Heterotic Line Bundle Models

Andre Lukas

University of Oxford

Pascos 2013, Taipei, Nov 2013

based on: arXiv:1311.1941, arXiv:1307.4787, arXiv:1106.4804, arXiv:1202.1757, with Lara Anderson, Evgeny Buchbinder, Andrei Constantin, James Gray and Eran Palti

Overview

O Introduction: Heterotic line bundle models

- Arena: Specific Calabi-Yau manifolds and line bundles
- An exhaustive scan over favourable Cicys
- An example
- Continuation to non-Abelian bundles
- Conclusion and outlook

Introduction: Heterotic line bundle models

Data to define a heterotic line bundle model we need:

- A Calabi-Yau 3-fold X
- A line bundle sum $V=L_{1} \oplus \cdots \oplus L_{5}$ on X,
$c_{1}(V)=0$, so structure group is
$S\left(U(1)^{5}\right) \subset S U(5) \subset E_{8}$
- vanishing slopes $\mu\left(L_{a}\right) \equiv c_{1}\left(L_{a}\right) \wedge J^{2} \stackrel{!}{=} 0$
- Anomaly: $c_{2}(T X)-c_{2}(V)-c_{2}(\tilde{V})=[C]$ in practice: $c_{2}(V) \leq c_{2}(T X)$

Introduction: Heterotic line bundle models

Data to define a heterotic line bundle model we need:

- A Calabi-Yau 3-fold X
- A line bundle sum $V=L_{1} \oplus \cdots \oplus L_{5}$ on X,
$c_{1}(V)=0$, so structure group is
$S\left(U(1)^{5}\right) \subset S U(5) \subset E_{8}$
- vanishing slopes $\mu\left(L_{a}\right) \equiv c_{1}\left(L_{a}\right) \wedge J^{2} \stackrel{!}{=} 0$
- Anomaly: $\quad c_{2}(T X)-c_{2}(V)-c_{2}(\tilde{V})=[C]$ in practice: $c_{2}(V) \leq c_{2}(T X)$

N=1, D=4 GUT with gauge group $S U(5) \times S\left(U(1)^{5}\right)$ and matter in $10, \overline{10}, \overline{5}, 5,1$

Introduction: Heterotic line bundle models

Data to define a heterotic line bundle model we need:

- A Calabi-Yau 3-fold X
- A line bundle sum $V=L_{1} \oplus \cdots \oplus L_{5}$ on X, $c_{1}(V)=0$, so structure group is $S\left(U(1)^{5}\right) \subset S U(5) \subset E_{8}$
- vanishing slopes $\mu\left(L_{a}\right) \equiv c_{1}\left(L_{a}\right) \wedge J^{2} \stackrel{!}{=} 0$
- Anomaly: $\quad c_{2}(T X)-c_{2}(V)-c_{2}(\tilde{V})=[C]$ in practice: $c_{2}(V) \leq c_{2}(T X)$

N=1, D=4 GUT with
gauge group $S U(5) \times S\left(U(1)^{5}\right)$ and matter in $10, \overline{10}, \overline{5}, 5,1$

- freely acting symmetry Γ on X, so $\hat{X}=X / \Gamma$ is smooth and non simply-connected
- bundle V needs to be equivariant so it descends to a bundle \hat{V} on \hat{X}
- complete bundle $\hat{V} \oplus W$ with Wilson line W to break GUT group

Introduction: Heterotic line bundle models

Data to define a heterotic line bundle model we need:

- A Calabi-Yau 3-fold X
- A line bundle sum $V=L_{1} \oplus \cdots \oplus L_{5}$ on X, $c_{1}(V)=0$, so structure group is $S\left(U(1)^{5}\right) \subset S U(5) \subset E_{8}$
- vanishing slopes $\mu\left(L_{a}\right) \equiv c_{1}\left(L_{a}\right) \wedge J^{2} \stackrel{!}{=} 0$
- Anomaly: $\quad c_{2}(T X)-c_{2}(V)-c_{2}(\tilde{V})=[C]$ in practice: $c_{2}(V) \leq c_{2}(T X)$
- freely acting symmetry Γ on X, so $\hat{X}=X / \Gamma$ is smooth and non simply-connected
- bundle V needs to be equivariant so it descends to a bundle \hat{V} on \hat{X}
- complete bundle $\hat{V} \oplus W$ with Wilson line W to break GUT group

N=1, D=4 GUT with
gauge group
$S U(5) \times S\left(U(1)^{5}\right)$ and matter in $10, \overline{10}, \overline{5}, 5,1$
standard-like model (hopefully) with gauge group
$G_{\mathrm{SM}} \times S\left(U(1)^{5}\right)$

The associated 4d GUT theories:

Gauge group $S U(5) \times S\left(U(1)^{5}\right)$

The associated 4d GUT theories:
Gauge group $S U(5) \times S\left(U(1)^{5}\right)$

The associated 4d GUT theories:
Gauge group $S U(5) \times S\left(U(1)^{5}\right)$ matter multiplets: $\mathbf{1 0}_{a}, \overline{\mathbf{1 0}_{a}}, \mathbf{5}_{a, b}, \overline{\mathbf{5}}_{a, b}, \mathbf{1}_{a, b}=S^{\alpha}$

The associated 4d GUT theories:

Gauge group $S U(5) \times S\left(U(1)^{5}\right)$
matter multiplets: $\mathbf{1 0}_{a}, \overline{\mathbf{1 0}_{a}}, \mathbf{5}_{a, b}, \overline{\mathbf{5}}_{a, b}, \mathbf{1}_{a, b}=S^{\alpha}$

multiplet	$S\left(U(1)^{5}\right)$ charge	associated line bundle L	contained in
$\mathbf{1 0}_{\mathbf{e}_{a}}$	\mathbf{e}_{a}	L_{a}	V
$\overline{\mathbf{1}}_{-\mathbf{e}_{a}}$	$-\mathbf{e}_{a}$	L_{a}^{*}	V^{*}
$\overline{\mathbf{5}}_{\mathbf{e}_{a}+\mathbf{e}_{b}}$	$\mathbf{e}_{a}+\mathbf{e}_{b}$	$L_{a} \otimes L_{b}$	$\wedge^{2} V$
$\mathbf{5}_{-\mathbf{e}_{a}-\mathbf{e}_{b}}$	$-\mathbf{e}_{a}-\mathbf{e}_{b}$	$L_{a}^{*} \otimes L_{b}^{*}$	$\wedge^{2} V^{*}$
$\mathbf{1}_{\mathbf{e}_{a}-\mathbf{e}_{b}}$	$\mathbf{e}_{a}-\mathbf{e}_{b}$	$L_{a} \otimes L_{b}^{*}$	$V \otimes V^{*}$
$\mathbf{1}_{-\mathbf{e}_{a}+\mathbf{e}_{b}}$	$-\mathbf{e}_{a}+\mathbf{e}_{b}$	$L_{a}^{*} \otimes L_{b}$	

The associated 4d GUT theories:

Gauge group $S U(5) \times S\left(U(1)^{5}\right)$
matter multiplets: $\mathbf{1 0}_{a}, \overline{\mathbf{1 0}_{a}}, \mathbf{5}_{a, b}, \overline{\mathbf{5}}_{a, b}, \mathbf{1}_{a, b}=S^{\alpha}$

families and mirror families	multiplet	$S\left(U(1)^{5}\right)$ charge	associated line bundle L	contained in
	$10_{\mathbf{e}_{a}}$	\mathbf{e}_{a}	L_{a}	V
	$\overline{\mathbf{1 0}}{ }_{-\mathrm{e}_{a}}$	$-\mathbf{e}_{a}$	L_{a}^{*}	V^{*}
	$\overline{5}_{\mathbf{e}_{a}+\mathrm{e}_{b}}$	$\mathbf{e}_{a}+\mathbf{e}_{b}$	$L_{a} \otimes L_{b}$	$\wedge^{2} V$
	$5_{-\mathrm{e}_{a}-\mathrm{e}_{b}}$	$-\mathbf{e}_{a}-\mathbf{e}_{b}$	$L_{a}^{*} \otimes L_{b}^{*}$	$\wedge^{2} V^{*}$
	$\begin{aligned} & \mathbf{1}_{\mathbf{e}_{a}-\mathbf{e}_{b}} \\ & \mathbf{1}_{-\mathbf{e}_{a}+\mathbf{e}_{b}} \end{aligned}$	$\begin{gathered} \mathbf{e}_{a}-\mathbf{e}_{b} \\ -\mathbf{e}_{a}+\mathbf{e}_{b} \end{gathered}$	$\begin{gathered} L_{a} \otimes L_{b}^{*} \\ L_{a}^{*} \otimes L_{b} \end{gathered}$	$V \otimes V^{*}$

The associated 4d GUT theories:

Gauge group $S U(5) \times S\left(U(1)^{5}\right)$ matter multiplets: $\mathbf{1 0}_{a}, \overline{\mathbf{1 0}_{a}}, \mathbf{5}_{a, b}, \overline{\mathbf{5}}_{a, b}, \mathbf{1}_{a, b}=S^{\alpha}$

families and mirror families	multiplet	$S\left(U(1)^{5}\right)$ charge	associated line bundle L	contained in
	$10_{\mathbf{e}_{a}}$	\mathbf{e}_{a}	L_{a}	V
	$\overline{10} \overline{-E}_{a}$	$-\mathbf{e}_{a}$	L_{a}^{*}	V^{*}
	$\overline{5}_{\mathbf{e}_{a}+\mathrm{e}_{b}}$	$\mathbf{e}_{a}+\mathbf{e}_{b}$	$L_{a} \otimes L_{b}$	$\wedge^{2} V$
	$5_{-\mathbf{e}_{a}-\mathbf{e}_{b}}$	$-\mathbf{e}_{a}-\mathbf{e}_{b}$	$L_{a}^{*} \otimes L_{b}^{*}$	$\wedge^{2} V^{*}$
bundle	$\mathbf{1}_{\mathbf{e}_{a}-\mathbf{e}_{b}}$	$\mathbf{e}_{a}-\mathbf{e}_{b}$	$L_{a} \otimes L_{b}^{*}$	$V \otimes V^{*}$
moduli S^{α}	$\mathbf{1}_{-\mathbf{e}_{a}+\mathbf{e}_{b}}$	$-\mathbf{e}_{a}+\mathbf{e}_{b}$	$L_{a}^{*} \otimes L_{b}$	

