<u>Heterotic Line Bundle Models</u>

Andre Lukas

University of Oxford

Pascos 2013, Taipei, Nov 2013

based on: arXiv:1311.1941, arXiv:1307.4787, arXiv:1106.4804, arXiv:1202.1757, with Lara Anderson, Evgeny Buchbinder, Andrei Constantin, James Gray and Eran Palti

<u>Overview</u>

Introduction: Heterotic line bundle models

- Arena: Specific Calabi-Yau manifolds and line bundles
- An exhaustive scan over favourable Cicys
- An example
- Continuation to non-Abelian bundles
- Conclusion and outlook

Data to define a heterotic line bundle model we need:

- A Calabi–Yau 3–fold $\,X\,$
- A line bundle sum $V = L_1 \oplus \cdots \oplus L_5$ on X, $c_1(V) = 0$, so structure group is $S(U(1)^5) \subset SU(5) \subset E_8$
- vanishing slopes $\mu(L_a)\equiv c_1(L_a)\wedge J^2\stackrel{!}{=} 0$
- Anomaly: $c_2(TX) c_2(V) c_2(\tilde{V}) = [C]$ in practice: $c_2(V) \le c_2(TX)$

Data to define a heterotic line bundle model we need:

- A Calabi–Yau 3–fold $\,X\,$
- A line bundle sum $V = L_1 \oplus \cdots \oplus L_5$ on X, $c_1(V) = 0$, so structure group is $S(U(1)^5) \subset SU(5) \subset E_8$
- vanishing slopes $\mu(L_a) \equiv c_1(L_a) \wedge J^2 \stackrel{!}{=} 0$
- Anomaly: $c_2(TX) c_2(V) c_2(\tilde{V}) = [C]$ in practice: $c_2(V) \le c_2(TX)$

N=1, D=4 GUT with gauge group $SU(5) \times S(U(1)^5)$ and matter in $10, \overline{10}, \overline{5}, 5, 1$

Data to define a heterotic line bundle model we need:

- A Calabi–Yau 3–fold $\,X\,$
- A line bundle sum $V = L_1 \oplus \cdots \oplus L_5$ on X, $c_1(V) = 0$, so structure group is $S(U(1)^5) \subset SU(5) \subset E_8$
- vanishing slopes $\mu(L_a) \equiv c_1(L_a) \wedge J^2 \stackrel{!}{=} 0$

- Anomaly: $c_2(TX) - c_2(V) - c_2(\tilde{V}) = [C]$ in practice: $c_2(V) \le c_2(TX)$ N=1, D=4 GUT with gauge group $SU(5) \times S(U(1)^5)$ and matter in $10, \overline{10}, \overline{5}, 5, 1$

- freely acting symmetry Γ on X, so $\hat{X}=X/\Gamma$ is smooth and non simply-connected
- bundle V needs to be equivariant so it descends to a bundle \hat{V} on \hat{X}
- complete bundle $\hat{V} \oplus W\,$ with Wilson line W to break GUT group

Data to define a heterotic line bundle model we need:

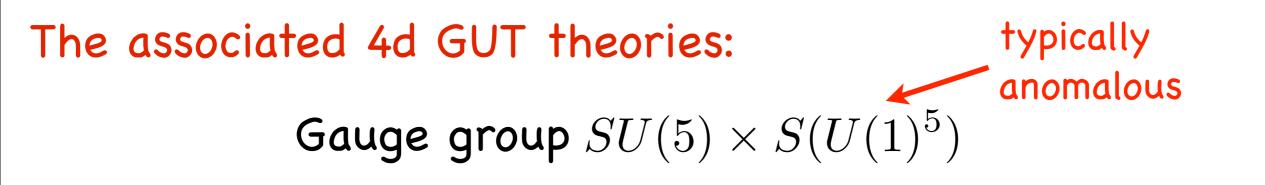
- A Calabi–Yau 3–fold $\,X\,$
- A line bundle sum $V = L_1 \oplus \cdots \oplus L_5$ on X, $c_1(V) = 0$, so structure group is $S(U(1)^5) \subset SU(5) \subset E_8$
- vanishing slopes $\mu(L_a) \equiv c_1(L_a) \wedge J^2 \stackrel{!}{=} 0$
- Anomaly: $c_2(TX) c_2(V) c_2(\tilde{V}) = [C]$ in practice: $c_2(V) \le c_2(TX)$

N=1, D=4 GUT with gauge group $SU(5) \times S(U(1)^5)$ and matter in $10, \overline{10}, \overline{5}, 5, 1$

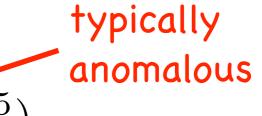
- freely acting symmetry $\Gamma \, {\rm on} \, X,$ so $\hat{X} = X/\Gamma$ is smooth and non simply-connected
- bundle V needs to be equivariant so it descends to a bundle \hat{V} on \hat{X}
- complete bundle $\hat{V} \oplus W\,$ with Wilson line $W\,$ to break GUT group

standard-like model (hopefully) with gauge group $G_{\rm SM} \times S(U(1)^5)$

Gauge group $SU(5) \times S(U(1)^5)$



The associated 4d GUT theories: typically anomalous Gauge group $SU(5) \times S(U(1)^5)$



Gauge group $SU(5) \times S(U(1)^5)$

multiplet	$S(U(1)^5)$ charge	associated line bundle L	contained in
$10_{\mathbf{e}_a}$	\mathbf{e}_a	L_a	V
$ar{10}_{-\mathbf{e}_a}$	$-\mathbf{e}_a$	L_a^*	V^*
$ar{f 5}_{{f e}_a+{f e}_b}$	$\mathbf{e}_a + \mathbf{e}_b$	$L_a \otimes L_b$	$\wedge^2 V$
$5_{-\mathbf{e}_a-\mathbf{e}_b}$	$-\mathbf{e}_a-\mathbf{e}_b$	$L_a^* \otimes L_b^*$	$\wedge^2 V^*$
$1_{\mathbf{e}_a-\mathbf{e}_b}$	$\mathbf{e}_a - \mathbf{e}_b$	$L_a \otimes L_b^*$	$V\otimes V^*$
$1_{-\mathbf{e}_a+\mathbf{e}_b}$	$-\mathbf{e}_a+\mathbf{e}_b$	$L_a^* \otimes L_b$	

