<, 80<, 80<<, 880<, 80<, 80<<<, 8880<, 80<, 80<<, 880<, 80<, 80<<, 880<, 80<, 80<<<, 8880<, 80<, 80<<, 880<, 80<, 80<<, 880<, 80<, 80<<<<<

D-terms:

FI-terms: kiaki =

4 t1 t2 + 4 t1 t3 - 4 t2 t4 - 4 t3 t4
16 t1 t2 - 4 t1 t3 + 4 t2 t3 - 4 t1 t4 + 4 t2 t4 - 16 t3 t4

-4 t1 t2 + 4 t1 t3 - 4 t2 t4 + 4 t3 t4
-8 t1 t2 + 8 t3 t4

-8 t1 t2 - 4 t1 t3 - 4 t2 t3 + 4 t1 t4 + 4 t2 t4 + 8 t3 t4

singlet D-terms: qaaSaS
b
=

-S2,1 S†2,1 -S5,1 S†5,1
S2,1 S†2,1 +S2,3 S†2,3 +S2,4 S†2,4

-S2,3 S†2,3 -S5,3 S†5,3
-S2,4 S†2,4

S5,1 S†5,1 +S5,3 S†5,3

Kinetic terms:

GM term: m
è
= 80<

5p5q †: KH5L = 9981<, 9S2,1 S†5,1, S2,3 S†5,3=, 9S2,1 S†5,1, S2,3 S†5,3==, 99S5,1 S†2,1, S5,3 S†2,3=, 81<, 81<=, 99S5,1 S†2,1, S5,3 S†2,3=, 81<, 81<==

10p10q †: KH10L = 9981<, 81<, 9S5,1 S†2,1, S5,3 S†2,3==, 981<, 81<, 9S5,1 S†2,1, S5,3 S†2,3==, 99S2,1 S†5,1, S2,3 S†5,3=, 9S2,1 S†5,1, S2,3 S†5,3=, 81<==

LpH†: r
`
=

9S2,4 S5,1 S†2,1, S2,4 S5,3 S†2,3=
9S2,4=
9S2,4=

integer matrix defining line bundle sum
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bundle data: 

Z2 xZ2 models with non-zero up Yukawa rank and dim 4 proton decay operators forbidden at Abelian locus
In[52]:= l4sel = Quiet@Select@l4models, HYuRank ê. ÒL@@2DD > 0 && HDim4ProtonQ ê. ÒL@@1DD ã True &DD;

In[53]:= Length@l4selD

Out[53]= 4

In[54]:= For@i = 1, i § Length@l4selD, i++, PrintLineModel@l4sel@@iDD, OutFormat Ø "full"DD

ü Model number 1,   Identifier {7862, 4, 3}
ü Basic properties

standard model? True massless UH1L: 1 number of 5 5 pairs: 3 c2HVL = 824, 8, 20, 12<

V: HkiaL =

-1 -1 0 1 1
0 -3 1 1 1
0 2 -1 -1 0
1 2 0 -1 -2

Cohomology of V:

L2 = 8-1, -3, 2, 2< h@L2D = 80, 8, 0, 0< h@L2,RD = 880, 0, 0, 0<, 82, 2, 2, 2<, 80, 0, 0, 0<, 80, 0, 0, 0<<
L5 = 81, 1, 0, -2< h@L5D = 80, 4, 0, 0< h@L5,RD = 880, 0, 0, 0<, 81, 1, 1, 1<, 80, 0, 0, 0<, 80, 0, 0, 0<<
L2µL4 = 80, -2, 1, 1< h@L2µL4D = 80, 4, 0, 0< h@L2µL4,RD = 880, 0, 0, 0<, 81, 1, 1, 1<, 80, 0, 0, 0<, 80, 0, 0, 0<<
L2µL5 = 80, -2, 2, 0< h@L2µL5D = 80, 3, 3, 0< h@L2µL5,RD = 880, 0, 0, 0<, 80, 1, 1, 1<, 80, 1, 1, 1<, 80, 0, 0, 0<<
L4µL5 = 82, 2, -1, -3< h@L4µL5D = 80, 8, 0, 0< h@L4µL5,RD = 880, 0, 0, 0<, 82, 2, 2, 2<, 80, 0, 0, 0<, 80, 0, 0, 0<<
L1µL2* = 80, 3, -2, -1< h@L1µL2*D = 80, 0, 12, 0< h@L1µL2*,RD = 880, 0, 0, 0<, 80, 0, 0, 0<, 83, 3, 3, 3<, 80, 0, 0, 0<<
L1µL5* = 8-2, -1, 0, 3< h@L1µL5*D = 80, 0, 12, 0< h@L1µL5*,RD = 880, 0, 0, 0<, 80, 0, 0, 0<, 83, 3, 3, 3<, 80, 0, 0, 0<<
L2µL3* = 8-1, -4, 3, 2< h@L2µL3*D = 80, 20, 0, 0< h@L2µL3*,RD = 880, 0, 0, 0<, 85, 5, 5, 5<, 80, 0, 0, 0<, 80, 0, 0, 0<<
L2µL4* = 8-2, -4, 3, 3< h@L2µL4*D = 80, 12, 0, 0< h@L2µL4*,RD = 880, 0, 0, 0<, 83, 3, 3, 3<, 80, 0, 0, 0<, 80, 0, 0, 0<<
L3µL5* = 8-1, 0, -1, 2< h@L3µL5*D = 80, 0, 4, 0< h@L3µL5*,RD = 880, 0, 0, 0<, 80, 0, 0, 0<, 81, 1, 1, 1<, 80, 0, 0, 0<<

Wilson line: 880, 0<, 80, 1<< Equivariant structure: 880, 0<, 80, 0<, 80, 0<, 80, 0<, 80, 0<< Higgs pairs: 1

Downstairs spectrum: :2 102, 105, 52,4, 2 54,5, H2,5, H2,5, 3 S2,1, 3 S5,1, 5 S2,3, 3 S2,4, S5,3> Phys. Higgs: :H2,5, H2,5>

Transfer format: 886, 1, 1, 4, 6, 5, 9, 9, 8, 10, 1, 7, 17<, 86, 6, -1, -1, -1, -1<<

rkHYHuLL = 82, 2< rkHYHdLLL = 80, 0< dim. 4 operators absent: 8True, True< dim. 5 operators absent: 8True, True<

ü Operators
basic superpotential terms:

H10p10q: YHuL =
H 0 L H 0 L H 1 L

H 0 L H 0 L H 1 L

H 1 L H 1 L H 0 L

H5p10q: YHdL =
H 0 L H 0 L H 0 L

H 0 L H 0 L H 0 L

H 0 L H 0 L H 0 L

HH: m = 81<

Wsing = 80<

R-parity violating terms in superpotential:

HLp: r =

0
S2,4
S2,4

10p5q5r: l = 88880<, 80<, 80<<, 880<, 80<, 80<<, 880<, 80<, 80<<<, 8880<, 80<, 80<<, 880<, 80<, 80<<, 880<, 80<, 80<<<, 8880<, 80<, 80<<, 880<, 80<, 80<<, 880<, 80<, 80<<<<

Dimension 5 operators in superpotential:

5p10q10r10s: l' = 888880<, 80<, 80<<, 880<, 80<, 80<<, 880<, 80<, 80<<<, 8880<, 80<, 80<<, 880<, 80<, 80<<, 880<, 80<, 80<<<, 8880<, 80<, 80<<, 880<, 80<, 80<<, 880<, 80<, 80<<<<,
88880<, 80<, 80<<, 880<, 80<, 80<<, 880<, 80<, 80<<<, 8880<, 80<, 80<<, 880<, 80<, 80<<, 880<, 80<, 80<<<, 8880<, 80<, 80<<, 880<, 80<, 80<<, 880<, 80<, 80<<<<, 88880<, 80<, 80<<, 880<, 80<, 80<<, 880<, 80<, 80<<<, 8880<, 80<, 80<<, 880<, 80<, 80<<, 880<, 80<, 80<<<, 8880<, 80<, 80<<, 880<, 80<, 80<<, 880<, 80<, 80<<<<<

D-terms:

FI-terms: kiaki =

4 t1 t2 + 4 t1 t3 - 4 t2 t4 - 4 t3 t4
16 t1 t2 - 4 t1 t3 + 4 t2 t3 - 4 t1 t4 + 4 t2 t4 - 16 t3 t4

-4 t1 t2 + 4 t1 t3 - 4 t2 t4 + 4 t3 t4
-8 t1 t2 + 8 t3 t4

-8 t1 t2 - 4 t1 t3 - 4 t2 t3 + 4 t1 t4 + 4 t2 t4 + 8 t3 t4

singlet D-terms: qaaSaS
b
=

-S2,1 S†2,1 -S5,1 S†5,1
S2,1 S†2,1 +S2,3 S†2,3 +S2,4 S†2,4

-S2,3 S†2,3 -S5,3 S†5,3
-S2,4 S†2,4

S5,1 S†5,1 +S5,3 S†5,3

Kinetic terms:

GM term: m
è
= 80<

5p5q †: KH5L = 9981<, 9S2,1 S†5,1, S2,3 S†5,3=, 9S2,1 S†5,1, S2,3 S†5,3==, 99S5,1 S†2,1, S5,3 S†2,3=, 81<, 81<=, 99S5,1 S†2,1, S5,3 S†2,3=, 81<, 81<==

10p10q †: KH10L = 9981<, 81<, 9S5,1 S†2,1, S5,3 S†2,3==, 981<, 81<, 9S5,1 S†2,1, S5,3 S†2,3==, 99S2,1 S†5,1, S2,3 S†5,3=, 9S2,1 S†5,1, S2,3 S†5,3=, 81<==

LpH†: r
`
=

9S2,4 S5,1 S†2,1, S2,4 S5,3 S†2,3=
9S2,4=
9S2,4=

integer matrix defining line bundle sum

spectrum: 102, 102, 105, 52,4, 54,5, 54,5

312,1, 315,1, 512,3, 312,4, 15,3

, H2,5, H̄2,5
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Z2 xZ2 models with non-zero up Yukawa rank and dim 4 proton decay operators forbidden at Abelian locus
In[52]:= l4sel = Quiet@Select@l4models, HYuRank ê. ÒL@@2DD > 0 && HDim4ProtonQ ê. ÒL@@1DD ã True &DD;

In[53]:= Length@l4selD

Out[53]= 4

In[54]:= For@i = 1, i § Length@l4selD, i++, PrintLineModel@l4sel@@iDD, OutFormat Ø "full"DD

ü Model number 1,   Identifier {7862, 4, 3}
ü Basic properties

standard model? True massless UH1L: 1 number of 5 5 pairs: 3 c2HVL = 824, 8, 20, 12<