The associated 4d GUT theories:

Gauge group $S U(5) \times S\left(U(1)^{5}\right)$ matter multiplets: $\mathbf{1 0}_{a}, \overline{\mathbf{1 0}_{a}}, \mathbf{5}_{a, b}, \overline{\mathbf{5}}_{a, b}, \mathbf{1}_{a, b}=S^{\alpha}$

families and mirror families	multiplet	$S\left(U(1)^{5}\right)$ charge	associated line bundle L	contained in
	$10_{\mathrm{e}_{a}}$	\mathbf{e}_{a}	L_{a}	V
	$\overline{\mathbf{1 0}} \mathbf{- e}_{a}$	$-\mathbf{e}_{a}$	L_{a}^{*}	V^{*}
	$\overline{5}_{\mathbf{e}_{a}+\mathrm{e}_{b}}$	$\mathbf{e}_{a}+\mathbf{e}_{b}$	$L_{a} \otimes L_{b}$	$\wedge^{2} V$
	$5_{-\mathbf{e}_{a}-\mathbf{e}_{b}}$	$-\mathbf{e}_{a}-\mathbf{e}_{b}$	$L_{a}^{*} \otimes L_{b}^{*}$	$\wedge^{2} V^{*}$
bundle	$\mathbf{1}_{\mathbf{e}_{a}-\mathbf{e}_{b}}$	$\mathbf{e}_{a}-\mathbf{e}_{b}$	$L_{a} \otimes L_{b}^{*}$	$V \otimes V^{*}$
moduli S^{α}	$\mathbf{1}_{-\mathbf{e}_{a}+\mathbf{e}_{b}}$	$-\mathbf{e}_{a}+\mathbf{e}_{b}$	$L_{a}^{*} \otimes L_{b}$	

Number of each multiplet type obtained from $H^{1}(X, L)$.

The associated 4d GUT theories:
Gauge group $S U(5) \times S\left(U(1)^{5}\right)$
matter multiplets: $\mathbf{1 0}_{a}, \overline{\mathbf{1 0}_{a}}, \mathbf{5}_{a, b}, \overline{\mathbf{5}}_{a, b}, \mathbf{1}_{a, b}=S^{\alpha}$
families and mirror families

multiplet	$S\left(U(1)^{5}\right)$ charge	associated line bundle L	contained in
$\mathbf{1 0}_{\mathbf{e}_{a}}$	\mathbf{e}_{a}	L_{a}	V
$\overline{\mathbf{1}}-\mathbf{e}_{a}$	$-\mathbf{e}_{a}$	L_{a}^{*}	V^{*}
$\overline{\mathbf{E}}_{\mathbf{e}_{a}+\mathbf{e}_{b}}$	$\mathbf{e}_{a}+\mathbf{e}_{b}$	$L_{a} \otimes L_{b}$	$\wedge^{2} V$
$\mathbf{5}_{-\mathbf{e}_{a}-\mathbf{e}_{b}}$	$-\mathbf{e}_{a}-\mathbf{e}_{b}$	$L_{a}^{*} \otimes L_{b}^{*}$	$\wedge^{2} V^{*}$
$\mathbf{1}_{\mathbf{e}_{a}-\mathbf{e}_{b}}$	$\mathbf{e}_{a}-\mathbf{e}_{b}$	$L_{a} \otimes L_{b}^{*}$	$V \otimes V^{*}$
$\mathbf{1}_{-\mathbf{e}_{a}+\mathbf{e}_{b}}$	$-\mathbf{e}_{a}+\mathbf{e}_{b}$	$L_{a}^{*} \otimes L_{b}$	

Number of each multiplet type obtained from $H^{1}(X, L)$.
Can lead to standard models after taking quotient by freely-acting symmetry and adding Wilson line.

The associated 4d GUT theories:
Gauge group $S U(5) \times S\left(U(1)^{5}\right)$
matter multiplets: $\mathbf{1 0}_{a}, \overline{\mathbf{1 0}_{a}}, \mathbf{5}_{a, b}, \overline{\mathbf{5}}_{a, b}, \mathbf{1}_{a, b}=S^{\alpha}$
families and mirror families

multiplet	$S\left(U(1)^{5}\right)$ charge	associated line bundle L	contained in
$\mathbf{1 0}_{\mathbf{e}_{a}}$	\mathbf{e}_{a}	L_{a}	V
$\overline{\mathbf{1}}-\mathbf{e}_{a}$	$-\mathbf{e}_{a}$	L_{a}^{*}	V^{*}
$\overline{\mathbf{5}}_{e_{a}+\mathbf{e}_{b}}$	$\mathbf{e}_{a}+\mathbf{e}_{b}$	$L_{a} \otimes L_{b}$	$\wedge^{2} V$
$\mathbf{5}_{-\mathbf{e}_{a}-\mathbf{e}_{b}}$	$-\mathbf{e}_{a}-\mathbf{e}_{b}$	$L_{a}^{*} \otimes L_{b}^{*}$	$\wedge^{2} V^{*}$
$\mathbf{1}_{\mathbf{e}_{a}-\mathbf{e}_{b}}$	$\mathbf{e}_{a}-\mathbf{e}_{b}$	$L_{a} \otimes L_{b}^{*}$	$V \otimes V^{*}$
$\mathbf{1}_{-\mathbf{e}_{a}+\mathbf{e}_{b}}$	$-\mathbf{e}_{a}+\mathbf{e}_{b}$	$L_{a}^{*} \otimes L_{b}$	

Number of each multiplet type obtained from $H^{1}(X, L)$.
Can lead to standard models after taking quotient by freely-acting symmetry and adding Wilson line.
$\left\langle S^{\alpha}\right\rangle=0$: line bundle model, $\left\langle S^{\alpha}\right\rangle \neq 0$: non-Abelian bundle
$U(1)$ symmetries constrain $4 d$ theory, e.g. superpotential:

$$
W=\mu(S) H \bar{H}+Y_{p q}^{(d)}(S) H \overline{\mathbf{5}}^{p} \mathbf{1 0}^{q}+Y_{p q}^{(u)}(S) \mathbf{1 0}^{p} \mathbf{1 0}^{q}+\cdots
$$

$U(1)$ symmetries constrain $4 d$ theory, e.g. superpotential:

$$
\begin{aligned}
W & =\mu(S) H \bar{H}+Y_{p q}^{(d)}(S) H \overline{\mathbf{5}}^{p} \mathbf{1 0}^{q}+Y_{p q}^{(u)}(S) \mathbf{1 0}^{p} \mathbf{1 0}^{q}+\cdots \\
\mu(S) & =\mu_{0}+\mu_{1, \alpha} S^{\alpha}+\mu_{2, \alpha \beta} S^{\alpha} S^{\beta}+\cdots+\mu_{\mathrm{np}}\left(S^{\alpha}, T\right)
\end{aligned}
$$

$U(1)$ symmetries constrain $4 d$ theory, e.g. superpotential:

$$
\begin{aligned}
& W=\mu(S) H \bar{H}+Y_{p q}^{(d)}(S) H \overline{\mathbf{5}}^{p} \mathbf{1 0}^{q}+Y_{p q}^{(u)}(S) \mathbf{1 0}^{p} \mathbf{1 0}^{q}+\cdots \\
& \mu(S)=\mu_{0}+\mu_{1, \alpha} S^{\alpha}+\mu_{2, \alpha \beta} S^{\alpha} S^{\beta}+\cdots+\mu_{\mathrm{np}}\left(S^{\alpha}, T\right) \\
& =0
\end{aligned}
$$

$U(1)$ symmetries constrain $4 d$ theory, e.g. superpotential:

$$
W=\mu(S) H \bar{H}+Y_{p q}^{(d)}(S) H \overline{\mathbf{5}}^{p} \mathbf{1 0}^{q}+Y_{p q}^{(u)}(S) \mathbf{1 0}^{p} \mathbf{1 0}^{q}+\cdots
$$

$$
\mu(S)=\mu_{0}+\mu_{1, \alpha} S^{\alpha}+\mu_{2, \alpha \beta} S^{\alpha} S^{\beta}+\cdots+\mu_{\mathrm{np}}\left(S^{\alpha}, T\right)
$$

$$
=0=0 \text { for vector- }
$$

like H, \bar{H}

$U(1)$ symmetries constrain $4 d$ theory, e.g. superpotential:

$$
W=\mu(S) H \bar{H}+Y_{p q}^{(d)}(S) H \overline{\mathbf{5}}^{p} \mathbf{1 0}^{q}+Y_{p q}^{(u)}(S) \mathbf{1 0}^{p} \mathbf{1 0}^{q}+\cdots
$$

$$
\mu(S)=\mu_{0}+\mu_{1, \alpha} S^{\alpha}+\mu_{2, \alpha \beta} S^{\alpha} S^{\beta}+\cdots+\mu_{\mathrm{np}}\left(S^{\alpha}, T\right)
$$

like $H, \bar{H} \quad$ Kim-Nilles mechanism

$U(1)$ symmetries constrain $4 d$ theory, e.g. superpotential:

$$
W=\mu(S) H \bar{H}+Y_{p q}^{(d)}(S) H \overline{\mathbf{5}}^{p} \mathbf{1 0}^{q}+Y_{p q}^{(u)}(S) \mathbf{1 0}^{p} \mathbf{1 0}^{q}+\cdots
$$

$$
\mu(S)=\mu_{0}+\mu_{1, \alpha} S^{\alpha}+\mu_{2, \alpha \beta} S^{\alpha} S^{\beta}+\cdots+\mu_{\mathrm{np}}\left(S^{\alpha}, T\right)
$$

$$
=0
$$

$U(1)$ symmetries constrain $4 d$ theory, e.g. superpotential:

$$
W=\mu(S) H \bar{H}+Y_{p q}^{(d)}(S) H \overline{\mathbf{5}}^{p} \mathbf{1 0}^{q}+Y_{p q}^{(u)}(S) \mathbf{1 0}^{p} \mathbf{1 0}^{q}+\cdots
$$

$$
\mu(S)=\mu_{0}+\mu_{1, \alpha} S^{\alpha}+\mu_{2, \alpha \beta} S^{\alpha} S^{\beta}+\cdots+\mu_{\mathrm{np}}\left(S^{\alpha}, T\right)
$$

non-perturbative like $H, \bar{H} \quad$ Kim-Nilles mechanism $\quad \mathcal{O}(\exp (-T))$

$$
Y_{p q}(S)=Y_{p q}^{(0)}+Y_{p q, \alpha}^{(1)} S^{\alpha}+\cdots+Y_{p q}^{(n p)}\left(S^{\alpha}, T\right)
$$