Gauge group $SU(5) \times S(U(1)^5)$

typically

anomalous

	multiplet	$S(U(1)^5)$ charge	associated line bundle L	contained in	
C	$10_{\mathbf{e}_{a}}$	\mathbf{e}_a	L_a	V	$\longleftarrow = 3 \Gamma $
families and mirror families	$ar{10}_{-\mathbf{e}_a}$	$-\mathbf{e}_a$	L_a^*	V^*	$\leftarrow = 0$
	$ar{f 5}_{{f e}_a+{f e}_b}$	$\mathbf{e}_a + \mathbf{e}_b$	$L_a\otimes L_b$	$\wedge^2 V$	$> \Rightarrow 3 \Gamma $
	$5_{-\mathbf{e}_a-\mathbf{e}_b}$	$-\mathbf{e}_a-\mathbf{e}_b$	$L_a^* \otimes L_b^*$	$\wedge^2 V^*$	
	$1_{\mathbf{e}_a-\mathbf{e}_b}$	$\mathbf{e}_a - \mathbf{e}_b$	$L_a \otimes L_b^*$	$V\otimes V^*$	
	$1_{-\mathbf{e}_a+\mathbf{e}_b}$	$-\mathbf{e}_a+\mathbf{e}_b$	$L_a^* \otimes L_b$		

Gauge group $SU(5) \times S(U(1)^5)$

typically

anomalous

	multiplet	$S(U(1)^5)$ charge	associated line bundle L	contained in	
families and mirror families	$10_{\mathbf{e}_{a}}$	\mathbf{e}_{a}	L_a	V	$\longleftarrow = 3 \Gamma $
	$ar{10}_{-\mathbf{e}_a}$	$-\mathbf{e}_a$	L_a^*	V^*	$\leftarrow = 0$
	$ar{f 5}_{{f e}_a+{f e}_b}$	$\mathbf{e}_a + \mathbf{e}_b$	$L_a \otimes L_b$	$\wedge^2 V$	$> \Rightarrow 3 \Gamma $
	$5_{-\mathbf{e}_a-\mathbf{e}_b}$	$-\mathbf{e}_a-\mathbf{e}_b$	$L_a^* \otimes L_b^*$	$\wedge^2 V^*$	x , y -1
bundle	$1_{\mathbf{e}_a-\mathbf{e}_b}$	$\mathbf{e}_a - \mathbf{e}_b$	$L_a \otimes L_b^*$	$V \otimes V^*$	
moduli S^{lpha}	$1_{-\mathbf{e}_a+\mathbf{e}_b}$	$-\mathbf{e}_a+\mathbf{e}_b$	$L_a^*\otimes L_b$		

Gauge group $SU(5) \times S(U(1)^5)$

typically

anomalous

matter multiplets: $\mathbf{10}_a, \ \mathbf{\overline{10}}_a, \ \mathbf{5}_{a,b}, \ \mathbf{\overline{5}}_{a,b}, \ \mathbf{1}_{a,b} = S^{\alpha}$

	multiplet	$S(U(1)^5)$ charge	associated line bundle L	contained in	
families and mirror families	$10_{\mathbf{e}_{a}}$	\mathbf{e}_a	L_a	V	$\longleftarrow = 3 \Gamma $
	$ar{10}_{-\mathbf{e}_a}$	$-\mathbf{e}_a$	L_a^*	V^*	$\leftarrow = 0$
	$ar{f 5}_{{f e}_a+{f e}_b}$	$\mathbf{e}_a + \mathbf{e}_b$	$L_a\otimes L_b$	$\wedge^2 V$	$> \Rightarrow 3 \Gamma $
	$5_{-\mathbf{e}_a-\mathbf{e}_b}$	$-\mathbf{e}_a-\mathbf{e}_b$	$L_a^* \otimes L_b^*$	$\wedge^2 V^*$	
bundle	$1_{\mathbf{e}_a-\mathbf{e}_b}$	$\mathbf{e}_a - \mathbf{e}_b$	$L_a\otimes L_b^*$	$V\otimes V^*$	
moduli S^lpha	$1_{-\mathbf{e}_a+\mathbf{e}_b}$	$-\mathbf{e}_a+\mathbf{e}_b$	$L_a^*\otimes L_b$		

Number of each multiplet type obtained from $H^1(X,L)$.

Gauge group $SU(5) \times S(U(1)^5)$

typically

anomalous

matter multiplets: $\mathbf{10}_a, \ \mathbf{\overline{10}}_a, \ \mathbf{5}_{a,b}, \ \mathbf{\overline{5}}_{a,b}, \ \mathbf{1}_{a,b} = S^{\alpha}$

	multiplet	$S(U(1)^5)$ charge	associated line bundle L	contained in	
families and mirror families	$10_{\mathbf{e}_{a}}$	\mathbf{e}_a	L_a	V	$\longleftarrow = 3 \Gamma $
	$ar{10}_{-\mathbf{e}_a}$	$-\mathbf{e}_a$	L_a^*	V^*	$\leftarrow = 0$
	$ar{f 5}_{{f e}_a+{f e}_b}$	$\mathbf{e}_a + \mathbf{e}_b$	$L_a\otimes L_b$	$\wedge^2 V$	$> \Rightarrow 3 \Gamma $
	$5_{-\mathbf{e}_a-\mathbf{e}_b}$	$-\mathbf{e}_a-\mathbf{e}_b$	$L_a^* \otimes L_b^*$	$\wedge^2 V^*$	
bundle	$1_{\mathbf{e}_a-\mathbf{e}_b}$	$\mathbf{e}_a - \mathbf{e}_b$	$L_a \otimes L_b^*$	$V\otimes V^*$	
moduli S^{lpha}	$1_{-\mathbf{e}_a+\mathbf{e}_b}$	$-\mathbf{e}_a+\mathbf{e}_b$	$L_a^*\otimes L_b$		

Number of each multiplet type obtained from $H^1(X,L)$.

Can lead to standard models after taking quotient by freely-acting symmetry and adding Wilson line.