V: HkiaL =

-1 -1 0 1 1
0 -3 1 1 1
0 2 -1 -1 0
1 2 0 -1 -2

Cohomology of V:

L2 = 8-1, -3, 2, 2< h@L2D = 80, 8, 0, 0< h@L2,RD = 880, 0, 0, 0<, 82, 2, 2, 2<, 80, 0, 0, 0<, 80, 0, 0, 0<<
L5 = 81, 1, 0, -2< h@L5D = 80, 4, 0, 0< h@L5,RD = 880, 0, 0, 0<, 81, 1, 1, 1<, 80, 0, 0, 0<, 80, 0, 0, 0<<
L2µL4 = 80, -2, 1, 1< h@L2µL4D = 80, 4, 0, 0< h@L2µL4,RD = 880, 0, 0, 0<, 81, 1, 1, 1<, 80, 0, 0, 0<, 80, 0, 0, 0<<
L2µL5 = 80, -2, 2, 0< h@L2µL5D = 80, 3, 3, 0< h@L2µL5,RD = 880, 0, 0, 0<, 80, 1, 1, 1<, 80, 1, 1, 1<, 80, 0, 0, 0<<
L4µL5 = 82, 2, -1, -3< h@L4µL5D = 80, 8, 0, 0< h@L4µL5,RD = 880, 0, 0, 0<, 82, 2, 2, 2<, 80, 0, 0, 0<, 80, 0, 0, 0<<
L1µL2* = 80, 3, -2, -1< h@L1µL2*D = 80, 0, 12, 0< h@L1µL2*,RD = 880, 0, 0, 0<, 80, 0, 0, 0<, 83, 3, 3, 3<, 80, 0, 0, 0<<
L1µL5* = 8-2, -1, 0, 3< h@L1µL5*D = 80, 0, 12, 0< h@L1µL5*,RD = 880, 0, 0, 0<, 80, 0, 0, 0<, 83, 3, 3, 3<, 80, 0, 0, 0<<
L2µL3* = 8-1, -4, 3, 2< h@L2µL3*D = 80, 20, 0, 0< h@L2µL3*,RD = 880, 0, 0, 0<, 85, 5, 5, 5<, 80, 0, 0, 0<, 80, 0, 0, 0<<
L2µL4* = 8-2, -4, 3, 3< h@L2µL4*D = 80, 12, 0, 0< h@L2µL4*,RD = 880, 0, 0, 0<, 83, 3, 3, 3<, 80, 0, 0, 0<, 80, 0, 0, 0<<
L3µL5* = 8-1, 0, -1, 2< h@L3µL5*D = 80, 0, 4, 0< h@L3µL5*,RD = 880, 0, 0, 0<, 80, 0, 0, 0<, 81, 1, 1, 1<, 80, 0, 0, 0<<

Wilson line: 880, 0<, 80, 1<< Equivariant structure: 880, 0<, 80, 0<, 80, 0<, 80, 0<, 80, 0<< Higgs pairs: 1

Downstairs spectrum: :2 102, 105, 52,4, 2 54,5, H2,5, H2,5, 3 S2,1, 3 S5,1, 5 S2,3, 3 S2,4, S5,3> Phys. Higgs: :H2,5, H2,5>

Transfer format: 886, 1, 1, 4, 6, 5, 9, 9, 8, 10, 1, 7, 17<, 86, 6, -1, -1, -1, -1<<

rkHYHuLL = 82, 2< rkHYHdLLL = 80, 0< dim. 4 operators absent: 8True, True< dim. 5 operators absent: 8True, True<

ü Operators
basic superpotential terms:

H10p10q: YHuL =
H 0 L H 0 L H 1 L

H 0 L H 0 L H 1 L

H 1 L H 1 L H 0 L

H5p10q: YHdL =
H 0 L H 0 L H 0 L

H 0 L H 0 L H 0 L

H 0 L H 0 L H 0 L

HH: m = 81<

Wsing = 80<

R-parity violating terms in superpotential:

HLp: r =

0
S2,4
S2,4

10p5q5r: l = 88880<, 80<, 80<<, 880<, 80<, 80<<, 880<, 80<, 80<<<, 8880<, 80<, 80<<, 880<, 80<, 80<<, 880<, 80<, 80<<<, 8880<, 80<, 80<<, 880<, 80<, 80<<, 880<, 80<, 80<<<<

Dimension 5 operators in superpotential:

5p10q10r10s: l' = 888880<, 80<, 80<<, 880<, 80<, 80<<, 880<, 80<, 80<<<, 8880<, 80<, 80<<, 880<, 80<, 80<<, 880<, 80<, 80<<<, 8880<, 80<, 80<<, 880<, 80<, 80<<, 880<, 80<, 80<<<<,
88880<, 80<, 80<<, 880<, 80<, 80<<, 880<, 80<, 80<<<, 8880<, 80<, 80<<, 880<, 80<, 80<<, 880<, 80<, 80<<<, 8880<, 80<, 80<<, 880<, 80<, 80<<, 880<, 80<, 80<<<<, 88880<, 80<, 80<<, 880<, 80<, 80<<, 880<, 80<, 80<<<, 8880<, 80<, 80<<, 880<, 80<, 80<<, 880<, 80<, 80<<<, 8880<, 80<, 80<<, 880<, 80<, 80<<, 880<, 80<, 80<<<<<

D-terms:

FI-terms: kiaki =

4 t1 t2 + 4 t1 t3 - 4 t2 t4 - 4 t3 t4
16 t1 t2 - 4 t1 t3 + 4 t2 t3 - 4 t1 t4 + 4 t2 t4 - 16 t3 t4

-4 t1 t2 + 4 t1 t3 - 4 t2 t4 + 4 t3 t4
-8 t1 t2 + 8 t3 t4

-8 t1 t2 - 4 t1 t3 - 4 t2 t3 + 4 t1 t4 + 4 t2 t4 + 8 t3 t4

singlet D-terms: qaaSaS
b
=

-S2,1 S†2,1 -S5,1 S†5,1
S2,1 S†2,1 +S2,3 S†2,3 +S2,4 S†2,4

-S2,3 S†2,3 -S5,3 S†5,3
-S2,4 S†2,4

S5,1 S†5,1 +S5,3 S†5,3

Kinetic terms:

GM term: m
è
= 80<

5p5q †: KH5L = 9981<, 9S2,1 S†5,1, S2,3 S†5,3=, 9S2,1 S†5,1, S2,3 S†5,3==, 99S5,1 S†2,1, S5,3 S†2,3=, 81<, 81<=, 99S5,1 S†2,1, S5,3 S†2,3=, 81<, 81<==

10p10q †: KH10L = 9981<, 81<, 9S5,1 S†2,1, S5,3 S†2,3==, 981<, 81<, 9S5,1 S†2,1, S5,3 S†2,3==, 99S2,1 S†5,1, S2,3 S†5,3=, 9S2,1 S†5,1, S2,3 S†5,3=, 81<==

LpH†: r
`
=

9S2,4 S5,1 S†2,1, S2,4 S5,3 S†2,3=
9S2,4=
9S2,4=

allowed operators: 

Saturday, November 23, 2013



Z2 xZ2 models with non-zero up Yukawa rank and dim 4 proton decay operators forbidden at Abelian locus
In[52]:= l4sel = Quiet@Select@l4models, HYuRank ê. ÒL@@2DD > 0 && HDim4ProtonQ ê. ÒL@@1DD ã True &DD;

In[53]:= Length@l4selD

Out[53]= 4

In[54]:= For@i = 1, i § Length@l4selD, i++, PrintLineModel@l4sel@@iDD, OutFormat Ø "full"DD

ü Model number 1,   Identifier {7862, 4, 3}
ü Basic properties

standard model? True massless UH1L: 1 number of 5 5 pairs: 3 c2HVL = 824, 8, 20, 12<

V: HkiaL =

-1 -1 0 1 1
0 -3 1 1 1
0 2 -1 -1 0
1 2 0 -1 -2

Cohomology of V:

L2 = 8-1, -3, 2, 2< h@L2D = 80, 8, 0, 0< h@L2,RD = 880, 0, 0, 0<, 82, 2, 2, 2<, 80, 0, 0, 0<, 80, 0, 0, 0<<
L5 = 81, 1, 0, -2< h@L5D = 80, 4, 0, 0< h@L5,RD = 880, 0, 0, 0<, 81, 1, 1, 1<, 80, 0, 0, 0<, 80, 0, 0, 0<<
L2µL4 = 80, -2, 1, 1< h@L2µL4D = 80, 4, 0, 0< h@L2µL4,RD = 880, 0, 0, 0<, 81, 1, 1, 1<, 80, 0, 0, 0<, 80, 0, 0, 0<<
L2µL5 = 80, -2, 2, 0< h@L2µL5D = 80, 3, 3, 0< h@L2µL5,RD = 880, 0, 0, 0<, 80, 1, 1, 1<, 80, 1, 1, 1<, 80, 0, 0, 0<<
L4µL5 = 82, 2, -1, -3< h@L4µL5D = 80, 8, 0, 0< h@L4µL5,RD = 880, 0, 0, 0<, 82, 2, 2, 2<, 80, 0, 0, 0<, 80, 0, 0, 0<<
L1µL2* = 80, 3, -2, -1< h@L1µL2*D = 80, 0, 12, 0< h@L1µL2*,RD = 880, 0, 0, 0<, 80, 0, 0, 0<, 83, 3, 3, 3<, 80, 0, 0, 0<<
L1µL5* = 8-2, -1, 0, 3< h@L1µL5*D = 80, 0, 12, 0< h@L1µL5*,RD = 880, 0, 0, 0<, 80, 0, 0, 0<, 83, 3, 3, 3<, 80, 0, 0, 0<<
L2µL3* = 8-1, -4, 3, 2< h@L2µL3*D = 80, 20, 0, 0< h@L2µL3*,RD = 880, 0, 0, 0<, 85, 5, 5, 5<, 80, 0, 0, 0<, 80, 0, 0, 0<<
L2µL4* = 8-2, -4, 3, 3< h@L2µL4*D = 80, 12, 0, 0< h@L2µL4*,RD = 880, 0, 0, 0<, 83, 3, 3, 3<, 80, 0, 0, 0<, 80, 0, 0, 0<<
L3µL5* = 8-1, 0, -1, 2< h@L3µL5*D = 80, 0, 4, 0< h@L3µL5*,RD = 880, 0, 0, 0<, 80, 0, 0, 0<, 81, 1, 1, 1<, 80, 0, 0, 0<<

Wilson line: 880, 0<, 80, 1<< Equivariant structure: 880, 0<, 80, 0<, 80, 0<, 80, 0<, 80, 0<< Higgs pairs: 1