$U(1)$ symmetries constrain $4 d$ theory, e.g. superpotential:

$$
W=\mu(S) H \bar{H}+Y_{p q}^{(d)}(S) H \overline{\mathbf{5}}^{p} \mathbf{1 0}^{q}+Y_{p q}^{(u)}(S) \mathbf{1 0}^{p} \mathbf{1 0}^{q}+\cdots
$$

$$
\mu(S)=\mu_{0}+\mu_{1, \alpha} S^{\alpha}+\mu_{2, \alpha \beta} S^{\alpha} S^{\beta}+\cdots+\mu_{\mathrm{np}}\left(S^{\alpha}, T\right)
$$

$=0 \quad=0$ for vector- generically $\neq 0 \quad \rightarrow \quad$ non-perturbative like $H, \bar{H} \quad$ Kim-Nilles mechanism $\quad \mathcal{O}(\exp (-T))$

$$
Y_{p q}(S)=Y_{p q}^{(0)}+Y_{p q, \alpha}^{(1)} S^{\alpha}+\cdots+Y_{p q}^{(n p)}\left(S^{\alpha}, T\right)
$$

pattern determined by $U(1)$'s ->
Froggatt-Nielsen mechanism

$U(1)$ symmetries constrain $4 d$ theory, e.g. superpotential:

$$
W=\mu(S) H \bar{H}+Y_{p q}^{(d)}(S) H \overline{\mathbf{5}}^{p} \mathbf{1 0}^{q}+Y_{p q}^{(u)}(S) \mathbf{1 0}^{p} \mathbf{1 0}^{q}+\cdots
$$

$$
\mu(S)=\mu_{0}+\mu_{1, \alpha} S^{\alpha}+\mu_{2, \alpha \beta} S^{\alpha} S^{\beta}+\cdots+\mu_{\mathrm{np}}\left(S^{\alpha}, T\right)
$$

$$
\begin{array}{llll}
=0 & =0 \text { for vector- } & \text { generically } \neq 0 & ->
\end{array} \quad \text { non-perturba }
$$

$$
Y_{p q}(S)=Y_{p q}^{(0)}+Y_{p q, \alpha}^{(1)} S^{\alpha}+\cdots+Y_{p q}^{(n p)}\left(S^{\alpha}, T\right)
$$

pattern determined by $U(1)$'s \rightarrow
Froggatt-Nielsen mechanism
non-perturbative
$\mathcal{O}(\exp (-T))$
$U(1)$ symmetries constrain $4 d$ theory, e.g. superpotential:

$$
W=\mu(S) H \bar{H}+Y_{p q}^{(d)}(S) H \overline{\mathbf{5}}^{p} \mathbf{1 0} \mathbf{0}^{q}+Y_{p q}^{(u)}(S) \mathbf{1 0}^{p} \mathbf{1 0}^{q}+\cdots
$$

$$
\mu(S)=\mu_{0}+\mu_{1, \alpha} S^{\alpha}+\mu_{2, \alpha \beta} S^{\alpha} S^{\beta}+\cdots+\mu_{\mathrm{np}}\left(S^{\alpha}, T\right)
$$

 like $H, \bar{H} \quad$ Kim-Nilles mechanism $\quad \mathcal{O}(\exp (-T))$

$$
Y_{p q}(S)=Y_{p q}^{(0)}+Y_{p q, \alpha}^{(1)} S^{\alpha}+\cdots+Y_{p q}^{(n p)}\left(S^{\alpha}, T\right)
$$

$$
\text { pattern determined by } U(1) \text { 's } \rightarrow \text { non-perturbative }
$$

Froggatt-Nielsen mechanism
$\mathcal{O}(\exp (-T))$
Two ways to explore non-Abelian bundles:

- VEVs $\left\langle S^{\alpha}\right\rangle \neq 0$, spontaneously breaks U(1)s
- Construct non-Abelian bundles which "split" to line bundle sum

Arena: complete intersection CY manifolds (CICYs)

CICYs defined as common zero locus $X=\left\{p_{i}=0\right\} \subset \mathcal{A}$ of homogeneous polynomials p_{i} in ambient space $\mathcal{A}=\bigotimes_{r=1}^{m} \mathbb{P}^{n_{r}}$.
for example: quintic $X \sim\left[\mathbb{P}^{4} \mid 5\right]$ or bi-cubic $X \sim\left[\begin{array}{l|l}\mathbb{P}^{2} & 3 \\ \mathbb{P}^{2} & 3\end{array}\right]$

Arena: complete intersection CY manifolds (CICYs)

CICYs defined as common zero locus $X=\left\{p_{i}=0\right\} \subset \mathcal{A}$ of homogeneous polynomials p_{i} in ambient space $\mathcal{A}=\bigotimes_{r=1}^{m} \mathbb{P}^{n_{r}}$.
for example: quintic $X \sim\left[\mathbb{P}^{4} \mid 5\right]$ or bi-cubic $X \sim\left[\begin{array}{l|l}\mathbb{P}^{2} & 3 \\ \mathbb{P}^{2} & 3\end{array}\right]$

Complete classification of about 8000 spaces
(Hubsch, Green, Lutken, Candelas 1987)
Classification of freely-acting discrete symmetries
(Braun, 2010)
Line bundle cohomology can be computed.
(Anderson, He, Lukas, 2008)

Arena: complete intersection CY manifolds (CICYs)

CICYs defined as common zero locus $X=\left\{p_{i}=0\right\} \subset \mathcal{A}$ of homogeneous polynomials p_{i} in ambient space $\mathcal{A}=\bigotimes_{r=1}^{m} \mathbb{P}^{n_{r}}$.
for example: quintic $X \sim\left[\mathbb{P}^{4} \mid 5\right]$ or bi-cubic $X \sim\left[\begin{array}{l|l}\mathbb{P}^{2} & 3 \\ \mathbb{P}^{2} & 3\end{array}\right]$

Complete classification of about 8000 spaces
(Hubsch, Green, Lutken, Candelas 1987)
Classification of freely-acting discrete symmetries
(Braun, 2010)
Line bundle cohomology can be computed.
(Anderson, He, Lukas, 2008)

Focus on favourable Cicys: $H^{1,1}(X)=\operatorname{Span}\left(\left.J_{i}\right|_{X}\right)$

Arena: complete intersection CY manifolds (CICYs)

CICYs defined as common zero locus $X=\left\{p_{i}=0\right\} \subset \mathcal{A}$ of homogeneous polynomials p_{i} in ambient space $\mathcal{A}=\bigotimes_{r=1}^{m} \mathbb{P}^{n_{r}}$.
for example: quintic $X \sim\left[\mathbb{P}^{4} \mid 5\right]$ or bi-cubic $X \sim\left[\begin{array}{l|l}\mathbb{P}^{2} & 3 \\ \mathbb{P}^{2} & 3\end{array}\right] \leftarrow J_{1}$

Complete classification of about 8000 spaces
(Hubsch, Green, Lutken, Candelas 1987)
Classification of freely-acting discrete symmetries
(Braun, 2010)
Line bundle cohomology can be computed.
(Anderson, He, Lukas, 2008)

Focus on favourable Cicys: $H^{1,1}(X)=\operatorname{Span}\left(\left.J_{i}\right|_{X}\right)$

Line bundles on CY manifolds

Line bundles, L, are classified by their first Chern class:

$$
c_{1}(L)=k^{i} J_{i}, \quad k^{i} \in \mathbb{Z}
$$

Write $L=\mathcal{O}_{X}(\mathbf{k})$ where $\mathbf{k}=\left(k^{i}\right)$ is an integer vector.

Line bundles, L, are classified by their first Chern class:

$$
c_{1}(L)=k^{i} J_{i}, \quad k^{i} \in \mathbb{Z}
$$

Write $L=\mathcal{O}_{X}(\mathbf{k})$ where $\mathbf{k}=\left(k^{i}\right)$ is an integer vector.
Rank 5 line bundle sum:

$$
V=\bigoplus_{a=1}^{5} \mathcal{O}_{X}\left(\mathbf{k}_{a}\right)
$$

$$
c_{1}(V) \sim \sum_{a=1}^{5} \mathbf{k}_{a} \stackrel{!}{=} 0
$$

Described by $h^{1,1}(X) \times 5$ integer matrix $\left(k_{a}^{i}\right)$

Line bundles, L, are classified by their first Chern class:

$$
c_{1}(L)=k^{i} J_{i}, \quad k^{i} \in \mathbb{Z}
$$

Write $L=\mathcal{O}_{X}(\mathbf{k})$ where $\mathbf{k}=\left(k^{i}\right)$ is an integer vector.
Rank 5 line bundle sum:

$$
V=\bigoplus_{a=1}^{5} \mathcal{O}_{X}\left(\mathbf{k}_{a}\right)
$$

$$
c_{1}(V) \sim \sum_{a=1}^{5} \mathbf{k}_{a} \stackrel{!}{=} 0
$$

Described by $h^{1,1}(X) \times 5$ integer matrix $\left(k_{a}^{i}\right)$
No a priori bounds on k_{a}^{i}, so for $-k_{\max } \leq k_{a}^{i} \leq k_{\max }$ we have

$$
\sim\left(2 k_{\max }+1\right)^{4 h^{1,1}(X)} \text { line bundle sums } V
$$

Last year:
Scan for favourable Cicys with $h^{1,1}(X) \leq 5$ (60 spaces) and

$$
k_{\max }=2,3 \quad \longrightarrow \quad \sim 10^{12} \text { bundles }
$$

Last year:
Scan for favourable Cicys with $h^{1,1}(X) \leq 5$ (60 spaces) and

$$
k_{\max }=2,3 \quad \longrightarrow \quad \sim 10^{12} \text { bundles }
$$

200 viable $S U(5)$ GUT models leading to about 2000 standard models*

Last year:
Scan for favourable Cicys with $h^{1,1}(X) \leq 5$ (60 spaces) and

$$
k_{\max }=2,3 \quad \longrightarrow \quad \sim 10^{12} \text { bundles }
$$

200 viable SU(5) GUT models leading to about 2000 standard models*

These models and their details are available at:
http://www-thphys.physics.ox.ac.uk/projects/CalabiYau/linebundlemodels/index.html

Last year:
Scan for favourable Cicys with $h^{1,1}(X) \leq 5$ (60 spaces) and

$$
k_{\max }=2,3 \quad \longrightarrow \sim 10^{12} \text { bundles }
$$

200 viable SU(5) GUT models leading to about 2000 standard models*

These models and their details are available at:
http://www-thphys.physics.ox.ac.uk/projects/CalabiYau/linebundlemodels/index.html
*standard model: SM gauge group times (anomalous) U(1)s, exact MSSM matter spectrum, one or more pairs of Higgs doublets, no exotics charged under standard model group.