Gauge group $SU(5) \times S(U(1)^5)$

typically

anomalous

matter multiplets: $\mathbf{10}_a, \ \mathbf{\overline{10}}_a, \ \mathbf{5}_{a,b}, \ \mathbf{\overline{5}}_{a,b}, \ \mathbf{1}_{a,b} = S^{\alpha}$

	multiplet	$S(U(1)^5)$ charge	associated line bundle L	contained in	
families and mirror families	$10_{\mathbf{e}_{a}}$	\mathbf{e}_{a}	L_a	V	$\longleftarrow = 3 \Gamma $
	$ar{10}_{-\mathbf{e}_a}$	$-\mathbf{e}_a$	L_a^*	V^*	$\leftarrow = 0$
	$ar{f 5}_{{f e}_a+{f e}_b}$	$\mathbf{e}_a + \mathbf{e}_b$	$L_a\otimes L_b$	$\wedge^2 V$	$> \Rightarrow 3 \Gamma $
	$5_{-\mathbf{e}_a-\mathbf{e}_b}$	$-\mathbf{e}_a-\mathbf{e}_b$	$L_a^* \otimes L_b^*$	$\wedge^2 V^*$	
bundle	$1_{\mathbf{e}_a-\mathbf{e}_b}$	$\mathbf{e}_a - \mathbf{e}_b$	$L_a \otimes L_b^*$	$V\otimes V^*$	
moduli S^{lpha}	$1_{-\mathbf{e}_a+\mathbf{e}_b}$	$-\mathbf{e}_a+\mathbf{e}_b$	$L_a^*\otimes L_b$		

Number of each multiplet type obtained from $H^1(X,L)$.

Can lead to standard models after taking quotient by freely-acting symmetry and adding Wilson line.

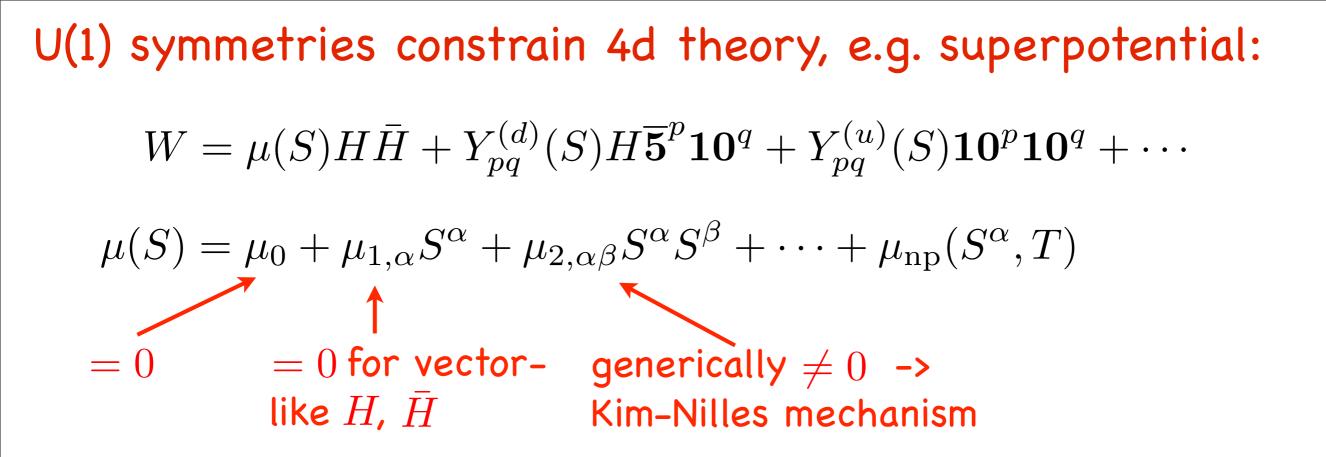
 $\langle S^{lpha} \rangle = 0$: line bundle model, $\langle S^{lpha} \rangle \neq 0$: non-Abelian bundle

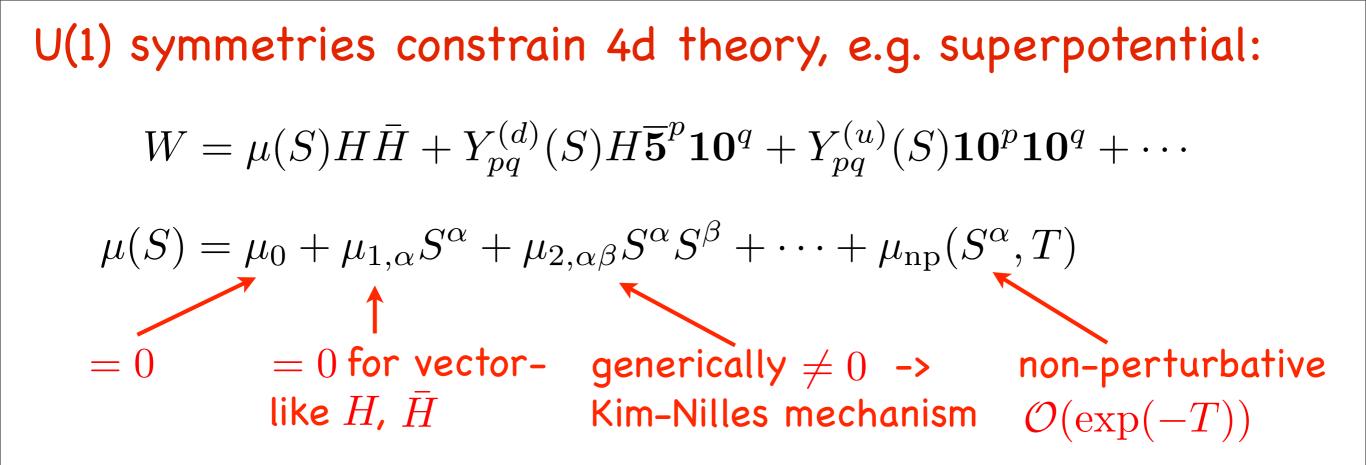
U(1) symmetries constrain 4d theory, e.g. superpotential:

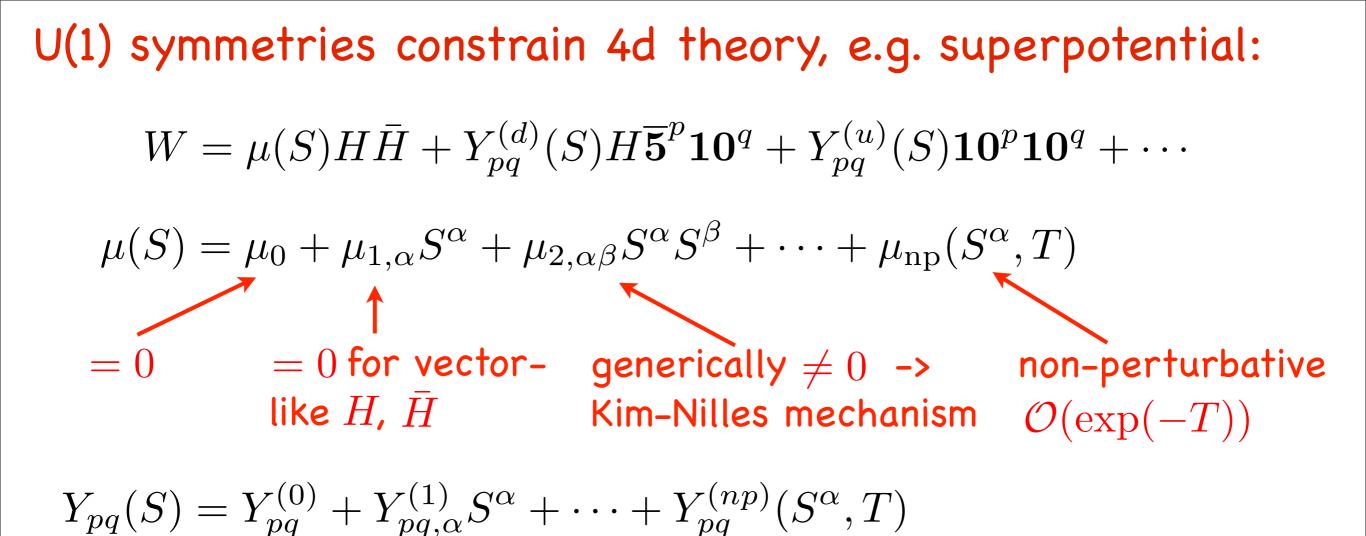
 $W = \mu(S)H\overline{H} + Y_{pq}^{(d)}(S)H\overline{5}^{p}\mathbf{10}^{q} + Y_{pq}^{(u)}(S)\mathbf{10}^{p}\mathbf{10}^{q} + \cdots$

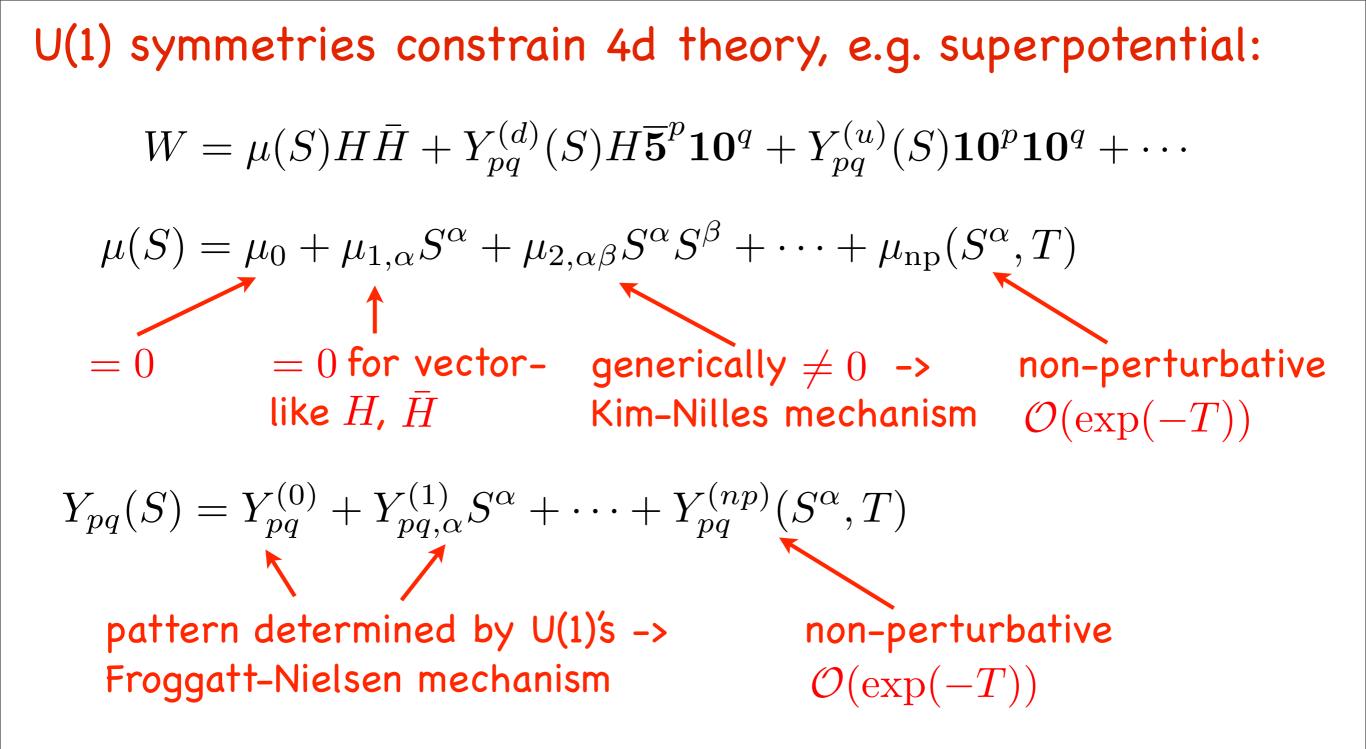
U(1) symmetries constrain 4d theory, e.g. superpotential: $W = \mu(S)H\bar{H} + Y_{pq}^{(d)}(S)H\bar{\mathbf{5}}^{p}\mathbf{10}^{q} + Y_{pq}^{(u)}(S)\mathbf{10}^{p}\mathbf{10}^{q} + \cdots$