Downstairs spectrum: :2 102, 105, 52,4, 2 54,5, H2,5, H2,5, 3 S2,1, 3 S5,1, 5 S2,3, 3 S2,4, S5,3> Phys. Higgs: :H2,5, H2,5>

Transfer format: 886, 1, 1, 4, 6, 5, 9, 9, 8, 10, 1, 7, 17<, 86, 6, -1, -1, -1, -1<<

rkHYHuLL = 82, 2< rkHYHdLLL = 80, 0< dim. 4 operators absent: 8True, True< dim. 5 operators absent: 8True, True<

ü Operators
basic superpotential terms:

H10p10q: YHuL =
H 0 L H 0 L H 1 L

H 0 L H 0 L H 1 L

H 1 L H 1 L H 0 L

H5p10q: YHdL =
H 0 L H 0 L H 0 L

H 0 L H 0 L H 0 L

H 0 L H 0 L H 0 L

HH: m = 81<

Wsing = 80<

R-parity violating terms in superpotential:

HLp: r =

0
S2,4
S2,4

10p5q5r: l = 88880<, 80<, 80<<, 880<, 80<, 80<<, 880<, 80<, 80<<<, 8880<, 80<, 80<<, 880<, 80<, 80<<, 880<, 80<, 80<<<, 8880<, 80<, 80<<, 880<, 80<, 80<<, 880<, 80<, 80<<<<

Dimension 5 operators in superpotential:

5p10q10r10s: l' = 888880<, 80<, 80<<, 880<, 80<, 80<<, 880<, 80<, 80<<<, 8880<, 80<, 80<<, 880<, 80<, 80<<, 880<, 80<, 80<<<, 8880<, 80<, 80<<, 880<, 80<, 80<<, 880<, 80<, 80<<<<,
88880<, 80<, 80<<, 880<, 80<, 80<<, 880<, 80<, 80<<<, 8880<, 80<, 80<<, 880<, 80<, 80<<, 880<, 80<, 80<<<, 8880<, 80<, 80<<, 880<, 80<, 80<<, 880<, 80<, 80<<<<, 88880<, 80<, 80<<, 880<, 80<, 80<<, 880<, 80<, 80<<<, 8880<, 80<, 80<<, 880<, 80<, 80<<, 880<, 80<, 80<<<, 8880<, 80<, 80<<, 880<, 80<, 80<<, 880<, 80<, 80<<<<<

D-terms:

FI-terms: kiaki =

4 t1 t2 + 4 t1 t3 - 4 t2 t4 - 4 t3 t4
16 t1 t2 - 4 t1 t3 + 4 t2 t3 - 4 t1 t4 + 4 t2 t4 - 16 t3 t4

-4 t1 t2 + 4 t1 t3 - 4 t2 t4 + 4 t3 t4
-8 t1 t2 + 8 t3 t4

-8 t1 t2 - 4 t1 t3 - 4 t2 t3 + 4 t1 t4 + 4 t2 t4 + 8 t3 t4

singlet D-terms: qaaSaS
b
=

-S2,1 S†2,1 -S5,1 S†5,1
S2,1 S†2,1 +S2,3 S†2,3 +S2,4 S†2,4

-S2,3 S†2,3 -S5,3 S†5,3
-S2,4 S†2,4

S5,1 S†5,1 +S5,3 S†5,3

Kinetic terms:

GM term: m
è
= 80<

5p5q †: KH5L = 9981<, 9S2,1 S†5,1, S2,3 S†5,3=, 9S2,1 S†5,1, S2,3 S†5,3==, 99S5,1 S†2,1, S5,3 S†2,3=, 81<, 81<=, 99S5,1 S†2,1, S5,3 S†2,3=, 81<, 81<==

10p10q †: KH10L = 9981<, 81<, 9S5,1 S†2,1, S5,3 S†2,3==, 981<, 81<, 9S5,1 S†2,1, S5,3 S†2,3==, 99S2,1 S†5,1, S2,3 S†5,3=, 9S2,1 S†5,1, S2,3 S†5,3=, 81<==

LpH†: r
`
=

9S2,4 S5,1 S†2,1, S2,4 S5,3 S†2,3=
9S2,4=
9S2,4=

rank 2 

allowed operators: 
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Z2 xZ2 models with non-zero up Yukawa rank and dim 4 proton decay operators forbidden at Abelian locus
In[52]:= l4sel = Quiet@Select@l4models, HYuRank ê. ÒL@@2DD > 0 && HDim4ProtonQ ê. ÒL@@1DD ã True &DD;

In[53]:= Length@l4selD

Out[53]= 4

In[54]:= For@i = 1, i § Length@l4selD, i++, PrintLineModel@l4sel@@iDD, OutFormat Ø "full"DD

ü Model number 1,   Identifier {7862, 4, 3}
ü Basic properties

standard model? True massless UH1L: 1 number of 5 5 pairs: 3 c2HVL = 824, 8, 20, 12<

V: HkiaL =

-1 -1 0 1 1
0 -3 1 1 1
0 2 -1 -1 0
1 2 0 -1 -2

Cohomology of V:

L2 = 8-1, -3, 2, 2< h@L2D = 80, 8, 0, 0< h@L2,RD = 880, 0, 0, 0<, 82, 2, 2, 2<, 80, 0, 0, 0<, 80, 0, 0, 0<<
L5 = 81, 1, 0, -2< h@L5D = 80, 4, 0, 0< h@L5,RD = 880, 0, 0, 0<, 81, 1, 1, 1<, 80, 0, 0, 0<, 80, 0, 0, 0<<
L2µL4 = 80, -2, 1, 1< h@L2µL4D = 80, 4, 0, 0< h@L2µL4,RD = 880, 0, 0, 0<, 81, 1, 1, 1<, 80, 0, 0, 0<, 80, 0, 0, 0<<
L2µL5 = 80, -2, 2, 0< h@L2µL5D = 80, 3, 3, 0< h@L2µL5,RD = 880, 0, 0, 0<, 80, 1, 1, 1<, 80, 1, 1, 1<, 80, 0, 0, 0<<
L4µL5 = 82, 2, -1, -3< h@L4µL5D = 80, 8, 0, 0< h@L4µL5,RD = 880, 0, 0, 0<, 82, 2, 2, 2<, 80, 0, 0, 0<, 80, 0, 0, 0<<
L1µL2* = 80, 3, -2, -1< h@L1µL2*D = 80, 0, 12, 0< h@L1µL2*,RD = 880, 0, 0, 0<, 80, 0, 0, 0<, 83, 3, 3, 3<, 80, 0, 0, 0<<
L1µL5* = 8-2, -1, 0, 3< h@L1µL5*D = 80, 0, 12, 0< h@L1µL5*,RD = 880, 0, 0, 0<, 80, 0, 0, 0<, 83, 3, 3, 3<, 80, 0, 0, 0<<
L2µL3* = 8-1, -4, 3, 2< h@L2µL3*D = 80, 20, 0, 0< h@L2µL3*,RD = 880, 0, 0, 0<, 85, 5, 5, 5<, 80, 0, 0, 0<, 80, 0, 0, 0<<
L2µL4* = 8-2, -4, 3, 3< h@L2µL4*D = 80, 12, 0, 0< h@L2µL4*,RD = 880, 0, 0, 0<, 83, 3, 3, 3<, 80, 0, 0, 0<, 80, 0, 0, 0<<
L3µL5* = 8-1, 0, -1, 2< h@L3µL5*D = 80, 0, 4, 0< h@L3µL5*,RD = 880, 0, 0, 0<, 80, 0, 0, 0<, 81, 1, 1, 1<, 80, 0, 0, 0<<

Wilson line: 880, 0<, 80, 1<< Equivariant structure: 880, 0<, 80, 0<, 80, 0<, 80, 0<, 80, 0<< Higgs pairs: 1

Downstairs spectrum: :2 102, 105, 52,4, 2 54,5, H2,5, H2,5, 3 S2,1, 3 S5,1, 5 S2,3, 3 S2,4, S5,3> Phys. Higgs: :H2,5, H2,5>

Transfer format: 886, 1, 1, 4, 6, 5, 9, 9, 8, 10, 1, 7, 17<, 86, 6, -1, -1, -1, -1<<

rkHYHuLL = 82, 2< rkHYHdLLL = 80, 0< dim. 4 operators absent: 8True, True< dim. 5 operators absent: 8True, True<

ü Operators
basic superpotential terms:

H10p10q: YHuL =
H 0 L H 0 L H 1 L

H 0 L H 0 L H 1 L

H 1 L H 1 L H 0 L

H5p10q: YHdL =
H 0 L H 0 L H 0 L

H 0 L H 0 L H 0 L

H 0 L H 0 L H 0 L

HH: m = 81<

Wsing = 80<

R-parity violating terms in superpotential:

HLp: r =

0
S2,4
S2,4

10p5q5r: l = 88880<, 80<, 80<<, 880<, 80<, 80<<, 880<, 80<, 80<<<, 8880<, 80<, 80<<, 880<, 80<, 80<<, 880<, 80<, 80<<<, 8880<, 80<, 80<<, 880<, 80<, 80<<, 880<, 80<, 80<<<<

Dimension 5 operators in superpotential:

5p10q10r10s: l' = 888880<, 80<, 80<<, 880<, 80<, 80<<, 880<, 80<, 80<<<, 8880<, 80<, 80<<, 880<, 80<, 80<<, 880<, 80<, 80<<<, 8880<, 80<, 80<<, 880<, 80<, 80<<, 880<, 80<, 80<<<<,
88880<, 80<, 80<<, 880<, 80<, 80<<, 880<, 80<, 80<<<, 8880<, 80<, 80<<, 880<, 80<, 80<<, 880<, 80<, 80<<<, 8880<, 80<, 80<<, 880<, 80<, 80<<, 880<, 80<, 80<<<<, 88880<, 80<, 80<<, 880<, 80<, 80<<, 880<, 80<, 80<<<, 8880<, 80<, 80<<, 880<, 80<, 80<<, 880<, 80<, 80<<<, 8880<, 80<, 80<<, 880<, 80<, 80<<, 880<, 80<, 80<<<<<

D-terms:

FI-terms: kiaki =

4 t1 t2 + 4 t1 t3 - 4 t2 t4 - 4 t3 t4
16 t1 t2 - 4 t1 t3 + 4 t2 t3 - 4 t1 t4 + 4 t2 t4 - 16 t3 t4