An exhaustive scan over favourable Cicys

Aim: Find all viable line bundle $S U(5)$ GUT models (and later all standard models) on favourable Cicys with freely-acting symmetries.

An exhaustive scan over favourable Cicys

Aim: Find all viable line bundle $S U(5)$ GUT models (and later all standard models) on favourable Cicys with freely-acting symmetries.

Requires scanning over 68 Cicys with $h^{1,1}(X) \leq 6$ and

$$
k_{\max } \sim 10 \longrightarrow \sim 10^{40} \text { bundles }
$$

An exhaustive scan over favourable Cicys

Aim: Find all viable line bundle SU(5) GUT models (and later all standard models) on favourable Cicys with freely-acting symmetries.

Requires scanning over 68 Cicys with $h^{1,1}(X) \leq 6$ and

$$
k_{\max } \sim 10 \quad \longrightarrow \sim 10^{40} \text { bundles }
$$

Feasible because some constraints can be checked while line bundle sum is built up, e.g if

$$
h^{1}(X, L)>3|\Gamma|
$$

we do not need to consider line bundle L (too many families).

How do we know we have found all viable models?

Scan over all $\left(k_{a}^{i}\right)$ with $\left|k_{a}^{i}\right| \leq k_{\max }$ and find number of viable models as a function of $k_{\max }$:

How do we know we have found all viable models?

Scan over all $\left(k_{a}^{i}\right)$ with $\left|k_{a}^{i}\right| \leq k_{\max }$ and find number of viable models as a function of $k_{\max }$:

Table 6: Number of models as a function of $k_{\max }$ on $C I C Y$ s with $h^{1,1}(X)=6$. Total number of models: 41036

$X,\|\Gamma\|$	$k_{\mathrm{m}}=1$	$k_{\mathrm{m}}=2$	$k_{\mathrm{m}}=3$	$k_{\mathrm{m}}=4$	$k_{\mathrm{m}}=5$	$k_{\mathrm{m}}=6$	$k_{\mathrm{m}}=7$	$k_{\mathrm{m}}=8$	$k_{\mathrm{m}}=9$	$k_{\mathrm{m}}=10$, $11,12,13$
3413,3	0	2278	2897	2906	2906	2906				
4190,2	11	766	1175	1243	1246	1247	1249	1249	1249	
5273,2	29	4895	7149	7738	7799	7810	7810	7810		
5302,2	0	4314	5978	6360	6369	6369	6369			
5302,4	0	11705	16988	17687	17793	17838	17868	17868	17868	
5425,2	0	2381	3083	3305	3337	3337	3337			
5958,2	0	148	224	240	253	253	253			
6655,5	0	92	178	189	194	194	198	201	202	203
6738,2	1	2733	4116	4346	4386	4393	4399	4399	4399	

Number of consistent $S U(5)$ GUT models with correct indices:

$h^{1,1}(X)$	1	2	3	4	5	6	total
\#models	0	0	6	552	21731	41036	63325

Number of consistent SU(5) GUT models with correct indices:

$h^{1,1}(X)$	1	2	3	4	5	6	total
\#models	0	0	6	552	21731	41036	63325

After demanding absence of $\overline{\mathbf{1 0}}$ and presence of $5-\overline{5}$ pair:

34989 models

Number of consistent SU(5) GUT models with correct indices:

$h^{1,1}(X)$	1	2	3	4	5	6	total
\#models	0	0	6	552	21731	41036	63325

After demanding absence of $\overline{10}$ and presence of $5-\overline{5}$ pair:

34989 models

Available at:
http://www-thphys.physics.ox.ac.uk/projects/CalabiYau/linebundlemodels/index.html

Number of consistent SU(5) GUT models with correct indices:

$h^{1,1}(X)$	1	2	3	4	5	6	total
\#models	0	0	6	552	21731	41036	63325

After demanding absence of $\overline{10}$ and presence of $5-\overline{5}$ pair:
34989 models
Available at:
http://www-thphys.physics.ox.ac.uk/projects/CalabiYau/linebundlemodels/index.html
Roughly, a factor 10 more models per CY for each additional Kahler parameter!

Number of consistent SU(5) GUT models with correct indices:

$h^{1,1}(X)$	1	2	3	4	5	6	total
\#models	0	0	6	552	21731	41036	63325

After demanding absence of $\overline{10}$ and presence of $5-\overline{5}$ pair:

34989 models

Available at:
http://www-thphys.physics.ox.ac.uk/projects/CalabiYau/linebundlemodels/index.html

Roughly, a factor 10 more models per CY for each additional Kahler parameter!

Have started a similar programme on CY manifolds defined in toric 4 -folds (Kreuzer-Skarke list) -> Chuang Sun's talk

An example

CY data: - Cicy 7862, Symmetry 3

$$
\begin{aligned}
& \mathrm{X}=\left(\begin{array}{l}
2 \\
2 \\
2 \\
2
\end{array}\right) \\
& \eta(\mathrm{X})=-128 \quad \mathrm{~h}^{1,1}(\mathrm{X})=4 \quad \mathrm{~h}^{2,1}(\mathrm{X})=68 \quad \mathrm{c}_{2}(\mathrm{TX})=\{24,24,24,24\} \\
& \kappa=12 \mathrm{t}_{1} \mathrm{t}_{2} \mathrm{t}_{3}+12 \mathrm{t}_{1} \mathrm{t}_{2} \mathrm{t}_{4}+12 \mathrm{t}_{1} \mathrm{t}_{3} \mathrm{t}_{4}+12 \mathrm{t}_{2} \mathrm{t}_{3} \mathrm{t}_{4}
\end{aligned}
$$

symmetry: 3 order: 4
Abelian: True block diagonal: True factors: $\{2,2\}$
Action on coordinates: $\left\{\left(\begin{array}{cccccccc}1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1\end{array}\right),\left(\begin{array}{lllllll}0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1\end{array} 00\right\}\right.$
Action on polynomials: $\{(1),(1)\}$

An example

CY data: - Cicy 7862, Symmetry 3

$x=\left(\begin{array}{l}2 \\ 2 \\ 2 \\ 2\end{array}\right) \longleftarrow C Y$: tetra-quadric in $\mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}$
$\eta(\mathrm{X})=-128 \quad \mathrm{~h}^{1,1}(\mathrm{X})=4 \quad \mathrm{~h}^{2,1}(\mathrm{X})=68 \quad \mathrm{c}_{2}(\mathrm{TX})=\{24,24,24,24\}$
$\kappa=12 t_{1} t_{2} t_{3}+12 t_{1} t_{2} t_{4}+12 t_{1} t_{3} t_{4}+12 t_{2} t_{3} t_{4}$
symmetry: 3 order: 4
Abelian: True block diagonal: True factors: $\{2,2\}$
Action on coordinates: $\left\{\left(\begin{array}{cccccccc}1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1\end{array}\right),\left(\begin{array}{lllllll}0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1\end{array} 0\right.\right.$
Action on polynomials: $\{(1),(1)\}$

An example

CY data: - Cicy 7862, Symmetry 3

$x=\left(\begin{array}{l}2 \\ 2 \\ 2 \\ 2\end{array}\right) \longleftarrow C Y$: tetra-quadric in $\mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}$
$\eta(X)=-128 \quad h^{1,1}(X)=4 \quad h^{2,1}(X)=68 \quad c_{2}(T X)=\{24,24,24,24\} \longleftarrow$ topological data
$\kappa=12 t_{1} t_{2} t_{3}+12 t_{1} t_{2} t_{4}+12 t_{1} t_{3} t_{4}+12 t_{2} t_{3} t_{4}$
symmetry: 3 order: 4
Abelian: True block diagonal: True factors: $\{2,2\}$
Action on coordinates: $\left.\left\{\begin{array}{cccccccc}1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1\end{array}\right),\left(\begin{array}{llllllll}0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0\end{array}\right)\right\}$
Action on polynomials: $\{(1),(1)\}$

An example

CY data: - Cicy 7862, Symmetry 3

$x=\left(\begin{array}{l}2 \\ 2 \\ 2 \\ 2\end{array}\right) \longleftarrow C Y$: tetra-quadric in $\mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}$
$\eta(X)=-128 \quad h^{1,1}(X)=4 \quad h^{2,1}(X)=68 \quad c_{2}(T X)=\{24,24,24,24\} \longleftarrow$ topological data
$\kappa=12 t_{1} t_{2} t_{3}+12 t_{1} t_{2} t_{4}+12 t_{1} t_{3} t_{4}+12 t_{2} t_{3} t_{4} \longleftarrow$ volume
symmetry: 3 order: 4
Abelian: True block diagonal: True factors: $\{2,2\}$
Action on coordinates: $\left.\left\{\begin{array}{cccccccc}1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1\end{array}\right),\left(\begin{array}{llllllll}0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0\end{array}\right)\right\}$
Action on polynomials: $\{(1),(1)\}$