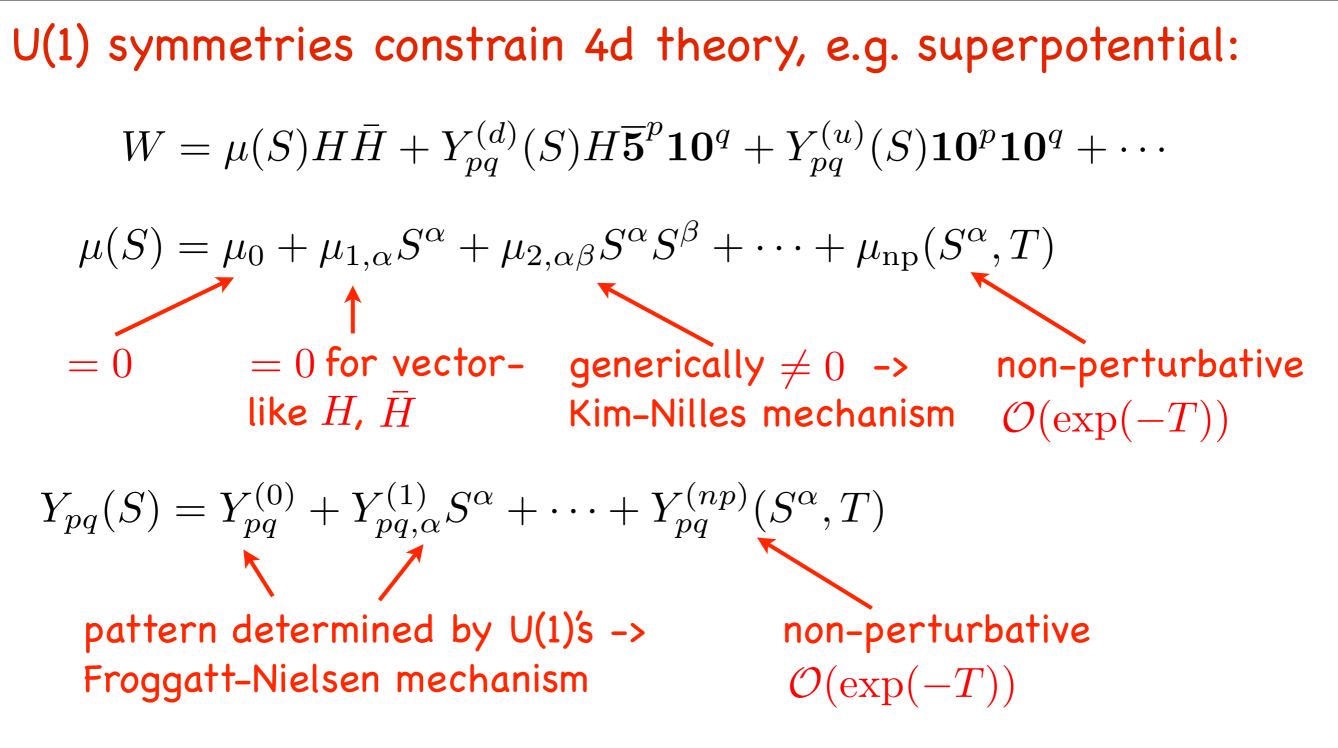
 $\mu(S) = \mu_0 + \mu_{1,\alpha} S^{\alpha} + \mu_{2,\alpha\beta} S^{\alpha} S^{\beta} + \dots + \mu_{np}(S^{\alpha}, T)$

U(1) symmetries constrain 4d theory, e.g. superpotential: $W = \mu(S)H\bar{H} + Y_{pq}^{(d)}(S)H\bar{5}^{p}\mathbf{10}^{q} + Y_{pq}^{(u)}(S)\mathbf{10}^{p}\mathbf{10}^{q} + \cdots$ $\mu(S) = \mu_{0} + \mu_{1,\alpha}S^{\alpha} + \mu_{2,\alpha\beta}S^{\alpha}S^{\beta} + \cdots + \mu_{np}(S^{\alpha}, T)$ = 0 









Two ways to explore non-Abelian bundles:

ullet VEVs $\langle S^lpha
angle
eq 0$, spontaneously breaks U(1)s

• Construct non-Abelian bundles which ``split" to line bundle sum

CICYs defined as common zero locus $X = \{p_i = 0\} \subset \mathcal{A}$ of homogeneous polynomials p_i in ambient space $\mathcal{A} = \bigotimes_{r=1}^m \mathbb{P}^{n_r}$.

for example: quintic $X \sim \begin{bmatrix} \mathbb{P}^4 | 5 \end{bmatrix}$ or bi-cubic $X \sim \begin{bmatrix} \mathbb{P}^2 & 3 \\ \mathbb{P}^2 & 3 \end{bmatrix}$

CICYs defined as common zero locus $X = \{p_i = 0\} \subset \mathcal{A}$ of homogeneous polynomials p_i in ambient space $\mathcal{A} = \bigotimes_{r=1}^m \mathbb{P}^{n_r}$.

for example: quintic
$$X \sim \begin{bmatrix} \mathbb{P}^4 | 5 \end{bmatrix}$$
 or bi-cubic $X \sim \begin{bmatrix} \mathbb{P}^2 & 3 \\ \mathbb{P}^2 & 3 \end{bmatrix}$

Complete classification of about 8000 spaces (Hubsch, Green, Lutken, Candelas 1987)

Classification of freely-acting discrete symmetries (Braun, 2010)

Line bundle cohomology can be computed. (Anderson, He, Lukas, 2008)

CICYs defined as common zero locus $X = \{p_i = 0\} \subset \mathcal{A}$ of homogeneous polynomials p_i in ambient space $\mathcal{A} = \bigotimes_{r=1}^m \mathbb{P}^{n_r}$.

for example: quintic
$$X \sim \begin{bmatrix} \mathbb{P}^4 | 5 \end{bmatrix}$$
 or bi-cubic $X \sim \begin{bmatrix} \mathbb{P}^2 & 3 \\ \mathbb{P}^2 & 3 \end{bmatrix}$

Complete classification of about 8000 spaces (Hubsch, Green, Lutken, Candelas 1987)

Classification of freely-acting discrete symmetries (Braun, 2010)

Line bundle cohomology can be computed. (Anderson, He, Lukas, 2008)

Focus on favourable Cicys: $H^{1,1}(X) = \text{Span}(J_i|_X)$

CICYs defined as common zero locus $X = \{p_i = 0\} \subset \mathcal{A}$ of homogeneous polynomials p_i in ambient space $\mathcal{A} = \bigotimes_{r=1}^m \mathbb{P}^{n_r}$.

for example: quintic
$$X \sim \begin{bmatrix} \mathbb{P}^4 | 5 \end{bmatrix}$$
 or bi-cubic $X \sim \begin{bmatrix} \mathbb{P}^2 & | & 3 \\ \mathbb{P}^2 & | & 3 \end{bmatrix} \xleftarrow{} J_2$

Complete classification of about 8000 spaces (Hubsch, Green, Lutken, Candelas 1987)

Classification of freely-acting discrete symmetries (Braun, 2010)

Line bundle cohomology can be computed. (Anderson, He, Lukas, 2008)

Focus on favourable Cicys: $H^{1,1}(X) = \text{Span}(J_i|_X)$

Line bundles on CY manifolds

Line bundles, L, are classified by their first Chern class:

$$c_1(L) = k^i J_i , \quad k^i \in \mathbb{Z}$$

Write $L = \mathcal{O}_X(\mathbf{k})$ where $\mathbf{k} = (k^i)$ is an integer vector.