-4 t1 t2 + 4 t1 t3 - 4 t2 t4 + 4 t3 t4
-8 t1 t2 + 8 t3 t4

-8 t1 t2 - 4 t1 t3 - 4 t2 t3 + 4 t1 t4 + 4 t2 t4 + 8 t3 t4

singlet D-terms: qaaSaS
b
=

-S2,1 S†2,1 -S5,1 S†5,1
S2,1 S†2,1 +S2,3 S†2,3 +S2,4 S†2,4

-S2,3 S†2,3 -S5,3 S†5,3
-S2,4 S†2,4

S5,1 S†5,1 +S5,3 S†5,3

Kinetic terms:

GM term: m
è
= 80<

5p5q †: KH5L = 9981<, 9S2,1 S†5,1, S2,3 S†5,3=, 9S2,1 S†5,1, S2,3 S†5,3==, 99S5,1 S†2,1, S5,3 S†2,3=, 81<, 81<=, 99S5,1 S†2,1, S5,3 S†2,3=, 81<, 81<==

10p10q †: KH10L = 9981<, 81<, 9S5,1 S†2,1, S5,3 S†2,3==, 981<, 81<, 9S5,1 S†2,1, S5,3 S†2,3==, 99S2,1 S†5,1, S2,3 S†5,3=, 9S2,1 S†5,1, S2,3 S†5,3=, 81<==

LpH†: r
`
=

9S2,4 S5,1 S†2,1, S2,4 S5,3 S†2,3=
9S2,4=
9S2,4=

rank 2 

rank 0 

allowed operators: 
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Z2 xZ2 models with non-zero up Yukawa rank and dim 4 proton decay operators forbidden at Abelian locus
In[52]:= l4sel = Quiet@Select@l4models, HYuRank ê. ÒL@@2DD > 0 && HDim4ProtonQ ê. ÒL@@1DD ã True &DD;

In[53]:= Length@l4selD

Out[53]= 4

In[54]:= For@i = 1, i § Length@l4selD, i++, PrintLineModel@l4sel@@iDD, OutFormat Ø "full"DD

ü Model number 1,   Identifier {7862, 4, 3}
ü Basic properties

standard model? True massless UH1L: 1 number of 5 5 pairs: 3 c2HVL = 824, 8, 20, 12<

V: HkiaL =

-1 -1 0 1 1
0 -3 1 1 1
0 2 -1 -1 0
1 2 0 -1 -2

Cohomology of V:

L2 = 8-1, -3, 2, 2< h@L2D = 80, 8, 0, 0< h@L2,RD = 880, 0, 0, 0<, 82, 2, 2, 2<, 80, 0, 0, 0<, 80, 0, 0, 0<<
L5 = 81, 1, 0, -2< h@L5D = 80, 4, 0, 0< h@L5,RD = 880, 0, 0, 0<, 81, 1, 1, 1<, 80, 0, 0, 0<, 80, 0, 0, 0<<
L2µL4 = 80, -2, 1, 1< h@L2µL4D = 80, 4, 0, 0< h@L2µL4,RD = 880, 0, 0, 0<, 81, 1, 1, 1<, 80, 0, 0, 0<, 80, 0, 0, 0<<
L2µL5 = 80, -2, 2, 0< h@L2µL5D = 80, 3, 3, 0< h@L2µL5,RD = 880, 0, 0, 0<, 80, 1, 1, 1<, 80, 1, 1, 1<, 80, 0, 0, 0<<
L4µL5 = 82, 2, -1, -3< h@L4µL5D = 80, 8, 0, 0< h@L4µL5,RD = 880, 0, 0, 0<, 82, 2, 2, 2<, 80, 0, 0, 0<, 80, 0, 0, 0<<
L1µL2* = 80, 3, -2, -1< h@L1µL2*D = 80, 0, 12, 0< h@L1µL2*,RD = 880, 0, 0, 0<, 80, 0, 0, 0<, 83, 3, 3, 3<, 80, 0, 0, 0<<
L1µL5* = 8-2, -1, 0, 3< h@L1µL5*D = 80, 0, 12, 0< h@L1µL5*,RD = 880, 0, 0, 0<, 80, 0, 0, 0<, 83, 3, 3, 3<, 80, 0, 0, 0<<
L2µL3* = 8-1, -4, 3, 2< h@L2µL3*D = 80, 20, 0, 0< h@L2µL3*,RD = 880, 0, 0, 0<, 85, 5, 5, 5<, 80, 0, 0, 0<, 80, 0, 0, 0<<
L2µL4* = 8-2, -4, 3, 3< h@L2µL4*D = 80, 12, 0, 0< h@L2µL4*,RD = 880, 0, 0, 0<, 83, 3, 3, 3<, 80, 0, 0, 0<, 80, 0, 0, 0<<
L3µL5* = 8-1, 0, -1, 2< h@L3µL5*D = 80, 0, 4, 0< h@L3µL5*,RD = 880, 0, 0, 0<, 80, 0, 0, 0<, 81, 1, 1, 1<, 80, 0, 0, 0<<

Wilson line: 880, 0<, 80, 1<< Equivariant structure: 880, 0<, 80, 0<, 80, 0<, 80, 0<, 80, 0<< Higgs pairs: 1

Downstairs spectrum: :2 102, 105, 52,4, 2 54,5, H2,5, H2,5, 3 S2,1, 3 S5,1, 5 S2,3, 3 S2,4, S5,3> Phys. Higgs: :H2,5, H2,5>

Transfer format: 886, 1, 1, 4, 6, 5, 9, 9, 8, 10, 1, 7, 17<, 86, 6, -1, -1, -1, -1<<

rkHYHuLL = 82, 2< rkHYHdLLL = 80, 0< dim. 4 operators absent: 8True, True< dim. 5 operators absent: 8True, True<

ü Operators
basic superpotential terms:

H10p10q: YHuL =
H 0 L H 0 L H 1 L

H 0 L H 0 L H 1 L

H 1 L H 1 L H 0 L

H5p10q: YHdL =
H 0 L H 0 L H 0 L

H 0 L H 0 L H 0 L

H 0 L H 0 L H 0 L

HH: m = 81<

Wsing = 80<

R-parity violating terms in superpotential:

HLp: r =

0
S2,4
S2,4

10p5q5r: l = 88880<, 80<, 80<<, 880<, 80<, 80<<, 880<, 80<, 80<<<, 8880<, 80<, 80<<, 880<, 80<, 80<<, 880<, 80<, 80<<<, 8880<, 80<, 80<<, 880<, 80<, 80<<, 880<, 80<, 80<<<<

Dimension 5 operators in superpotential:

5p10q10r10s: l' = 888880<, 80<, 80<<, 880<, 80<, 80<<, 880<, 80<, 80<<<, 8880<, 80<, 80<<, 880<, 80<, 80<<, 880<, 80<, 80<<<, 8880<, 80<, 80<<, 880<, 80<, 80<<, 880<, 80<, 80<<<<,
88880<, 80<, 80<<, 880<, 80<, 80<<, 880<, 80<, 80<<<, 8880<, 80<, 80<<, 880<, 80<, 80<<, 880<, 80<, 80<<<, 8880<, 80<, 80<<, 880<, 80<, 80<<, 880<, 80<, 80<<<<, 88880<, 80<, 80<<, 880<, 80<, 80<<, 880<, 80<, 80<<<, 8880<, 80<, 80<<, 880<, 80<, 80<<, 880<, 80<, 80<<<, 8880<, 80<, 80<<, 880<, 80<, 80<<, 880<, 80<, 80<<<<<

D-terms:

FI-terms: kiaki =

4 t1 t2 + 4 t1 t3 - 4 t2 t4 - 4 t3 t4
16 t1 t2 - 4 t1 t3 + 4 t2 t3 - 4 t1 t4 + 4 t2 t4 - 16 t3 t4

-4 t1 t2 + 4 t1 t3 - 4 t2 t4 + 4 t3 t4
-8 t1 t2 + 8 t3 t4

-8 t1 t2 - 4 t1 t3 - 4 t2 t3 + 4 t1 t4 + 4 t2 t4 + 8 t3 t4

singlet D-terms: qaaSaS
b
=

-S2,1 S†2,1 -S5,1 S†5,1
S2,1 S†2,1 +S2,3 S†2,3 +S2,4 S†2,4

-S2,3 S†2,3 -S5,3 S†5,3
-S2,4 S†2,4

S5,1 S†5,1 +S5,3 S†5,3

Kinetic terms:

GM term: m
è
= 80<

5p5q †: KH5L = 9981<, 9S2,1 S†5,1, S2,3 S†5,3=, 9S2,1 S†5,1, S2,3 S†5,3==, 99S5,1 S†2,1, S5,3 S†2,3=, 81<, 81<=, 99S5,1 S†2,1, S5,3 S†2,3=, 81<, 81<==

10p10q †: KH10L = 9981<, 81<, 9S5,1 S†2,1, S5,3 S†2,3==, 981<, 81<, 9S5,1 S†2,1, S5,3 S†2,3==, 99S2,1 S†5,1, S2,3 S†5,3=, 9S2,1 S†5,1, S2,3 S†5,3=, 81<==

LpH†: r
`
=

9S2,4 S5,1 S†2,1, S2,4 S5,3 S†2,3=
9S2,4=
9S2,4=

rank 2 

rank 0 
µ-term vanishes

allowed operators: 
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Z2 xZ2 models with non-zero up Yukawa rank and dim 4 proton decay operators forbidden at Abelian locus
In[52]:= l4sel = Quiet@Select@l4models, HYuRank ê. ÒL@@2DD > 0 && HDim4ProtonQ ê. ÒL@@1DD ã True &DD;

In[53]:= Length@l4selD

Out[53]= 4

In[54]:= For@i = 1, i § Length@l4selD, i++, PrintLineModel@l4sel@@iDD, OutFormat Ø "full"DD

ü Model number 1,   Identifier {7862, 4, 3}
ü Basic properties

standard model? True massless UH1L: 1 number of 5 5 pairs: 3 c2HVL = 824, 8, 20, 12<

V: HkiaL =

-1 -1 0 1 1
0 -3 1 1 1
0 2 -1 -1 0
1 2 0 -1 -2

Cohomology of V:

L2 = 8-1, -3, 2, 2< h@L2D = 80, 8, 0, 0< h@L2,RD = 880, 0, 0, 0<, 82, 2, 2, 2<, 80, 0, 0, 0<, 80, 0, 0, 0<<
L5 = 81, 1, 0, -2< h@L5D = 80, 4, 0, 0< h@L5,RD = 880, 0, 0, 0<, 81, 1, 1, 1<, 80, 0, 0, 0<, 80, 0, 0, 0<<
L2µL4 = 80, -2, 1, 1< h@L2µL4D = 80, 4, 0, 0< h@L2µL4,RD = 880, 0, 0, 0<, 81, 1, 1, 1<, 80, 0, 0, 0<, 80, 0, 0, 0<<
L2µL5 = 80, -2, 2, 0< h@L2µL5D = 80, 3, 3, 0< h@L2µL5,RD = 880, 0, 0, 0<, 80, 1, 1, 1<, 80, 1, 1, 1<, 80, 0, 0, 0<<
L4µL5 = 82, 2, -1, -3< h@L4µL5D = 80, 8, 0, 0< h@L4µL5,RD = 880, 0, 0, 0<, 82, 2, 2, 2<, 80, 0, 0, 0<, 80, 0, 0, 0<<
L1µL2* = 80, 3, -2, -1< h@L1µL2*D = 80, 0, 12, 0< h@L1µL2*,RD = 880, 0, 0, 0<, 80, 0, 0, 0<, 83, 3, 3, 3<, 80, 0, 0, 0<<
L1µL5* = 8-2, -1, 0, 3< h@L1µL5*D = 80, 0, 12, 0< h@L1µL5*,RD = 880, 0, 0, 0<, 80, 0, 0, 0<, 83, 3, 3, 3<, 80, 0, 0, 0<<
L2µL3* = 8-1, -4, 3, 2< h@L2µL3*D = 80, 20, 0, 0< h@L2µL3*,RD = 880, 0, 0, 0<, 85, 5, 5, 5<, 80, 0, 0, 0<, 80, 0, 0, 0<<
L2µL4* = 8-2, -4, 3, 3< h@L2µL4*D = 80, 12, 0, 0< h@L2µL4*,RD = 880, 0, 0, 0<, 83, 3, 3, 3<, 80, 0, 0, 0<, 80, 0, 0, 0<<
L3µL5* = 8-1, 0, -1, 2< h@L3µL5*D = 80, 0, 4, 0< h@L3µL5*,RD = 880, 0, 0, 0<, 80, 0, 0, 0<, 81, 1, 1, 1<, 80, 0, 0, 0<<

Wilson line: 880, 0<, 80, 1<< Equivariant structure: 880, 0<, 80, 0<, 80, 0<, 80, 0<, 80, 0<< Higgs pairs: 1

Downstairs spectrum: :2 102, 105, 52,4, 2 54,5, H2,5, H2,5, 3 S2,1, 3 S5,1, 5 S2,3, 3 S2,4, S5,3> Phys. Higgs: :H2,5, H2,5>

Transfer format: 886, 1, 1, 4, 6, 5, 9, 9, 8, 10, 1, 7, 17<, 86, 6, -1, -1, -1, -1<<

rkHYHuLL = 82, 2< rkHYHdLLL = 80, 0< dim. 4 operators absent: 8True, True< dim. 5 operators absent: 8True, True<

ü Operators
basic superpotential terms:

H10p10q: YHuL =
H 0 L H 0 L H 1 L

H 0 L H 0 L H 1 L

H 1 L H 1 L H 0 L

H5p10q: YHdL =
H 0 L H 0 L H 0 L

H 0 L H 0 L H 0 L

H 0 L H 0 L H 0 L

HH: m = 81<

Wsing = 80<

R-parity violating terms in superpotential:

HLp: r =

0
S2,4
S2,4

10p5q5r: l = 88880<, 80<, 80<<, 880<, 80<, 80<<, 880<, 80<, 80<<<, 8880<, 80<, 80<<, 880<, 80<, 80<<, 880<, 80<, 80<<<, 8880<, 80<, 80<<, 880<, 80<, 80<<, 880<, 80<, 80<<<<

Dimension 5 operators in superpotential:

5p10q10r10s: l' = 888880<, 80<, 80<<, 880<, 80<, 80<<, 880<, 80<, 80<<<, 8880<, 80<, 80<<, 880<, 80<, 80<<, 880<, 80<, 80<<<, 8880<, 80<, 80<<, 880<, 80<, 80<<, 880<, 80<, 80<<<<,
88880<, 80<, 80<<, 880<, 80<, 80<<, 880<, 80<, 80<<<, 8880<, 80<, 80<<, 880<, 80<, 80<<, 880<, 80<, 80<<<, 8880<, 80<, 80<<, 880<, 80<, 80<<, 880<, 80<, 80<<<<, 88880<, 80<, 80<<, 880<, 80<, 80<<, 880<, 80<, 80<<<, 8880<, 80<, 80<<, 880<, 80<, 80<<, 880<, 80<, 80<<<, 8880<, 80<, 80<<, 880<, 80<, 80<<, 880<, 80<, 80<<<<<

D-terms:

FI-terms: kiaki =

4 t1 t2 + 4 t1 t3 - 4 t2 t4 - 4 t3 t4
16 t1 t2 - 4 t1 t3 + 4 t2 t3 - 4 t1 t4 + 4 t2 t4 - 16 t3 t4

-4 t1 t2 + 4 t1 t3 - 4 t2 t4 + 4 t3 t4
-8 t1 t2 + 8 t3 t4

-8 t1 t2 - 4 t1 t3 - 4 t2 t3 + 4 t1 t4 + 4 t2 t4 + 8 t3 t4

singlet D-terms: qaaSaS
b
=

-S2,1 S†2,1 -S5,1 S†5,1
S2,1 S†2,1 +S2,3 S†2,3 +S2,4 S†2,4

-S2,3 S†2,3 -S5,3 S†5,3
-S2,4 S†2,4

S5,1 S†5,1 +S5,3 S†5,3

Kinetic terms:

GM term: m
è
= 80<

5p5q †: KH5L = 9981<, 9S2,1 S†5,1, S2,3 S†5,3=, 9S2,1 S†5,1, S2,3 S†5,3==, 99S5,1 S†2,1, S5,3 S†2,3=, 81<, 81<=, 99S5,1 S†2,1, S5,3 S†2,3=, 81<, 81<==

10p10q †: KH10L = 9981<, 81<, 9S5,1 S†2,1, S5,3 S†2,3==, 981<, 81<, 9S5,1 S†2,1, S5,3 S†2,3==, 99S2,1 S†5,1, S2,3 S†5,3=, 9S2,1 S†5,1, S2,3 S†5,3=, 81<==

LpH†: r
`
=

9S2,4 S5,1 S†2,1, S2,4 S5,3 S†2,3=
9S2,4=
9S2,4=

rank 2 

rank 0 
µ-term vanishes

zero for            , non-zero otherwise �12,4� = 0

allowed operators: 
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Z2 xZ2 models with non-zero up Yukawa rank and dim 4 proton decay operators forbidden at Abelian locus
In[52]:= l4sel = Quiet@Select@l4models, HYuRank ê. ÒL@@2DD > 0 && HDim4ProtonQ ê. ÒL@@1DD ã True &DD;

In[53]:= Length@l4selD

Out[53]= 4

In[54]:= For@i = 1, i § Length@l4selD, i++, PrintLineModel@l4sel@@iDD, OutFormat Ø "full"DD

ü Model number 1,   Identifier {7862, 4, 3}
ü Basic properties

standard model? True massless UH1L: 1 number of 5 5 pairs: 3 c2HVL = 824, 8, 20, 12<

V: HkiaL =

-1 -1 0 1 1
0 -3 1 1 1
0 2 -1 -1 0
1 2 0 -1 -2

Cohomology of V:

L2 = 8-1, -3, 2, 2< h@L2D = 80, 8, 0, 0< h@L2,RD = 880, 0, 0, 0<, 82, 2, 2, 2<, 80, 0, 0, 0<, 80, 0, 0, 0<<
L5 = 81, 1, 0, -2< h@L5D = 80, 4, 0, 0< h@L5,RD = 880, 0, 0, 0<, 81, 1, 1, 1<, 80, 0, 0, 0<, 80, 0, 0, 0<<
L2µL4 = 80, -2, 1, 1< h@L2µL4D = 80, 4, 0, 0< h@L2µL4,RD = 880, 0, 0, 0<, 81, 1, 1, 1<, 80, 0, 0, 0<, 80, 0, 0, 0<<
L2µL5 = 80, -2, 2, 0< h@L2µL5D = 80, 3, 3, 0< h@L2µL5,RD = 880, 0, 0, 0<, 80, 1, 1, 1<, 80, 1, 1, 1<, 80, 0, 0, 0<<
L4µL5 = 82, 2, -1, -3< h@L4µL5D = 80, 8, 0, 0< h@L4µL5,RD = 880, 0, 0, 0<, 82, 2, 2, 2<, 80, 0, 0, 0<, 80, 0, 0, 0<<
L1µL2* = 80, 3, -2, -1< h@L1µL2*D = 80, 0, 12, 0< h@L1µL2*,RD = 880, 0, 0, 0<, 80, 0, 0, 0<, 83, 3, 3, 3<, 80, 0, 0, 0<<
L1µL5* = 8-2, -1, 0, 3< h@L1µL5*D = 80, 0, 12, 0< h@L1µL5*,RD = 880, 0, 0, 0<, 80, 0, 0, 0<, 83, 3, 3, 3<, 80, 0, 0, 0<<
L2µL3* = 8-1, -4, 3, 2< h@L2µL3*D = 80, 20, 0, 0< h@L2µL3*,RD = 880, 0, 0, 0<, 85, 5, 5, 5<, 80, 0, 0, 0<, 80, 0, 0, 0<<
L2µL4* = 8-2, -4, 3, 3< h@L2µL4*D = 80, 12, 0, 0< h@L2µL4*,RD = 880, 0, 0, 0<, 83, 3, 3, 3<, 80, 0, 0, 0<, 80, 0, 0, 0<<
L3µL5* = 8-1, 0, -1, 2< h@L3µL5*D = 80, 0, 4, 0< h@L3µL5*,RD = 880, 0, 0, 0<, 80, 0, 0, 0<, 81, 1, 1, 1<, 80, 0, 0, 0<<

Wilson line: 880, 0<, 80, 1<< Equivariant structure: 880, 0<, 80, 0<, 80, 0<, 80, 0<, 80, 0<< Higgs pairs: 1

Downstairs spectrum: :2 102, 105, 52,4, 2 54,5, H2,5, H2,5, 3 S2,1, 3 S5,1, 5 S2,3, 3 S2,4, S5,3> Phys. Higgs: :H2,5, H2,5>

Transfer format: 886, 1, 1, 4, 6, 5, 9, 9, 8, 10, 1, 7, 17<, 86, 6, -1, -1, -1, -1<<

rkHYHuLL = 82, 2< rkHYHdLLL = 80, 0< dim. 4 operators absent: 8True, True< dim. 5 operators absent: 8True, True<

ü Operators
basic superpotential terms:

H10p10q: YHuL =
H 0 L H 0 L H 1 L

H 0 L H 0 L H 1 L

H 1 L H 1 L H 0 L

H5p10q: YHdL =
H 0 L H 0 L H 0 L

H 0 L H 0 L H 0 L

H 0 L H 0 L H 0 L

HH: m = 81<

Wsing = 80<

R-parity violating terms in superpotential:

HLp: r =

0
S2,4
S2,4

10p5q5r: l = 88880<, 80<, 80<<, 880<, 80<, 80<<, 880<, 80<, 80<<<, 8880<, 80<, 80<<, 880<, 80<, 80<<, 880<, 80<, 80<<<, 8880<, 80<, 80<<, 880<, 80<, 80<<, 880<, 80<, 80<<<<

Dimension 5 operators in superpotential:

5p10q10r10s: l' = 888880<, 80<, 80<<, 880<, 80<, 80<<, 880<, 80<, 80<<<, 8880<, 80<, 80<<, 880<, 80<, 80<<, 880<, 80<, 80<<<, 8880<, 80<, 80<<, 880<, 80<, 80<<, 880<, 80<, 80<<<<,
88880<, 80<, 80<<, 880<, 80<, 80<<, 880<, 80<, 80<<<, 8880<, 80<, 80<<, 880<, 80<, 80<<, 880<, 80<, 80<<<, 8880<, 80<, 80<<, 880<, 80<, 80<<, 880<, 80<, 80<<<<, 88880<, 80<, 80<<, 880<, 80<, 80<<, 880<, 80<, 80<<<, 8880<, 80<, 80<<, 880<, 80<, 80<<, 880<, 80<, 80<<<, 8880<, 80<, 80<<, 880<, 80<, 80<<, 880<, 80<, 80<<<<<

D-terms:

FI-terms: kiaki =

4 t1 t2 + 4 t1 t3 - 4 t2 t4 - 4 t3 t4
16 t1 t2 - 4 t1 t3 + 4 t2 t3 - 4 t1 t4 + 4 t2 t4 - 16 t3 t4

-4 t1 t2 + 4 t1 t3 - 4 t2 t4 + 4 t3 t4
-8 t1 t2 + 8 t3 t4

-8 t1 t2 - 4 t1 t3 - 4 t2 t3 + 4 t1 t4 + 4 t2 t4 + 8 t3 t4

singlet D-terms: qaaSaS
b
=

-S2,1 S†2,1 -S5,1 S†5,1
S2,1 S†2,1 +S2,3 S†2,3 +S2,4 S†2,4

-S2,3 S†2,3 -S5,3 S†5,3
-S2,4 S†2,4

S5,1 S†5,1 +S5,3 S†5,3

Kinetic terms:

GM term: m
è
= 80<

5p5q †: KH5L = 9981<, 9S2,1 S†5,1, S2,3 S†5,3=, 9S2,1 S†5,1, S2,3 S†5,3==, 99S5,1 S†2,1, S5,3 S†2,3=, 81<, 81<=, 99S5,1 S†2,1, S5,3 S†2,3=, 81<, 81<==

10p10q †: KH10L = 9981<, 81<, 9S5,1 S†2,1, S5,3 S†2,3==, 981<, 81<, 9S5,1 S†2,1, S5,3 S†2,3==, 99S2,1 S†5,1, S2,3 S†5,3=, 9S2,1 S†5,1, S2,3 S†5,3=, 81<==

LpH†: r
`
=

9S2,4 S5,1 S†2,1, S2,4 S5,3 S†2,3=
9S2,4=
9S2,4=

rank 2 

rank 0 
µ-term vanishes

zero for            , non-zero otherwise �12,4� = 0

proton
stable 

allowed operators: 
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Continuation to non-Abelian bundles

5.4 The superpotential

The superpotential for the fields (5.6) is highly constrained by the S(U(1)5) charges. At the GUT

level the only allowed terms, including operators with singlet insertions are

W = λIJK5(I)2,510
(J)
2 10(K)

5 + ρIJK1(I)2,45
(J)
4,55

(K)
2,5 , (5.9)

where the indices I, J,K . . . run over various ranges, as indicated by the multiplicities in the GUT

spectrum (5.6) and λIJK and ρIJK are arbitrary couplings. At the standard model level, the analogous

terms for the spectrum (5.8) are

W = λiH2,5(Q
(i)
2 u5 +Q5u

(i)
2 ) + ραi1

(α)
2,4L

(i)
4,5H2,5 , (5.10)

where i = 1, 2 labels the two 102 families and the two lepton doublets L4,5 from the two 54,5 multiplets

and α = 1, 2, 3 labels the three singlets 12,4.

These results have a number of important implications for the structure of the model and

its phenomenology. To discuss this, let us focus on the standard model superpotential (5.10) for

concreteness, although analogous statements follow for its GUT counterpart (5.9). The presence of

the Yukawa terms means that the up quark mass matrix has rank two and, while a rank one matrix

may be preferably at this level, this means a perturbative and generically large top Yukawa coupling

is present. The down quark and lepton Yukawa matrices are entirely zero at the perturbative level so,

for a realistic model, they would have to be generated non-perturbatively. Further, all operators at

dimension four and five which can lead to fast proton decay are forbidden. The point is that, while

we certainly do not advertise this model as the one and only standard model from string theory, it

does have modestly attractive phenomenological properties and provides a semi-realistic setting for

the analysis of the bundle moduli space which we will carry out in the remaining part of the paper.

Specifically, our intention is to explore the moduli space of non-Abelian bundles for which the

line bundle sum (5.2) arises as a special locus. From the viewpoint of the four-dimensional effective

field theory, the Abelian locus is characterized by the vanishing VEVs of all singlet fields 1a,b, while

switching on such VEVs corresponds to moving away from the Abelian locus into the non-Abelian part

of the moduli space. From this point of view, the last term in the superpotential (5.10) for our example

model is the most interesting one. At the Abelian locus where, in particular, �12,4� = 0 this term is

simply a coupling. However, for �12,4� �= 0 this term will lead to a mass for the Higgs doublets (or rather

for the up Higgs and one linear combination of what we have called lepton doublets) and essentially

remove the Higgs from the low-energy spectrum. On the other hand, the spectrum (5.8) contains many

other singlets which do not appear in the superpotential. A continuation into the non-Abelian part

of the moduli space along those singlet directions, while keeping �12,4� = 0, should leave the Higgs

doublets massless. Phrased in terms of the GUT theory, the structure of the superpotential (5.9)

suggests that three 5− 5 pairs are removed from the low-energy spectrum if �12,4� �= 0 but that these

states remain massless in all parts of the non-Abelian moduli space where �12,4� = 0. One goal for

the remainder of the paper is to verify these statements from a more fundamental viewpoint, that is,

by explicitly constructing families of non-Abelian bundles and computing their cohomology.

17

Superpot. for example: 

Singlets for example: 312,1, 315,1, 512,3, 312,4, 15,3
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Continuation to non-Abelian bundles

5.4 The superpotential

The superpotential for the fields (5.6) is highly constrained by the S(U(1)5) charges. At the GUT

level the only allowed terms, including operators with singlet insertions are

W = λIJK5(I)2,510
(J)
2 10(K)

5 + ρIJK1(I)2,45
(J)
4,55

(K)
2,5 , (5.9)

where the indices I, J,K . . . run over various ranges, as indicated by the multiplicities in the GUT

spectrum (5.6) and λIJK and ρIJK are arbitrary couplings. At the standard model level, the analogous

terms for the spectrum (5.8) are

W = λiH2,5(Q
(i)
2 u5 +Q5u

(i)
2 ) + ραi1

(α)
2,4L

(i)
4,5H2,5 , (5.10)

where i = 1, 2 labels the two 102 families and the two lepton doublets L4,5 from the two 54,5 multiplets

and α = 1, 2, 3 labels the three singlets 12,4.

These results have a number of important implications for the structure of the model and

its phenomenology. To discuss this, let us focus on the standard model superpotential (5.10) for

concreteness, although analogous statements follow for its GUT counterpart (5.9). The presence of

the Yukawa terms means that the up quark mass matrix has rank two and, while a rank one matrix

may be preferably at this level, this means a perturbative and generically large top Yukawa coupling

is present. The down quark and lepton Yukawa matrices are entirely zero at the perturbative level so,

for a realistic model, they would have to be generated non-perturbatively. Further, all operators at

dimension four and five which can lead to fast proton decay are forbidden. The point is that, while

we certainly do not advertise this model as the one and only standard model from string theory, it

does have modestly attractive phenomenological properties and provides a semi-realistic setting for

the analysis of the bundle moduli space which we will carry out in the remaining part of the paper.

Specifically, our intention is to explore the moduli space of non-Abelian bundles for which the

line bundle sum (5.2) arises as a special locus. From the viewpoint of the four-dimensional effective

field theory, the Abelian locus is characterized by the vanishing VEVs of all singlet fields 1a,b, while

switching on such VEVs corresponds to moving away from the Abelian locus into the non-Abelian part

of the moduli space. From this point of view, the last term in the superpotential (5.10) for our example

model is the most interesting one. At the Abelian locus where, in particular, �12,4� = 0 this term is

simply a coupling. However, for �12,4� �= 0 this term will lead to a mass for the Higgs doublets (or rather

for the up Higgs and one linear combination of what we have called lepton doublets) and essentially

remove the Higgs from the low-energy spectrum. On the other hand, the spectrum (5.8) contains many

other singlets which do not appear in the superpotential. A continuation into the non-Abelian part

of the moduli space along those singlet directions, while keeping �12,4� = 0, should leave the Higgs

doublets massless. Phrased in terms of the GUT theory, the structure of the superpotential (5.9)

suggests that three 5− 5 pairs are removed from the low-energy spectrum if �12,4� �= 0 but that these

states remain massless in all parts of the non-Abelian moduli space where �12,4� = 0. One goal for

the remainder of the paper is to verify these statements from a more fundamental viewpoint, that is,

by explicitly constructing families of non-Abelian bundles and computing their cohomology.

17

Superpot. for example: 

Suggests: massless Higgs doublet pair throughout moduli space
as long as            . �1α

2,4� = 0

Singlets for example: 312,1, 315,1, 512,3, 312,4, 15,3
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Continuation to non-Abelian bundles

5.4 The superpotential

The superpotential for the fields (5.6) is highly constrained by the S(U(1)5) charges. At the GUT

level the only allowed terms, including operators with singlet insertions are

W = λIJK5(I)2,510
(J)
2 10(K)

5 + ρIJK1(I)2,45
(J)
4,55

(K)
2,5 , (5.9)

where the indices I, J,K . . . run over various ranges, as indicated by the multiplicities in the GUT

spectrum (5.6) and λIJK and ρIJK are arbitrary couplings. At the standard model level, the analogous

terms for the spectrum (5.8) are

W = λiH2,5(Q
(i)
2 u5 +Q5u

(i)
2 ) + ραi1

(α)
2,4L

(i)
4,5H2,5 , (5.10)

where i = 1, 2 labels the two 102 families and the two lepton doublets L4,5 from the two 54,5 multiplets

and α = 1, 2, 3 labels the three singlets 12,4.