An example

CY data: - Cicy 7862, Symmetry 3

$x=\left(\begin{array}{l}2 \\ 2 \\ 2 \\ 2\end{array}\right) \longleftarrow C Y$: tetra-quadric in $\mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}$
$\eta(X)=-128 \quad h^{1,1}(X)=4 \quad h^{2,1}(X)=68 \quad c_{2}(T X)=\{24,24,24,24\} \longleftarrow$ topological data
$\kappa=12 t_{1} t_{2} t_{3}+12 t_{1} t_{2} t_{4}+12 t_{1} t_{3} t_{4}+12 t_{2} t_{3} t_{4} \longleftarrow$ volume
symmetry: 3 order: 4
Abelian: True block diagonal: True factors: $\{2,2\}$
Action on coordinates: $\left.\left\{\begin{array}{cccccccc}1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1\end{array}\right),\left(\begin{array}{llllllll}0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0\end{array}\right)\right\}$
Action on polynomials: $\{(1),(1)\}$

bundle data:

- Basic properties

standard model? True massless $\mathrm{U}(1)$: 1 number of $5 \overline{5}$ pairs: $3 \quad \mathrm{c}_{2}(\mathrm{~V})=\{24,8,20,12\}$
$V:\left(k_{a}^{i}\right)=\left(\begin{array}{ccccc}-1 & -1 & 0 & 1 & 1 \\ 0 & -3 & 1 & 1 & 1 \\ 0 & 2 & -1 & -1 & 0 \\ 1 & 2 & 0 & -1 & -2\end{array}\right)$
Cohomology of V :

Wilson line: $\{\{0,0\},\{0,1\}\}$ Equivariant structure: $\{\{0,0\},\{0,0\},\{0,0\},\{0,0\},\{0,0\}\}$ Higgs pairs: 1
Downstairs spectrum: $\left\{210_{2}, 10_{5}, \overline{5}_{2,4}, 2 \overline{5}_{4,5}, \mathrm{H}_{2,5}, \overline{\mathrm{H}}_{2,5}, 3 \mathrm{~S}_{2,1}, 3 \mathrm{~S}_{5,1}, 5 \mathrm{~S}_{2,3}, 3 \mathrm{~S}_{2,4}, \mathrm{~S}_{5,3}\right\}$ Phys. Higgs: $\left\{\mathrm{H}_{2,5}, \overline{\mathrm{H}}_{2,5}\right\}$
Transfer format: $\{\{6,1,1,4,6,5,9,9,8,10,1,7,17\},\{6,6,-1,-1,-1,-1\}\}$
$\left.\operatorname{rk}\left(Y^{(u)}\right)=\{2,2\} \quad \operatorname{rk}\left(Y^{(d)}\right)\right)=\{0,0\} \quad$ dim. 4 operators absent: $\{$ True, True $\}$ dim. 5 operators absent: $\{$ True, True $\}$

bundle data:

- Basic properties
standard model? True massless $\mathrm{U}(1)$: 1 number of $5 \overline{5}$ pairs: $3 \quad \mathrm{c}_{2}(\mathrm{~V})=\{24,8,20,12\}$
$\mathrm{V}:\left(\mathrm{K}_{\mathrm{a}}^{\mathrm{i}}\right)=\left(\begin{array}{ccccc}-1 & -1 & 0 & 1 & 1 \\ 0 & -3 & 1 & 1 & 1 \\ 0 & 2 & -1 & -1 & 0 \\ 1 & 2 & 0 & -1 & -2\end{array}\right)$
\longleftarrow integer matrix defining line bundle sum
Cohomology of V :

Wilson line: $\{\{0,0\},\{0,1\}\}$ Equivariant structure: $\{\{0,0\},\{0,0\},\{0,0\},\{0,0\},\{0,0\}\}$ Higgs pairs: 1

Downstairs spectrum: $\left\{210_{2}, 10_{5}, \overline{5}_{2,4}, 2 \overline{5}_{4,5}, \mathrm{H}_{2,5}, \overline{\mathrm{H}}_{2,5}, 3 \mathrm{~S}_{2,1}, 3 \mathrm{~S}_{5,1}, 5 \mathrm{~S}_{2,3}, 3 \mathrm{~S}_{2,4}, \mathrm{~S}_{5,3}\right\}$ Phys. Higgs: $\left\{\mathrm{H}_{2,5}, \overline{\mathrm{H}}_{2,5}\right\}$
Transfer format: $\{\{6,1,1,4,6,5,9,9,8,10,1,7,17\},\{6,6,-1,-1,-1,-1\}\}$
$\left.\operatorname{rk}\left(Y^{(u)}\right)=\{2,2\} \quad \operatorname{rk}\left(Y^{(d)}\right)\right)=\{0,0\} \quad$ dim. 4 operators absent: $\{$ True, True $\}$ dim. 5 operators absent: $\{$ True, True $\}$

bundle data:

- Basic properties
standard model? True massless $\mathrm{U}(1)$: 1 number of $5 \overline{5}$ pairs: $3 \quad \mathrm{c}_{2}(\mathrm{~V})=\{24,8,20,12\}$
$V:\left(k_{a}^{i}\right)=\left(\begin{array}{ccccc}-1 & -1 & 0 & 1 & 1 \\ 0 & -3 & 1 & 1 & 1 \\ 0 & 2 & -1 & -1 & 0 \\ 1 & 2 & 0 & -1 & -2\end{array}\right)$
\longleftarrow integer matrix defining line bundle sum
Cohomology of V :

Wilson line: $\{\{0,0\},\{0,1\}\}$ Equivariant structure: $\{\{0,0\},\{0,0\},\{0,0\},\{0,0\},\{0,0\}\}$ Higgs pairs: 1

Downstairs spectrum: $\left\{210_{2}, 10_{5}, \overline{5}_{2,4}, 2 \overline{5}_{4,5}, \mathrm{H}_{2,5}, \overline{\mathrm{H}}_{2,5}, 3 \mathrm{~S}_{2,1}, 3 \mathrm{~S}_{5,1}, 5 \mathrm{~S}_{2,3}, 3 \mathrm{~S}_{2,4}, \mathrm{~S}_{5,3}\right\}$ Phys. Higgs: $\left\{\mathrm{H}_{2,5}, \overline{\mathrm{H}}_{2,5}\right\}$
Transfer format: $\{\{6,1,1,4,6,5,9,9,8,10,1,7,1\},\{6,6,-1,-1,-1,-1\}\}$
$\left.\operatorname{rk}\left(Y^{(u)}\right)=\{2,2\} \operatorname{rk}\left(Y^{(d)}\right)\right)=\{0,0\} \operatorname{dim} 4$ operators absent: $\{$ True, True\} dim. 5 operators absent: $\{$ True, True\}
spectrum: $\mathbf{1 0}_{2}, \mathbf{1 0}_{2}, \mathbf{1 0}_{5}, \overline{\mathbf{5}}_{2,4}, \overline{\mathbf{5}}_{4,5}, \overline{\mathbf{5}}_{4,5}, H_{2,5}, \bar{H}_{2,5}$

$$
3 \mathbf{1}_{2,1}, 3 \mathbf{1}_{5,1}, 5 \mathbf{1}_{2,3}, 3 \mathbf{1}_{2,4}, \mathbf{1}_{5,3}
$$

allowed operators:

- Operators

basic superpotential terms:
$\bar{H} 10^{p} 10^{q}: Y^{(u)}=\left(\begin{array}{ccc}(0) & (0) & (1) \\ (0) & (0) & (1) \\ (1) & (1) & (0)\end{array}\right)$
$H 5^{\mathrm{p}} 10^{\mathrm{q}}: \mathrm{Y}^{(\mathrm{d})}=\left(\begin{array}{ccc}(0) & (0) & (0) \\ (0) & (0) & (0) \\ (0) & (0) & (0)\end{array}\right)$
$\mathrm{H} \overline{\mathrm{H}}: \mu=\{1\}$
$\mathrm{W}_{\text {sing }}=\{0\}$
R-parity violating terms in superpotential:
$\bar{H}^{\mathrm{p}}: \rho=\left(\begin{array}{c}0 \\ \mathrm{~S}_{2,4} \\ \mathrm{~S}_{2,4}\end{array}\right)$
$\left.\left.\left.10^{D} \overline{5}^{q} \overline{5}^{r}: \lambda=\{\{\{0\},\{0\},\{0\},\{\{0\},\{0\},\{0\}\},\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\},\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\},\{0\},\{0\},\{0\}\right\},\{10\},\{0\},\{0\}\right\}\right\}$
Dimension 5 operators in superpotential:
$\overline{5}^{-p} 10^{q} 10^{r} 10^{s}: \lambda^{\prime}=\{\{\{\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\}\},\{\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\}\},\{\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\}\}\}$, $\{\{\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\}\},\{\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\}\},\{\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\}\}\},\{\{\{\{0\},\{0\},\{0\}\},\{\{0\}$,

D-terms:
FI-terms: $k_{a}^{i}{ }_{\mathrm{a}} \kappa_{i}=\left(\begin{array}{c}4 t_{1} t_{2}+4 t_{1} t_{3}-4 t_{2} t_{4}-4 t_{3} t_{4} \\ 16 t_{1} t_{2}-4 t_{1} t_{3}+4 t_{2} t_{3}-4 t_{1} t_{4}+4 t_{2} t_{4}-16 t_{3} t_{4} \\ -4 t_{1} t_{2}+4 t_{1} t_{3}-4 t_{2} t_{4}+4 t_{3} t_{4} \\ -8 t_{1} t_{2}+8 t_{3} t_{4} \\ -8 t_{1} t_{2}-4 t_{1} t_{3}-4 t_{2} t_{3}+4 t_{1} t_{4}+4 t_{2} t_{4}+8 t_{3} t_{4}\end{array}\right)$
singlet D-terms: $\mathrm{q}_{\alpha \mathrm{a}} \mathrm{S}^{\bar{S}} \mathrm{~S}^{\bar{\beta}}=\left(\begin{array}{c}-\mathrm{S}_{2,1} \mathrm{~S}^{\dagger}{ }_{2,1}-\mathrm{S}_{5,1} \mathrm{~S}^{\dagger}{ }_{5,1} \\ \mathrm{~S}_{2,1} \mathrm{~S}^{\dagger}{ }_{2,1}+\mathrm{S}_{2,3} \mathrm{~S}^{\dagger}{ }_{2,3}+\mathrm{S}_{2,4} \mathrm{~S}^{\dagger}{ }_{2,4} \\ -\mathrm{S}_{2,3} \mathrm{~S}_{2,3}-\mathrm{S}_{5,3} \mathrm{~S}_{5,3}^{\dagger} \\ -\mathrm{S}_{2,4} \mathrm{~S}_{2,4}^{\dagger} \\ \mathrm{S}_{5,1} \mathrm{~S}_{5,1}^{\dagger}+\mathrm{S}_{5,3} \mathrm{~S}_{5,3}^{\dagger}\end{array}\right)$

allowed operators:

- Operators

basic superpotential terms:
$\bar{H} 10^{p} 10^{q}: Y^{(u)}=\left(\begin{array}{ccc}(0) & (0) & (1) \\ (0) & (0) & (1) \\ (1) & (1) & (0)\end{array}\right) ~ « r a n k 2$
$H 5^{\mathrm{p}} 10^{\mathrm{q}}: \mathrm{Y}^{(\mathrm{d})}=\left(\begin{array}{ccc}(0) & (0) & (0) \\ (0) & (0) & (0) \\ (0) & (0) & (0)\end{array}\right)$
$\mathrm{H} \overline{\mathrm{H}}: \mu=\{1\}$
$\mathrm{W}_{\text {sing }}=\{0\}$
R-parity violating terms in superpotential:
$\bar{H}^{\mathrm{p}}: \rho=\left(\begin{array}{c}0 \\ \mathrm{~S}_{2,4} \\ \mathrm{~S}_{2,4}\end{array}\right)$
$\left.\left.\left.10^{D} \overline{5}^{q} \overline{5}^{r}: \lambda=\{\{\{0\},\{0\},\{0\},\{\{0\},\{0\},\{0\}\},\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\},\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\},\{0\},\{0\},\{0\}\right\},\{10\},\{0\},\{0\}\right\}\right\}$
Dimension 5 operators in superpotential:
$\overline{5}^{\mathrm{P}} 10^{\mathrm{q}} 10^{r} 10^{s}: \lambda^{\prime}=\{\{\{\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\}\},\{\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\}\},\{\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\}\}\}$, $\{\{\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\}\},\{\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\}\},\{\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\}\}\},\{\{\{\{0\},\{0\},\{0\}\},\{\{0\}$,

D-terms:
FI-terms: $k_{a}^{i}{ }_{\mathrm{a}} \kappa_{i}=\left(\begin{array}{c}4 t_{1} t_{2}+4 t_{1} t_{3}-4 t_{2} t_{4}-4 t_{3} t_{4} \\ 16 t_{1} t_{2}-4 t_{1} t_{3}+4 t_{2} t_{3}-4 t_{1} t_{4}+4 t_{2} t_{4}-16 t_{3} t_{4} \\ -4 t_{1} t_{2}+4 t_{1} t_{3}-4 t_{2} t_{4}+4 t_{3} t_{4} \\ -8 t_{1} t_{2}+8 t_{3} t_{4} \\ -8 t_{1} t_{2}-4 t_{1} t_{3}-4 t_{2} t_{3}+4 t_{1} t_{4}+4 t_{2} t_{4}+8 t_{3} t_{4}\end{array}\right)$
singlet D-terms: $\mathrm{q}_{\alpha \mathrm{a}} \mathrm{S}^{\bar{s} \mathrm{~S}^{\bar{\beta}}}=\left(\begin{array}{c}-\mathrm{S}_{2,1} \mathrm{~S}^{\dagger}{ }_{2,1}-\mathrm{S}_{5,1} \mathrm{~S}^{\dagger}{ }_{5,1} \\ \mathrm{~S}_{2,1} \mathrm{~S}_{{ }_{2,1}}+\mathrm{S}_{2,3} \mathrm{~S}^{\dagger}{ }_{2,3}+\mathrm{S}_{2,4} \mathrm{~S}^{\dagger}{ }_{2,4} \\ -\mathrm{S}_{2,3} \mathrm{~S}_{2,3}^{\dagger}-\mathrm{S}_{5,3} \mathrm{~S}_{5,3}^{\dagger} \\ -\mathrm{S}_{2,4} \mathrm{~S}_{2,4}^{\dagger} \\ \mathrm{S}_{5,1} \mathrm{~S}_{5,1}^{\dagger}+\mathrm{S}_{5,3} \mathrm{~S}_{5,3}^{\dagger}\end{array}\right)$

allowed operators:

- Operators

basic superpotential terms:
$\bar{H} 10^{p} 10^{q}: Y^{(u)}=\left(\begin{array}{ccc}(0) & (0) & (1) \\ (0) & (0) & (1) \\ (1) & (1) & (0)\end{array}\right) ~ « r a n k 2$
$H 5^{p} 10^{q}: Y^{(d)}=\left(\begin{array}{ccc}(0) & (0) & (0) \\ (0) & (0) & (0) \\ (0) & (0) & (0)\end{array}\right) ~ \leftarrow r a n k 0$
$\mathrm{H} \overline{\mathrm{H}}: \mu=\{1\}$
$\mathrm{W}_{\text {sing }}=\{0\}$
R-parity violating terms in superpotential:
$\bar{H}^{\mathrm{p}}: \rho=\left(\begin{array}{c}0 \\ \mathrm{~S}_{2,4} \\ \mathrm{~S}_{2,4}\end{array}\right)$
$\left.\left.\left.\left.10^{p} 5^{q} 5^{r}: \lambda=\{\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\},\{0\},\{0\},\{0\}\},\{\{10\},\{0\},\{0\}\},\{10\},\{0\},\{0\}\right\},\{0\},\{0\},\{0\}\right\},\{\{\{0\},\{0\},\{0\}\},\{0\},\{0\},\{0\}\},\{10\},\{0\},\{0\}\right\}\right\}$
Dimension 5 operators in superpotential:
$\overline{5}^{\mathrm{P}} 10^{\mathrm{q}} 10^{r} 10^{s}: \lambda^{\prime}=\{\{\{\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\}\},\{\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\}\},\{\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\}\}\}$, $\{\{\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\}\},\{\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\}\},\{\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\}\}\},\{\{\{\{0\},\{0\},\{0\}\},\{\{0\}$,

D-terms:
FI-terms: $k_{a}^{i} \kappa_{i}=\left(\begin{array}{c}4 t_{1} t_{2}+4 t_{1} t_{3}-4 t_{2} t_{4}-4 t_{3} t_{4} \\ 16 t_{1} t_{2}-4 t_{1} t_{3}+4 t_{2} t_{3}-4 t_{1} t_{4}+4 t_{2} t_{4}-16 t_{3} t_{4} \\ -4 t_{1} t_{2}+4 t_{1} t_{3}-4 t_{2} t_{4}+4 t_{3} t_{4} \\ -8 t_{1} t_{2}+8 t_{3} t_{4} \\ -8 t_{1} t_{2}-4 t_{1} t_{3}-4 t_{2} t_{3}+4 t_{1} t_{4}+4 t_{2} t_{4}+8 t_{3} t_{4}\end{array}\right)$
singlet D-terms: $\mathrm{q}_{\alpha \mathrm{a}} \mathrm{S}^{\bar{s} \mathrm{~S}^{\bar{\beta}}}=\left(\begin{array}{c}-\mathrm{S}_{2,1} \mathrm{~S}^{\dagger}{ }_{2,1}-\mathrm{S}_{5,1} \mathrm{~S}^{\dagger}{ }_{5,1} \\ \mathrm{~S}_{2,1} \mathrm{~S}_{{ }_{2,1}}+\mathrm{S}_{2,3} \mathrm{~S}^{\dagger}{ }_{2,3}+\mathrm{S}_{2,4} \mathrm{~S}^{\dagger}{ }_{2,4} \\ -\mathrm{S}_{2,3} \mathrm{~S}_{2,3}^{\dagger}-\mathrm{S}_{5,3} \mathrm{~S}_{5,3}^{\dagger} \\ -\mathrm{S}_{2,4} \mathrm{~S}_{2,4}^{\dagger} \\ \mathrm{S}_{5,1} \mathrm{~S}_{5,1}^{\dagger}+\mathrm{S}_{5,3} \mathrm{~S}_{5,3}^{\dagger}\end{array}\right)$

allowed operators:

- Operators

basic superpotential terms:
$\bar{H} 10^{p} 10^{q}: Y^{(u)}=\left(\begin{array}{ccc}(0) & (0) & (1) \\ (0) & (0) & (1) \\ (1) & (1) & (0)\end{array}\right) ~ « r a n k 2$
$H 5^{p} 10^{q}: Y^{(d)}=\left(\begin{array}{ccc}(0) & (0) & (0) \\ (0) & (0) & (0) \\ (0) & (0) & (0)\end{array}\right) ~ « r a n k 0$
$\mathrm{H} \overline{\mathrm{H}}: \mu=\{1\} \quad \mu$-term vanishes
$\mathrm{W}_{\text {sing }}=\{0\}$
R-parity violating terms in superpotential:
$\bar{H}^{\mathrm{p}}: \rho=\left(\begin{array}{c}0 \\ \mathrm{~S}_{2,4} \\ \mathrm{~S}_{2,4}\end{array}\right)$
$\left.\left.\left.\left.10^{p} 5^{q} 5^{r}: \lambda=\{\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\},\{0\},\{0\},\{0\}\},\{\{10\},\{0\},\{0\}\},\{10\},\{0\},\{0\}\right\},\{0\},\{0\},\{0\}\right\},\{\{\{0\},\{0\},\{0\}\},\{0\},\{0\},\{0\}\},\{10\},\{0\},\{0\}\right\}\right\}$
Dimension 5 operators in superpotential:
$\overline{5}^{\mathrm{P}} 10^{\mathrm{q}} 10^{r} 10^{s}: \lambda^{\prime}=\{\{\{\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\}\},\{\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\}\},\{\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\}\}\}$, $\{\{\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\}\},\{\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\}\},\{\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\}\}\},\{\{\{\{0\},\{0\},\{0\}\},\{\{0\}$,