Line bundles on CY manifolds

Line bundles, L, are classified by their first Chern class:

$$c_1(L) = k^i J_i , \quad k^i \in \mathbb{Z}$$

Write $L = \mathcal{O}_X(\mathbf{k})$ where $\mathbf{k} = (k^i)$ is an integer vector.

Rank 5 line bundle sum:

$$V = \bigoplus_{a=1}^{5} \mathcal{O}_X(\mathbf{k}_a) \qquad c_1(V) \sim \sum_{a=1}^{5} \mathbf{k}_a \stackrel{!}{=} 0$$

Described by $h^{1,1}(X) \times 5$ integer matrix (k_a^i)

Line bundles on CY manifolds

Line bundles, L, are classified by their first Chern class:

$$c_1(L) = k^i J_i , \quad k^i \in \mathbb{Z}$$

Write $L = \mathcal{O}_X(\mathbf{k})$ where $\mathbf{k} = (k^i)$ is an integer vector.

Rank 5 line bundle sum:

$$V = \bigoplus_{a=1}^{5} \mathcal{O}_X(\mathbf{k}_a) \qquad \qquad c_1(V) \sim \sum_{a=1}^{5} \mathbf{k}_a \stackrel{!}{=} 0$$

Described by $h^{1,1}(X) \times 5$ integer matrix (k_a^i)

No a priori bounds on k_a^i , so for $-k_{\max} \leq k_a^i \leq k_{\max}$ we have

$$\sim (2k_{\max}+1)^{4h^{1,1}(X)}$$
 line bundle sums V

Scan for favourable Cicys with $h^{1,1}(X) \leq 5$ (60 spaces) and

 $k_{\rm max}=2,3 \longrightarrow \sim 10^{12}$ bundles

Scan for favourable Cicys with $h^{1,1}(X) \leq 5$ (60 spaces) and

$$k_{
m max}=2,3 \longrightarrow \sim 10^{12}$$
 bundles

200 viable SU(5) GUT models leading to about 2000 standard models*

Scan for favourable Cicys with $h^{1,1}(X) \leq 5$ (60 spaces) and

$$k_{
m max}=2,3 \longrightarrow \sim 10^{12}$$
 bundles

200 viable SU(5) GUT models leading to about 2000 standard models*

These models and their details are available at:

http://www-thphys.physics.ox.ac.uk/projects/CalabiYau/linebundlemodels/index.html

Scan for favourable Cicys with $h^{1,1}(X) \leq 5$ (60 spaces) and

$$k_{
m max}=2,3 \longrightarrow \sim 10^{12}$$
 bundles

200 viable SU(5) GUT models leading to about 2000 standard models*

These models and their details are available at:

http://www-thphys.physics.ox.ac.uk/projects/CalabiYau/linebundlemodels/index.html

*standard model: SM gauge group times (anomalous) U(1)s, exact MSSM matter spectrum, one or more pairs of Higgs doublets, no exotics charged under standard model group.

An exhaustive scan over favourable Cicys

Aim: Find all viable line bundle SU(5) GUT models (and later all standard models) on favourable Cicys with freely-acting symmetries.

An exhaustive scan over favourable Cicys

Aim: Find all viable line bundle SU(5) GUT models (and later all standard models) on favourable Cicys with freely-acting symmetries.

Requires scanning over 68 Cicys with $h^{1,1}(X) \leq 6$ and

 $k_{
m max} \sim 10 \quad \longrightarrow \quad \sim 10^{40} \, \, {
m bundles}$

An exhaustive scan over favourable Cicys

Aim: Find all viable line bundle SU(5) GUT models (and later all standard models) on favourable Cicys with freely-acting symmetries.

Requires scanning over 68 Cicys with $h^{1,1}(X) \leq 6$ and

 $k_{\rm max} \sim 10 \quad \longrightarrow \quad \sim 10^{40} \, \, {\rm bundles}$

Feasible because some constraints can be checked while line bundle sum is built up, e.g if

 $h^1(X,L) > 3|\Gamma|$

we do not need to consider line bundle L (too many families).

How do we know we have found all viable models?

Scan over all (k_a^i) with $|k_a^i| \le k_{\max}$ and find number of viable models as a function of k_{\max} :

How do we know we have found all viable models?

Scan over all (k_a^i) with $|k_a^i| \le k_{\max}$ and find number of viable models as a function of k_{\max} :

Table 6: Number of models as a function of k_{max} on CICYs with $h^{1,1}(X) = 6$. Total number of models: 41036

$X, \Gamma $	$k_{\rm m} = 1$	$k_{\rm m} = 2$	$k_{\rm m} = 3$	$k_{\rm m} = 4$	$k_{\rm m} = 5$	$k_{\rm m} = 6$	$k_{\rm m} = 7$	$k_{\rm m} = 8$	$k_{\rm m} = 9$	$k_{\rm m} = 10,$ 11, 12, 13
3413, 3	0	2278	2897	2906	2906	2906				
4190, 2	11	766	1175	1243	1246	1247	1249	1249	1249	
5273, 2	29	4895	7149	7738	7799	7810	7810	7810		
5302, 2	0	4314	5978	6360	6369	6369	6369			
5302, 4	0	11705	16988	17687	17793	17838	17868	17868	17868	
5425, 2	0	2381	3083	3305	3337	3337	3337			
5958, 2	0	148	224	240	253	253	253			
6655, 5	0	92	178	189	194	194	198	201	202	203
6738, 2	1	2733	4116	4346	4386	4393	4399	4399	4399	

$h^{1,1}(X)$		2	3	4	5	6	total
#models	0	0	6	552	21731	41036	63325

$h^{1,1}(X)$		2	3	4	5	6	total
#models	0	0	6	552	21731	41036	63325

After demanding absence of $ar{10}$ and presence of $ar{5}-ar{5}$ pair:

34989 models

$h^{1,1}(X)$		2	3	4	5	6	total
#models	0	0	6	552	21731	41036	63325

After demanding absence of $ar{10}$ and presence of $ar{5}-ar{5}$ pair:

34989 models

Available at:

http://www-thphys.physics.ox.ac.uk/projects/CalabiYau/linebundlemodels/index.html

$h^{1,1}(X)$		2	3	4	5	6	total
#models	0	0	6	552	21731	41036	63325

After demanding absence of $ar{10}$ and presence of $ar{5}-ar{5}$ pair:

34989 models

Available at:

http://www-thphys.physics.ox.ac.uk/projects/CalabiYau/linebundlemodels/index.html

Roughly, a factor 10 more models per CY for each additional Kahler parameter!