These results have a number of important implications for the structure of the model and

its phenomenology. To discuss this, let us focus on the standard model superpotential (5.10) for

concreteness, although analogous statements follow for its GUT counterpart (5.9). The presence of

the Yukawa terms means that the up quark mass matrix has rank two and, while a rank one matrix

may be preferably at this level, this means a perturbative and generically large top Yukawa coupling

is present. The down quark and lepton Yukawa matrices are entirely zero at the perturbative level so,

for a realistic model, they would have to be generated non-perturbatively. Further, all operators at

dimension four and five which can lead to fast proton decay are forbidden. The point is that, while

we certainly do not advertise this model as the one and only standard model from string theory, it

does have modestly attractive phenomenological properties and provides a semi-realistic setting for

the analysis of the bundle moduli space which we will carry out in the remaining part of the paper.

Specifically, our intention is to explore the moduli space of non-Abelian bundles for which the

line bundle sum (5.2) arises as a special locus. From the viewpoint of the four-dimensional effective

field theory, the Abelian locus is characterized by the vanishing VEVs of all singlet fields 1a,b, while

switching on such VEVs corresponds to moving away from the Abelian locus into the non-Abelian part

of the moduli space. From this point of view, the last term in the superpotential (5.10) for our example

model is the most interesting one. At the Abelian locus where, in particular, �12,4� = 0 this term is

simply a coupling. However, for �12,4� �= 0 this term will lead to a mass for the Higgs doublets (or rather

for the up Higgs and one linear combination of what we have called lepton doublets) and essentially

remove the Higgs from the low-energy spectrum. On the other hand, the spectrum (5.8) contains many

other singlets which do not appear in the superpotential. A continuation into the non-Abelian part

of the moduli space along those singlet directions, while keeping �12,4� = 0, should leave the Higgs

doublets massless. Phrased in terms of the GUT theory, the structure of the superpotential (5.9)

suggests that three 5− 5 pairs are removed from the low-energy spectrum if �12,4� �= 0 but that these

states remain massless in all parts of the non-Abelian moduli space where �12,4� = 0. One goal for

the remainder of the paper is to verify these statements from a more fundamental viewpoint, that is,
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Continuation to non-Abelian bundles

5.4 The superpotential

The superpotential for the fields (5.6) is highly constrained by the S(U(1)5) charges. At the GUT

level the only allowed terms, including operators with singlet insertions are

W = λIJK5(I)2,510
(J)
2 10(K)

5 + ρIJK1(I)2,45
(J)
4,55

(K)
2,5 , (5.9)

where the indices I, J,K . . . run over various ranges, as indicated by the multiplicities in the GUT

spectrum (5.6) and λIJK and ρIJK are arbitrary couplings. At the standard model level, the analogous

terms for the spectrum (5.8) are

W = λiH2,5(Q
(i)
2 u5 +Q5u

(i)
2 ) + ραi1

(α)
2,4L

(i)
4,5H2,5 , (5.10)

where i = 1, 2 labels the two 102 families and the two lepton doublets L4,5 from the two 54,5 multiplets

and α = 1, 2, 3 labels the three singlets 12,4.

These results have a number of important implications for the structure of the model and

its phenomenology. To discuss this, let us focus on the standard model superpotential (5.10) for

concreteness, although analogous statements follow for its GUT counterpart (5.9). The presence of

the Yukawa terms means that the up quark mass matrix has rank two and, while a rank one matrix

may be preferably at this level, this means a perturbative and generically large top Yukawa coupling

is present. The down quark and lepton Yukawa matrices are entirely zero at the perturbative level so,

for a realistic model, they would have to be generated non-perturbatively. Further, all operators at

dimension four and five which can lead to fast proton decay are forbidden. The point is that, while

we certainly do not advertise this model as the one and only standard model from string theory, it

does have modestly attractive phenomenological properties and provides a semi-realistic setting for

the analysis of the bundle moduli space which we will carry out in the remaining part of the paper.

Specifically, our intention is to explore the moduli space of non-Abelian bundles for which the

line bundle sum (5.2) arises as a special locus. From the viewpoint of the four-dimensional effective
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Set                                       and define extension

Check fate of Higgs  by constructing non-Abelian bundle 

5 A line bundle model on the tetra-quadric

In this chapter, we present a specific example taken from the set of phenomenologically viable line

bundle models on the tetra-quadric described in the previous section. It is in the context of this model

that we will study the question of continuation into the non-Abelian part of the bundle moduli space

and the implications for the mass of the Higgs doublets.

5.1 Definition of the model

The bundle V for the model in question is given by the sum of the following five line bundles

L1 = OX(−1, 0, 0, 1) , L2 = OX(−1,−3, 2, 2) , L3 = OX(0, 1,−1, 0)

L4 = OX(1, 1,−1,−1) , L5 = OX(1, 1, 0,−2)
(5.1)

so the associated matrix (kia) of line bundle integers reads

(kia) =





−1 −1 0 1 1

0 −3 1 1 1

0 2 −1 −1 0

1 2 0 −1 −2




. (5.2)

The rows of this matrix sum up to zero, so clearly we have c1(V ) = 0, as required. From Eq. (3.6) we

find

c2i(V ) = (24, 8, 20, 12) (5.3)

so that the anomaly constraint (3.7) is satisfied. Further, with rank(kia) = 3, the rank constraint is

satisfied and all line bundle slopes (3.10) are zero on the ray in Kähler moduli space where κ1 = κ2 =

κ3 = κ4 which corresponds to the diagonal t1 = t2 = t3 = t4. Altogether this means we have defined

a consistent, supersymmetric GUT model with symmetry SU(5) × S(U(1)
5
). Since rank(kia) = 3

one linear combination of the U(1) symmetries is non-anomalous with a massless vector boson at the

Abelian locus. This specific linear combination is (0, 1, 2, 0, 1), the non-trivial vector in the kernel of

the matrix (kia).

5.2 The GUT spectrum at the Abelian locus

The total dimensions of the relevant cohomology groups (computed, e.g. using the formulae of Ap-

pendix C) are given by

h
•
(X,V ) = (0, 12, 0, 0)

h
•
(X,∧2V ) = (0, 15, 3, 0)

h
•
(X,V ⊗ V

∗
) = (5, 60, 60, 5)

(5.4)

Hence, we have a total of 12 GUT families in 10 ⊕ 5 plus three 5 − 5 pairs and a large number of

singlet fields. In order to quotient this GUT model to a three-family standard model we need |Γ| = 4

15

Recall:
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1) Extension bundles 

0 −→ V1 −→ Ṽ −→ V2 −→ 0

For                                             define extension V1 = L2 ⊕ L5, V2 = L1 ⊕ L3 ⊕ L4
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2) Monads 

On the tetra-quadric, apart from the trivial realisation �Ba = OX and �Ca = 0, one can also consider

�Ba = OX(0, 0, 0, pa)⊕OX(0, 0, 0, qa) and �Ca = OX(0, 0, 0, pa + qa) (6.20)

where pa and qa are positive integers. For this choice, the map fa = (f1,a, f2,a) contains two poly-

nomials of multi-degrees (0, 0, 0, pa) and (0, 0, 0, qa). For generic choices of the polynomials, this map

has rank one generically. The rank reduces to zero at points in CP1 where f1,a = f2,a = 0 but for

sufficiently generic polynomials these equations have no solution in CP1. Hence, this indeed provides

a monad representation of the structure sheaf. Of course, the integers pa, qa in �Ba and �Ca can ap-

pear in any of the four entries, so that we have a large number of choices on how to represent the

structure sheaf as a monad. We can choose the trivial representation or a non-trivial representation

characterized by choosing one of the four line bundle components and two integers pa, qa.

Now consider a given line bundle sum V =
�n

a=1 La. We can obtain monad representations for

the individual line bundles by simply twisting the monad sequence (6.18) with La. This leads to

0 −→ La −→ La ⊗ �Ba
fa−→ La ⊗ �Ca −→ 0 . (6.21)

For the full line bundle sum V , we sum these sequences to obtain

0 −→ V −→ B
f−→ C −→ 0 (6.22)

where

B =
n�

a=1

La ⊗ �Ba , C =
n�

a=1

La ⊗ �Ca , f = diag (f1, . . . fn) . (6.23)

We note that for each line bundle, a, we can choose �Ba and �Ca independently, from the range of

possibilities explained above, so there is significant flexibility in the construction. For the diagonal

form of the monad map f , as given above, each such choice leads to a monad representation of the

original line bundle sum V . However, the map f may allow deformations away from this block-diagonal

form and then defines a more general class of bundles

0 −→ �V −→ B
f−→ C −→ 0 (6.24)

which split into V at the locus where f becomes block-diagonal. Since ch(Ṽ ) = ch(B)−ch(C) = ch(V )

the Chern character of the monad bundle Ṽ is the same as that of the original line bundle sum V .

Therefore, if c1(V ) vanishes and the line bundle sum V satisfies the anomaly constraint (2.6) then the

same is true for the monad bundle Ṽ .
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B ∼

6.2.2 Application to our example

We would now like to apply the above procedure to our example on the tetra-quadric which was

defined by a line bundle sum V =
�5

a=1 La characterized by the integers

(kia) =





−1 −1 0 1 1

0 −3 1 1 1

0 2 −1 −1 0

1 2 0 −1 −2




, (6.25)

where the columns correspond to the line bundles La, a = 1, . . . , 5. To do this, we have to choose, for

each a = 1, . . . , 5, the line bundle sums �Ba and �Ca which appear in the monad representation (6.18)

of the structure sheaf. Our choice is

�B1 = OX , �C1 = 0

�B2 = OX(0, 2, 0, 0)⊕2 , �C2 = OX(0, 4, 0, 0)
�B3 = OX , �C3 = 0

�B4 = OX , �C4 = 0

�B5 = OX(0, 0, 0, 2)⊕2 , �C2 = OX(0, 0, 0, 4)

(6.26)

From Eq. (6.23) this leads to line bundle sums B =
�7

α=1OX(bα) and C =
�2

µ=1OX(cµ) in the

monad sequence (6.24) characterized by the integers

(biα) =





−1 −1 −1 0 1 1 1

0 −1 −1 1 1 1 1

0 2 2 −1 −1 0 0

1 2 2 0 −1 0 0




(ciµ) =





−1 1

1 1

2 0

2 2




. (6.27)

The general structure of the monad map is

f ∼
�

f(0,1,2,1) f(0,2,0,0) f �
(0,2,0,0) 0 0 0 0

f(2,1,0,1) 0 0 f(1,0,1,2) f(0,0,1,3) f(0,0,0,2) f �
(0,0,0,2)

�
, (6.28)

where the subscripts indicate the multi-degrees of the polynomials. For

f(0,1,2,1) = f(2,1,0,1) = f(1,0,1,2) = f(0,0,1,3) = 0 (6.29)

the map is block-diagonal and �V splits into the original line bundle sums V so the coefficients in those

polynomials parametrize the deformations away from the split locus.