D-terms:
FI-terms: $k_{a}^{i} \kappa_{i}=\left(\begin{array}{c}4 t_{1} t_{2}+4 t_{1} t_{3}-4 t_{2} t_{4}-4 t_{3} t_{4} \\ 16 t_{1} t_{2}-4 t_{1} t_{3}+4 t_{2} t_{3}-4 t_{1} t_{4}+4 t_{2} t_{4}-16 t_{3} t_{4} \\ -4 t_{1} t_{2}+4 t_{1} t_{3}-4 t_{2} t_{4}+4 t_{3} t_{4} \\ -8 t_{1} t_{2}+8 t_{3} t_{4} \\ -8 t_{1} t_{2}-4 t_{1} t_{3}-4 t_{2} t_{3}+4 t_{1} t_{4}+4 t_{2} t_{4}+8 t_{3} t_{4}\end{array}\right)$
singlet D-terms: $\mathrm{q}_{\alpha \mathrm{a}} \mathrm{S}^{\bar{s} \mathrm{~S}^{\bar{\beta}}}=\left(\begin{array}{c}-\mathrm{S}_{2,1} \mathrm{~S}^{\dagger}{ }_{2,1}-\mathrm{S}_{5,1} \mathrm{~S}^{\dagger}{ }_{5,1} \\ \mathrm{~S}_{2,1} \mathrm{~S}_{{ }_{2,1}}+\mathrm{S}_{2,3} \mathrm{~S}^{\dagger}{ }_{2,3}+\mathrm{S}_{2,4} \mathrm{~S}^{\dagger}{ }_{2,4} \\ -\mathrm{S}_{2,3} \mathrm{~S}_{2,3}^{\dagger}-\mathrm{S}_{5,3} \mathrm{~S}_{5,3}^{\dagger} \\ -\mathrm{S}_{2,4} \mathrm{~S}_{2,4}^{\dagger} \\ \mathrm{S}_{5,1} \mathrm{~S}_{5,1}^{\dagger}+\mathrm{S}_{5,3} \mathrm{~S}_{5,3}^{\dagger}\end{array}\right)$

allowed operators:

- Operators

basic superpotential terms:
$\overline{\mathrm{H}} 10^{\mathrm{p}} 10^{\mathrm{q}}: \mathrm{Y}^{(\mathrm{u})}=\left(\begin{array}{ccc}(0) & (0) & (1) \\ (0) & (0) \\ (1) & (1) \\ (1) & (1) & (0)\end{array}\right) \longleftarrow \operatorname{rank} 2$

ні: $\mu={ }_{(1)} \longleftarrow \mu$-term vanishes
$\mathrm{W}_{\text {sing }}=\{0\}$
R-parity violating terms in superpotential:
$\overline{H L} L^{\mathrm{P}:} \rho=\binom{0}{s_{s_{24}}} \longleftarrow$ zero for $\left\langle\mathbf{1}_{2,4}\right\rangle=0$, non-zero otherwise
$\left.\left.\left.10^{p} \overline{5}^{q} \overrightarrow{5}^{r}: \lambda=\{\{\{10\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\}\},\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\}\right\},\{\{10\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\}\right\}\right\}$
Dimension 5 operators in superpotential:
$\left.\overline{5}^{p} 10^{a} 10^{r} 10^{s}: \lambda^{\prime}=\{\{1\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\}\},\{\{10\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\}\},\{\{10\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\}\right\}$, $\{\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\},\{10\},\{0\},\{0\}\}\},\{\{10\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\}\},\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\}\},\{\{\{0\},\{0\},\{0\}\},\{\{0\}$,

D-terms:

singlet D-terms: $\mathrm{q}_{\alpha \mathrm{a}} \mathrm{S}^{\alpha} \bar{S}^{\bar{\beta}}=\left(\begin{array}{c}-\mathrm{S}_{2,1} \mathrm{~S}^{\dagger}{ }_{2,1}-\mathrm{S}_{5,1} \mathrm{~S}_{5,1}^{\dagger} \\ \mathrm{S}_{2,1} \mathrm{~S}_{2,1}^{\dagger}+\mathrm{S}_{2,3} \mathrm{~S}_{2,3}+\mathrm{S}_{2,4} \mathrm{~S}^{\dagger}{ }_{2,4} \\ -\mathrm{S}_{2,3} \mathrm{~S}_{2,3}^{\dagger}-\mathrm{S}_{5,3} \mathrm{~S}_{5,3} \\ -\mathrm{S}_{2,4} \mathrm{~S}_{2,4}^{\dagger} \\ \mathrm{S}_{5,1} \mathrm{~S}_{5,1}^{\dagger}+\mathrm{S}_{5,3} \mathrm{~S}_{5,3}^{\dagger}\end{array}\right)$

allowed operators:

- Operators

basic superpotential terms:
$\bar{H} 10^{\mathrm{p}} 10^{\mathrm{a}}: \mathrm{Y}^{(\mathrm{u})}=\left(\begin{array}{ccc}(0) & (0) & (1) \\ (0) & (0) \\ (1) & (1) \\ (1) & (1) & (0)\end{array}\right) \longleftarrow \operatorname{rank} 2$

нї: $\mu=(1) ~ \longleftarrow \mu$-term vanishes
$\mathrm{W}_{\text {sing }}=\{0\}$
R-parity violating terms in superpotential:
$\overline{H^{\mathrm{L}}:}: \rho=\left(\begin{array}{l}0 \\ s_{24} \\ s_{24}\end{array}\right) \longleftarrow$ zero for $\left\langle\mathbf{1}_{2,4}\right\rangle=0$, non-zero otherwise
$\left.\left.\left.10^{p} \overline{5}^{q} \overline{5}^{r}: \lambda=\{\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\},\{\{10\},\{0\},\{0\}\},\{10\},\{0\},\{0\}\},\{0\},\{0\},\{0\}\right\},\{\{\{0\},\{0\},\{0\}\},\{0\},\{0\},\{0\}\},\{10\},\{0\},\{0\}\right\}\right\}$
Dimension 5 operators in superpotential:
$\left.\left.\left.\overline{5}^{\mathrm{p}} 10^{\mathrm{q}} 10^{r} 10^{\mathrm{s}}: \lambda^{\prime}=\{\{1\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\}\},\{\{10\},\{0\},\{0\}\},\{10\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\}\right\},\{\{\{0\},\{0\},\{0\}\},\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\}\right\}\right\}$, $\{\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\},\{10\},\{0\},\{0\}\}\},\{\{10\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\}\},\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\},\{\{0\},\{0\},\{0\}\}\},\{\{\{0\},\{0\},\{0\}\},\{\{0\}$,

D-terms:

FI-terms: $k_{a}^{i} \kappa_{i}=\left(\begin{array}{c}4 t_{1} t_{2}+4 t_{1} t_{3}-4 t_{2} t_{4}-4 t_{3} t_{4} \\ 16 t_{1} t_{2}-4 t_{1} t_{3}+4 t_{2} t_{3}-4 t_{1} t_{4}+4 t_{2} t_{4}-16 t_{3} t_{4} \\ -4 t_{1} t_{2}+4 t_{1} t_{3}-4 t_{2} t_{4}+4 t_{3} t_{4} \\ -8 t_{1} t_{2}+8 t_{3} t_{4} \\ -8 t_{1} t_{2}-4 t_{1} t_{3}-4 t_{2} t_{3}+4 t_{1} t_{4}+4 t_{2} t_{4}+8 t_{3} t_{4}\end{array}\right)$
singlet D-terms: $\mathrm{q}_{\alpha \mathrm{a}} \mathrm{S}^{\alpha} \bar{S}^{\bar{\beta}}=\left(\begin{array}{c}-\mathrm{S}_{2,1} \mathrm{~S}^{\dagger}{ }_{2,1}-\mathrm{S}_{5,1} \mathrm{~S}_{5,1}^{\dagger} \\ \mathrm{S}_{2,1} \mathrm{~S}_{2,1}^{\dagger}+\mathrm{S}_{2,3} \mathrm{~S}_{2,3}+\mathrm{S}_{2,4} \mathrm{~S}^{\dagger}{ }_{2,4} \\ -\mathrm{S}_{2,3} \mathrm{~S}_{2,3}^{\dagger}-\mathrm{S}_{5,3} \mathrm{~S}_{5,3} \\ -\mathrm{S}_{2,4} \mathrm{~S}_{2,4}^{\dagger} \\ \mathrm{S}_{5,1} \mathrm{~S}_{5,1}^{\dagger}+\mathrm{S}_{5,3} \mathrm{~S}_{5,3}^{\dagger}\end{array}\right)$

Continuation to non-Abelian bundles

Superpot. for example: $W=\lambda_{i} \bar{H}_{2,5}\left(Q_{2}^{(i)} u_{5}+Q_{5} u_{2}^{(i)}\right)+\rho_{\alpha i} \mathbf{1}_{2,4}^{(\alpha)} L_{4,5}^{(i)} \bar{H}_{2,5}$
Singlets for example: $3 \mathbf{1}_{2,1}, 3 \mathbf{1}_{5,1}, 5 \mathbf{1}_{2,3}, 3 \mathbf{1}_{2,4}, \mathbf{1}_{5,3}$

Continuation to non-Abelian bundles

Superpot. for example: $W=\lambda_{i} \bar{H}_{2,5}\left(Q_{2}^{(i)} u_{5}+Q_{5} u_{2}^{(i)}\right)+\rho_{\alpha i} 1_{2,4}^{(\alpha)} L_{4,5}^{(i)} \bar{H}_{2,5}$
Singlets for example: $3 \mathbf{1}_{2,1}, 3 \mathbf{1}_{5,1}, 5 \mathbf{1}_{2,3}, 3 \mathbf{1}_{2,4}, \mathbf{1}_{5,3}$

Suggests: massless Higgs doublet pair throughout moduli space as long as $\left\langle\mathbf{1}_{2,4}^{\alpha}\right\rangle=0$.

Continuation to non-Abelian bundles

Superpot. for example: $W=\lambda_{i} \bar{H}_{2,5}\left(Q_{2}^{(i)} u_{5}+Q_{5} u_{2}^{(i)}\right)+\rho_{\alpha i} 1_{2,4}^{(\alpha)} L_{4,5}^{(i)} \bar{H}_{2,5}$
Singlets for example: $3 \mathbf{1}_{2,1}, 3 \mathbf{1}_{5,1}, 5 \mathbf{1}_{2,3}, 3 \mathbf{1}_{2,4}, \mathbf{1}_{5,3}$

Suggests: massless Higgs doublet pair throughout moduli space as long as $\left\langle\mathbf{1}_{2,4}^{\alpha}\right\rangle=0$.