$h^{1,1}(X)$		2	3	4	5	6	total
#models	0	0	6	552	21731	41036	63325

After demanding absence of $ar{10}$ and presence of $ar{5}-ar{5}$ pair:

34989 models

Available at:

http://www-thphys.physics.ox.ac.uk/projects/CalabiYau/linebundlemodels/index.html

Roughly, a factor 10 more models per CY for each additional Kahler parameter!

Have started a similar programme on CY manifolds defined in toric 4-folds (Kreuzer-Skarke list) -> Chuang Sun's talk

CY data: Cicy 7862, Symmetry 3

$$\mathsf{X} = \begin{pmatrix} \mathsf{2} \\ \mathsf{2} \\ \mathsf{2} \\ \mathsf{2} \\ \mathsf{2} \end{pmatrix}$$

 $\eta(X) = -128 \quad h^{1,1}(X) = 4 \quad h^{2,1}(X) = 68 \quad c_2(TX) = \{24, 24, 24, 24\}$ $\kappa = 12t_1t_2t_3 + 12t_1t_2t_4 + 12t_1t_3t_4 + 12t_2t_3t_4$

symmetry: 3 order: 4

Abelian: True block diagonal: True factors: {2, 2}

	(1	0	0	0	0	0	0	0		0)	1	0	0	0	0	0	0	١
	0	-1	0	0	0	0	0	0		1	0	0	0		0		0	
	0	0	1	0	0		0	0		0	0	0	1	0	0	0	0	
	0	0	0	-1	0	0	0	0		0	0	1	0	0	0	0	0	h
Action on coordinates: {	0	0	0	0	1	0	0	0	,	0	0				1	0	0	}
	0	0	0	0	0	-1	0	0		0	0	0	0	1	0	0	0	
	0	0	0	0	0	0	1	0		0	0		0					
	0)	0	0	0	0	0	0	-1		0	0	0		0	0	1	1 0 ,	J

CY data: Cicy 7862, Symmetry 3

$$x = \begin{pmatrix} 2 \\ 2 \\ 2 \\ 2 \end{pmatrix} \longleftarrow CY: \text{ tetra-quadric in } \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$$

 $\eta(X) = -128$ $h^{1,1}(X) = 4$ $h^{2,1}(X) = 68$ $c_2(TX) = \{24, 24, 24, 24\}$

 $\kappa = \, 12\,t_1\,t_2\,t_3 + 12\,t_1\,t_2\,t_4 + 12\,t_1\,t_3\,t_4 + 12\,t_2\,t_3\,t_4$

symmetry: 3 order: 4

Abelian: True block diagonal: True factors: {2, 2}

	(1	0	0	0	0	0		0			1	0	0	0	0	0	0)	
	0	-1	0	0	0	0	0	0			0	0	0	0	0	0	0	
	0	0	1	0	0	0	0	0		0	0	0	1	0	0	0	0	
	0	0	0	-1	0	0	0	0		0	0	1	0	0	0	0	0)
Action on coordinates: {	0	0	0		1	0	0	0 0	,	0	0	0	0	0	1	0	0	}
	0	0	0	0	0	-1	0	0		0	0	0	0	1	0	0	0	
	0	0	0	0	0	0	1	0		0		0	0	0	0	0	1	
	0)	0	0	0	0	0	0	-1 ,)	0)	0	0	0	0	0	1	0)	

CY data: Cicy 7862, Symmetry 3

$$x = \begin{pmatrix} 2 \\ 2 \\ 2 \\ 2 \end{pmatrix} \quad \textbf{CY: tetra-quadric in } \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$$

 $\eta(X) = -128$ h^{1,1}(X) = 4 h^{2,1}(X) = 68 c₂(TX) = {24, 24, 24, 24} $\kappa = 12t_1t_2t_3 + 12t_1t_2t_4 + 12t_1t_3t_4 + 12t_2t_3t_4$

symmetry: 3 order: 4

Abelian: True block diagonal: True factors: {2, 2}

	(1	0	0	0	0	0	0	0		(0	1	0	0	0	0	0	0	١
		-1		0	0		0	0		1	0	0	0	0	0	0	0	
	0	0	1	0	0	0	0			0		0	1	0	0	0	0	
	0	0	0	-1	0	0	0	0		0	0	1	0	0	0	0	0	h
Action on coordinates: {	0	0	0	0	1	0	0	0 0	,	0	0	0	0	0	1	0	0	}
	0	0	0	0	0	-1	0	0		0	0	0	0		0		0	
	0	0	0	0	0	0	1	0		0	0	0			0	0	1	
	0)	0	0	0	0	0	0	-1 ,)	0)	0	0	0	0	0	1	0))

CY data: Cicy 7862, Symmetry 3

$$x = \begin{pmatrix} 2 \\ 2 \\ 2 \\ 2 \end{pmatrix} \longleftarrow CY: tetra-quadric in \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$$

 $\eta(X) = -128$ h^{1,1}(X) = 4 h^{2,1}(X) = 68 c₂(TX) = {24, 24, 24, 24} \leftarrow topological data $\kappa = 12t_1t_2t_3 + 12t_1t_2t_4 + 12t_1t_3t_4 + 12t_2t_3t_4 \leftarrow Volume$

symmetry: 3 order: 4

Abelian: True block diagonal: True factors: {2, 2}

	(1	0	0	0	0	0	0	0		(0	1	0	0	0	0	0	0)
		-1			0	0	0	0		1	0	0	0	0	0		0	
	0	0	1	0	0	0	0	0		0	0	0	1	0	0	0	0	
	0	0	0	-1	0	0	0	0		0	0	1	0	0	0	0	0	h
Action on coordinates: {	0	0	0	0	1	0	0	0 0	,	0	0	0	0	0	1	0	0	}
	0							0						1				
	0	0	0		0			0		0				0		0		
	0)	0	0	0	0	0	0	-1))	0)	0	0	0	0	0	1	0	J