It is important to point out that, even though most of our discussion will be carried out on the

cover manifold, the line bundle sums B, C in Eq. (6.27) are equivariant under the Z2 × Z2 symmetry

of the tetra-quadric which we have used for our line bundle model and which has been defined in (5.7).

This means that, subject to an appropriate restriction of the monad map f , the monad bundle �V has

a Z2 × Z2 equivariant structure and descends to the quotient manifold.
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polynomials parametrize the deformations away from the split locus.

It is important to point out that, even though most of our discussion will be carried out on the

cover manifold, the line bundle sums B, C in Eq. (6.27) are equivariant under the Z2 × Z2 symmetry

of the tetra-quadric which we have used for our line bundle model and which has been defined in (5.7).

This means that, subject to an appropriate restriction of the monad map f , the monad bundle �V has

a Z2 × Z2 equivariant structure and descends to the quotient manifold.
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2) Monads 

On the tetra-quadric, apart from the trivial realisation �Ba = OX and �Ca = 0, one can also consider

�Ba = OX(0, 0, 0, pa)⊕OX(0, 0, 0, qa) and �Ca = OX(0, 0, 0, pa + qa) (6.20)

where pa and qa are positive integers. For this choice, the map fa = (f1,a, f2,a) contains two poly-

nomials of multi-degrees (0, 0, 0, pa) and (0, 0, 0, qa). For generic choices of the polynomials, this map

has rank one generically. The rank reduces to zero at points in CP1 where f1,a = f2,a = 0 but for

sufficiently generic polynomials these equations have no solution in CP1. Hence, this indeed provides

a monad representation of the structure sheaf. Of course, the integers pa, qa in �Ba and �Ca can ap-

pear in any of the four entries, so that we have a large number of choices on how to represent the

structure sheaf as a monad. We can choose the trivial representation or a non-trivial representation

characterized by choosing one of the four line bundle components and two integers pa, qa.

Now consider a given line bundle sum V =
�n

a=1 La. We can obtain monad representations for

the individual line bundles by simply twisting the monad sequence (6.18) with La. This leads to

0 −→ La −→ La ⊗ �Ba
fa−→ La ⊗ �Ca −→ 0 . (6.21)

For the full line bundle sum V , we sum these sequences to obtain

0 −→ V −→ B
f−→ C −→ 0 (6.22)

where

B =
n�

a=1

La ⊗ �Ba , C =
n�

a=1

La ⊗ �Ca , f = diag (f1, . . . fn) . (6.23)

We note that for each line bundle, a, we can choose �Ba and �Ca independently, from the range of

possibilities explained above, so there is significant flexibility in the construction. For the diagonal

form of the monad map f , as given above, each such choice leads to a monad representation of the

original line bundle sum V . However, the map f may allow deformations away from this block-diagonal

form and then defines a more general class of bundles

0 −→ �V −→ B
f−→ C −→ 0 (6.24)

which split into V at the locus where f becomes block-diagonal. Since ch(Ṽ ) = ch(B)−ch(C) = ch(V )

the Chern character of the monad bundle Ṽ is the same as that of the original line bundle sum V .

Therefore, if c1(V ) vanishes and the line bundle sum V satisfies the anomaly constraint (2.6) then the

same is true for the monad bundle Ṽ .
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6.2.2 Application to our example

We would now like to apply the above procedure to our example on the tetra-quadric which was

defined by a line bundle sum V =
�5

a=1 La characterized by the integers

(kia) =





−1 −1 0 1 1

0 −3 1 1 1

0 2 −1 −1 0

1 2 0 −1 −2




, (6.25)

where the columns correspond to the line bundles La, a = 1, . . . , 5. To do this, we have to choose, for

each a = 1, . . . , 5, the line bundle sums �Ba and �Ca which appear in the monad representation (6.18)

of the structure sheaf. Our choice is

�B1 = OX , �C1 = 0

�B2 = OX(0, 2, 0, 0)⊕2 , �C2 = OX(0, 4, 0, 0)
�B3 = OX , �C3 = 0

�B4 = OX , �C4 = 0

�B5 = OX(0, 0, 0, 2)⊕2 , �C2 = OX(0, 0, 0, 4)

(6.26)

From Eq. (6.23) this leads to line bundle sums B =
�7

α=1OX(bα) and C =
�2

µ=1OX(cµ) in the

monad sequence (6.24) characterized by the integers

(biα) =





−1 −1 −1 0 1 1 1

0 −1 −1 1 1 1 1

0 2 2 −1 −1 0 0

1 2 2 0 −1 0 0




(ciµ) =





−1 1

1 1

2 0

2 2




. (6.27)

The general structure of the monad map is

f ∼
�

f(0,1,2,1) f(0,2,0,0) f �
(0,2,0,0) 0 0 0 0

f(2,1,0,1) 0 0 f(1,0,1,2) f(0,0,1,3) f(0,0,0,2) f �
(0,0,0,2)

�
, (6.28)

where the subscripts indicate the multi-degrees of the polynomials. For

f(0,1,2,1) = f(2,1,0,1) = f(1,0,1,2) = f(0,0,1,3) = 0 (6.29)

the map is block-diagonal and �V splits into the original line bundle sums V so the coefficients in those

polynomials parametrize the deformations away from the split locus.

It is important to point out that, even though most of our discussion will be carried out on the

cover manifold, the line bundle sums B, C in Eq. (6.27) are equivariant under the Z2 × Z2 symmetry

of the tetra-quadric which we have used for our line bundle model and which has been defined in (5.7).

This means that, subject to an appropriate restriction of the monad map f , the monad bundle �V has

a Z2 × Z2 equivariant structure and descends to the quotient manifold.
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2) Monads 

On the tetra-quadric, apart from the trivial realisation �Ba = OX and �Ca = 0, one can also consider

�Ba = OX(0, 0, 0, pa)⊕OX(0, 0, 0, qa) and �Ca = OX(0, 0, 0, pa + qa) (6.20)

where pa and qa are positive integers. For this choice, the map fa = (f1,a, f2,a) contains two poly-

nomials of multi-degrees (0, 0, 0, pa) and (0, 0, 0, qa). For generic choices of the polynomials, this map

has rank one generically. The rank reduces to zero at points in CP1 where f1,a = f2,a = 0 but for

sufficiently generic polynomials these equations have no solution in CP1. Hence, this indeed provides

a monad representation of the structure sheaf. Of course, the integers pa, qa in �Ba and �Ca can ap-

pear in any of the four entries, so that we have a large number of choices on how to represent the

structure sheaf as a monad. We can choose the trivial representation or a non-trivial representation

characterized by choosing one of the four line bundle components and two integers pa, qa.

Now consider a given line bundle sum V =
�n

a=1 La. We can obtain monad representations for

the individual line bundles by simply twisting the monad sequence (6.18) with La. This leads to

0 −→ La −→ La ⊗ �Ba
fa−→ La ⊗ �Ca −→ 0 . (6.21)

For the full line bundle sum V , we sum these sequences to obtain

0 −→ V −→ B
f−→ C −→ 0 (6.22)

where

B =
n�

a=1

La ⊗ �Ba , C =
n�

a=1

La ⊗ �Ca , f = diag (f1, . . . fn) . (6.23)

We note that for each line bundle, a, we can choose �Ba and �Ca independently, from the range of

possibilities explained above, so there is significant flexibility in the construction. For the diagonal

form of the monad map f , as given above, each such choice leads to a monad representation of the

original line bundle sum V . However, the map f may allow deformations away from this block-diagonal

form and then defines a more general class of bundles

0 −→ �V −→ B
f−→ C −→ 0 (6.24)

which split into V at the locus where f becomes block-diagonal. Since ch(Ṽ ) = ch(B)−ch(C) = ch(V )

the Chern character of the monad bundle Ṽ is the same as that of the original line bundle sum V .

Therefore, if c1(V ) vanishes and the line bundle sum V satisfies the anomaly constraint (2.6) then the

same is true for the monad bundle Ṽ .
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where the subscripts indicate the multi-degrees of the polynomials. For

f(0,1,2,1) = f(2,1,0,1) = f(1,0,1,2) = f(0,0,1,3) = 0 (6.29)

the map is block-diagonal and �V splits into the original line bundle sums V so the coefficients in those

polynomials parametrize the deformations away from the split locus.

It is important to point out that, even though most of our discussion will be carried out on the

cover manifold, the line bundle sums B, C in Eq. (6.27) are equivariant under the Z2 × Z2 symmetry

of the tetra-quadric which we have used for our line bundle model and which has been defined in (5.7).

This means that, subject to an appropriate restriction of the monad map f , the monad bundle �V has

a Z2 × Z2 equivariant structure and descends to the quotient manifold.
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We can show for            ,               :  �12,4� = 0 Ṽ = U ⊕ L4

• bundle    is supersymmetric

•     

Ṽ

#5 = h2(X,∧2Ṽ ) = 3
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Features of the                    model: SU(4)× UX(1)

• 
   
•   -term forbidden

• dangerous dim. 4 terms forbidden by

•              operators still absent, due to existence of
   line bundle locus

UX(1) −→ UB−L(1)

µ

UB−L(1)

5101010
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Conclusions and outlook

 We can “mass-produce” heterotic CY standard models from line 
   bundles. 2000 models have been found from 200 GUT models.

 We have found all viable line bundle GUT models on favourable
   Cicys with freely-acting symmetries: 35000 models

 These models will lead to a large number of standard models
   which will form the starting point for a detailed phenom. analysis. 

 What is the total number of string standard models?

 We can study the non-Abelian continuation of line bundle models:
   ``Unexpected” absences of operators due to line bundle locus.

 Higgs can be kept light away from the line bundle locus.

Saturday, November 23, 2013



Conclusions and outlook

 We can “mass-produce” heterotic CY standard models from line 
   bundles. 2000 models have been found from 200 GUT models.

 We have found all viable line bundle GUT models on favourable
   Cicys with freely-acting symmetries: 35000 models

 These models will lead to a large number of standard models
   which will form the starting point for a detailed phenom. analysis. 

 What is the total number of string standard models?

 We can study the non-Abelian continuation of line bundle models:
   ``Unexpected” absences of operators due to line bundle locus.

Thanks

 Higgs can be kept light away from the line bundle locus.

Saturday, November 23, 2013