What happens to bundle when singlets are switched on?

- All singlet VEVs non-zero:

$$
\begin{aligned}
V=\oplus_{a=1}^{5} L_{a} & \rightarrow \tilde{V} \\
S\left(U(1)^{5}\right) & \rightarrow S U(5)
\end{aligned}
$$

Continuation to non-Abelian bundles

Superpot. for example: $W=\lambda_{i} \bar{H}_{2,5}\left(Q_{2}^{(i)} u_{5}+Q_{5} u_{2}^{(i)}\right)+\rho_{\alpha i} \mathbf{1}_{2,4}^{(\alpha)} L_{4,5}^{(i)} \bar{H}_{2,5}$
Singlets for example: $3 \mathbf{1}_{2,1}, 3 \mathbf{1}_{5,1}, 5 \mathbf{1}_{2,3}, 3 \mathbf{1}_{2,4}, \mathbf{1}_{5,3}$

Suggests: massless Higgs doublet pair throughout moduli space as long as $\left\langle\mathbf{1}_{2,4}^{\alpha}\right\rangle=0$.

What happens to bundle when singlets are switched on?

- All singlet VEVs non-zero:

$$
\begin{aligned}
V=\oplus_{a=1}^{5} L_{a} & \rightarrow \tilde{V} \\
S\left(U(1)^{5}\right) & \rightarrow S U(5)
\end{aligned}
$$

- $\left\langle\mathbf{1}_{2,4}\right\rangle=0$, others non-zero: $V=\oplus_{a=1}^{5} L_{a} \rightarrow \tilde{V}=U \oplus L_{4}$

$$
S\left(U(1)^{5}\right) \rightarrow S U(4) \times U_{X}(1)
$$

Continuation to non-Abelian bundles

Superpot. for example: $W=\lambda_{i} \bar{H}_{2,5}\left(Q_{2}^{(i)} u_{5}+Q_{5} u_{2}^{(i)}\right)+\rho_{\alpha i} \mathbf{1}_{2,4}^{(\alpha)} L_{4,5}^{(i)} \bar{H}_{2,5}$
Singlets for example: $3 \mathbf{1}_{2,1}, 3 \mathbf{1}_{5,1}, 5 \mathbf{1}_{2,3}, 3 \mathbf{1}_{2,4}, \mathbf{1}_{5,3}$

Suggests: massless Higgs doublet pair throughout moduli space as long as $\left\langle\mathbf{1}_{2,4}^{\alpha}\right\rangle=0$.

What happens to bundle when singlets are switched on?

- All singlet VEVs non-zero:

$$
\begin{aligned}
V=\oplus_{a=1}^{5} L_{a} & \rightarrow \tilde{V} \\
S\left(U(1)^{5}\right) & \rightarrow S U(5)
\end{aligned}
$$

- $\left\langle\mathbf{1}_{2,4}\right\rangle=0$, others non-zero: $V=\oplus_{a=1}^{5} L_{a} \rightarrow \tilde{V}=U \oplus L_{4}$

$$
\begin{gathered}
S\left(U(1)^{5}\right) \rightarrow \underset{U_{B-L}(1)}{S U(4) \times U_{X}(1)},
\end{gathered}
$$

Schematic structure of moduli space:

Check fate of Higgs by constructing non-Abelian bundle

Recall: $L_{1}=\mathcal{O}_{X}(-1,0,0,1) \quad, L_{2}=\mathcal{O}_{X}(-1,-3,2,2) \quad, \quad L_{3}=\mathcal{O}_{X}(0,1,-1,0)$
$L_{4}=\mathcal{O}_{X}(1,1,-1,-1) \quad, \quad L_{5}=\mathcal{O}_{X}(1,1,0,-2)$

Check fate of Higgs by constructing non-Abelian bundle

Recall: $L_{1}=\mathcal{O}_{X}(-1,0,0,1) \quad, L_{2}=\mathcal{O}_{X}(-1,-3,2,2), \quad L_{3}=\mathcal{O}_{X}(0,1,-1,0)$ $L_{4}=\mathcal{O}_{X}(1,1,-1,-1) \quad, \quad L_{5}=\mathcal{O}_{X}(1,1,0,-2)$

1) Extension bundles

For $V_{1}=L_{2} \oplus L_{5}, V_{2}=L_{1} \oplus L_{3} \oplus L_{4}$ define extension

$$
0 \longrightarrow V_{1} \longrightarrow \tilde{V} \longrightarrow V_{2} \longrightarrow 0
$$

Check fate of Higgs by constructing non-Abelian bundle

Recall: $L_{1}=\mathcal{O}_{X}(-1,0,0,1) \quad, L_{2}=\mathcal{O}_{X}(-1,-3,2,2), \quad L_{3}=\mathcal{O}_{X}(0,1,-1,0)$ $L_{4}=\mathcal{O}_{X}(1,1,-1,-1) \quad, \quad L_{5}=\mathcal{O}_{X}(1,1,0,-2)$

1) Extension bundles

For $V_{1}=L_{2} \oplus L_{5}, V_{2}=L_{1} \oplus L_{3} \oplus L_{4}$ define extension

$$
0 \longrightarrow V_{1} \longrightarrow \tilde{V} \longrightarrow V_{2} \longrightarrow 0
$$

Compute $\# \mathbf{5}=h^{2}\left(X, \wedge^{2} \tilde{V}\right)=\left\{\begin{array}{lll}3 & \text { for } & \left\langle\mathbf{1}_{2,4}\right\rangle=0 \\ 0 & \text { for } & \left\langle\mathbf{1}_{2,4}\right\rangle \neq 0\end{array}\right.$

2) Monads

$$
0 \longrightarrow \tilde{V} \longrightarrow B \xrightarrow{f} C \longrightarrow 0
$$

$$
B \sim\left[\begin{array}{rrrrrrr}
-1 & -1 & -1 & 0 & 1 & 1 & 1 \\
0 & -1 & -1 & 1 & 1 & 1 & 1 \\
0 & 2 & 2 & -1 & -1 & 0 & 0 \\
1 & 2 & 2 & 0 & -1 & 0 & 0
\end{array}\right]
$$

$$
C \sim\left[\begin{array}{rr}
-1 & 1 \\
1 & 1 \\
2 & 0 \\
2 & 2
\end{array}\right]
$$

2) Monads

$$
\begin{array}{cc}
0 \longrightarrow \tilde{V} \longrightarrow B \xrightarrow{ } \longrightarrow C \xrightarrow{\longrightarrow} 0 \\
B \sim & \left.C \begin{array}{r|rr|r|r|rr}
-1 & -1 & -1 & 0 & 1 & 1 & 1 \\
0 & -1 & -1 & 1 & 1 & 1 & 1 \\
0 & 2 & 2 & -1 & -1 & 0 & 0 \\
1 & 2 & 2 & 0 & -1 & 0 & 0
\end{array}\right] \\
L_{1} & L_{2} \\
L_{3} & L_{4} \\
\hline
\end{array}
$$

2) Monads

$$
\begin{aligned}
& 0 \longrightarrow \tilde{V} \longrightarrow B \xrightarrow{f} C \longrightarrow 0
\end{aligned}
$$

$$
\begin{aligned}
& f \sim\left(\begin{array}{lllllll}
f_{(0,1,2,1)} & f_{(0,2,0,0)} & f_{(0,2,0,0)}^{\prime} & 0 & 0 & 0 & 0 \\
f_{(2,1,0,1)} & 0 & 0 & f_{(1,0,1,2)} & f_{(0,0,1,3)} & f_{(0,0,0,2)} & f_{(0,0,0,2)}^{\prime}
\end{array}\right)
\end{aligned}
$$

2) Monads

$$
0 \longrightarrow \tilde{V} \longrightarrow B \xrightarrow{f} C \longrightarrow 0
$$

$$
\begin{aligned}
& B \sim\left[\begin{array}{c|cc|c|c|cc}
-1 & -1 & -1 & 0 & 1 & 1 & 1 \\
0 & -1 & 1 & 1 & 1 & 1 & 1 \\
0 & 2 & 2 & 1 & 1 & 1 & 1 \\
1 & 2 & 2 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \\
& L_{1} \\
& L_{2}
\end{aligned} L_{3} L_{4} L_{5}
$$

bundle splits if zero

2) Monads

$$
0 \longrightarrow \tilde{V} \longrightarrow B \xrightarrow{f} C \longrightarrow 0
$$

$$
\begin{aligned}
& C \sim\left[\begin{array}{cc}
-1 & 1 \\
1 & 1 \\
2 & 0 \\
2 & 2
\end{array}\right]
\end{aligned}
$$

bundle splits if zero
We can show for $\left\langle\mathbf{1}_{2,4}\right\rangle=0, \tilde{V}=U \oplus L_{4}$:

- bundle \tilde{V} is supersymmetric
- $\# \mathbf{5}=h^{2}\left(X, \wedge^{2} \tilde{V}\right)=3$

Features of the $S U(4) \times U_{X}(1)$ model:

- $U_{X}(1) \longrightarrow U_{B-L}(1)$
- μ-term forbidden
- dangerous dim. 4 terms forbidden by $U_{B-L}(1)$
- $\overline{5} 101010$ operators still absent, due to existence of line bundle locus

Conclusions and outlook

- We can "mass-produce" heterotic CY standard models from line bundles. 2000 models have been found from 200 GUT models.
- We have found all viable line bundle GUT models on favourable Cicys with freely-acting symmetries: 35000 models
- These models will lead to a large number of standard models which will form the starting point for a detailed phenom. analysis.
- Higgs can be kept light away from the line bundle locus.

O We can study the non-Abelian continuation of line bundle models: "Unexpected" absences of operators due to line bundle locus.

- What is the total number of string standard models?

Conclusions and outlook

- We can "mass-produce" heterotic CY standard models from line bundles. 2000 models have been found from 200 GUT models.
- We have found all viable line bundle GUT models on favourable Cicys with freely-acting symmetries: 35000 models
- These models will lead to a large number of standard models which will form the starting point for a detailed phenom. analysis.
- Higgs can be kept light away from the line bundle locus.

O We can study the non-Abelian continuation of line bundle models: "Unexpected" absences of operators due to line bundle locus.

- What is the total number of string standard models?

Thanks