CY data: Cicy 7862, Symmetry 3

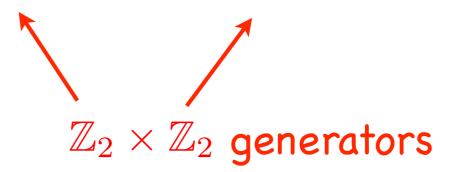
$$x = \begin{pmatrix} 2 \\ 2 \\ 2 \\ 2 \end{pmatrix} \longleftarrow CY: \text{ tetra-quadric in } \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$$

 $\eta(X) = -128$ h^{1,1}(X) = 4 h^{2,1}(X) = 68 c₂(TX) = {24, 24, 24, 24} $\kappa = 12t_1t_2t_3 + 12t_1t_2t_4 + 12t_1t_3t_4 + 12t_2t_3t_4$ Volume

symmetry: 3 order: 4

Abelian: True block diagonal: True factors: {2, 2}

	(1	0	0	0	0	0	0	0	١	(0	1	0	0	0	0	0	0	١
	0	-1	0				0	0		1	0	0	0	0	0	0	0	
	0	0	1	0	0	0	0	0		0	0	0	1	0	0	0	0	
Action on coordinates: {	0	0	0	-1	0	0	0	0		0	0	1	0	0	0	0	0	h
Action on coordinates. {	0	0	0	0	1	0	0	0	,	0	0	0	0	0	1	0	0	}
	0				0		\mathbf{a}	^			\mathbf{a}	\mathbf{a}	0	1	0	0	0	
	0	0	0	0	0	0	1	0 0 _1		0	0	0	0	0	0	0	1	
	0)	0	0	0	0	0	0	-1,)	0)	0	0	0	0	0	1	0 /	J



bundle^{[i}ddta: Length[14sel], i++, PrintLineModel[14sel[[i]], OutFormat → "full"]]

- Model number 1, Identifier {7862, 4, 3}
- Basic properties

standard model? True massless U(1): 1 number of 5 $\overline{5}$ pairs: 3 $c_2(V) = \{24, 8, 20, 12\}$

V: $(k_a^i) = \begin{pmatrix} -1 & -1 & 0 & 1 & 1 \\ 0 & -3 & 1 & 1 & 1 \\ 0 & 2 & -1 & -1 & 0 \\ 1 & 2 & 0 & -1 & -2 \end{pmatrix}$

Cohomology of V:

L ₂	$= \{-1, -3, 2, 2\}$	$h[L_2] =$	$\{0, 8, 0, 0\}$	h[L ₂ ,R]	=	$\{\{0, 0, 0, 0\}, \{2, 2, 2, 2\}, \{0, 0, 0, 0\}, \{0, 0, 0, 0\}\}$
L_5	$= \{1, 1, 0, -2\}$	h[L ₅] =	$\{0, 4, 0, 0\}$	$h[L_5,R]$	=	$\{\{0, 0, 0, 0\}, \{1, 1, 1, 1\}, \{0, 0, 0, 0\}, \{0, 0, 0, 0\}\}$
$L_2 \times L_4$	$= \{0, -2, 1, 1\}$	$h[L_2 \times L_4] =$	$\{0, 4, 0, 0\}$	$h[L_2 \times L_4, R]$	=	$\{\{0, 0, 0, 0\}, \{1, 1, 1, 1\}, \{0, 0, 0, 0\}, \{0, 0, 0, 0\}\}$
$L_2 \times L_5$	$= \{0, -2, 2, 0\}$	$h[L_2 \times L_5] =$	$\{0, 3, 3, 0\}$	$h[L_2 \times L_5, R]$	=	$\{\{0, 0, 0, 0\}, \{0, 1, 1, 1\}, \{0, 1, 1, 1\}, \{0, 0, 0, 0\}\}$
$L_4 \times L_5$	$= \{2, 2, -1, -3\}$	$h[L_4 \times L_5] =$	$\{0, 8, 0, 0\}$	$h[L_4 \times L_5, R]$	=	$\{\{0, 0, 0, 0\}, \{2, 2, 2, 2\}, \{0, 0, 0, 0\}, \{0, 0, 0, 0\}\}$
$L_1 \times L_2^*$	$= \{0, 3, -2, -1\}$	$h[L_1 \times L_2^*] =$	$\{0, 0, 12, 0\}$	$h[L_1 \times L_2^*, R]$	=	$\{\{0, 0, 0, 0\}, \{0, 0, 0, 0\}, \{3, 3, 3, 3\}, \{0, 0, 0, 0\}\}$
$L_1 \times L_5^*$	$= \{-2, -1, 0, 3\}$	$h[L_1 \times L_5^*] =$	$\{0, 0, 12, 0\}$	$h[L_1 \times L_5^*, R]$	=	$\{\{0, 0, 0, 0\}, \{0, 0, 0, 0\}, \{3, 3, 3, 3\}, \{0, 0, 0, 0\}\}$
$L_2 \times L_3^*$	$= \{-1, -4, 3, 2\}$	$h[L_2 \times L_3^*] =$	$\{0, 20, 0, 0\}$	$h[L_2 \times L_3^*, R]$	=	$\{\{0, 0, 0, 0\}, \{5, 5, 5, 5\}, \{0, 0, 0, 0\}, \{0, 0, 0, 0\}\}$
$L_2 \times L_4^*$	$= \{-2, -4, 3, 3\}$	$h[L_2 \times L_4^*] =$	$\{0, 12, 0, 0\}$	$h[L_2 \times L_4^*, R]$	=	$\{\{0, 0, 0, 0\}, \{3, 3, 3, 3\}, \{0, 0, 0, 0\}, \{0, 0, 0, 0\}\}$
$L_3 \times L_5^*$	$= \{-1, 0, -1, 2\}$	$h[L_3 \times L_5^*] =$	$\{0, 0, 4, 0\}$	$h[L_3 \times L_5^*, R]$	=	$\{\{0, 0, 0, 0\}, \{0, 0, 0, 0\}, \{1, 1, 1, 1\}, \{0, 0, 0, 0\}\}$

Wilson line: $\{\{0, 0\}, \{0, 1\}\}$ Equivariant structure: $\{\{0, 0\}, \{0, 0\}, \{0, 0\}, \{0, 0\}\}$ Higgs pairs: 1

Downstairs spectrum: $\{2 \ 10_2, \ 10_5, \ \overline{5}_{2,4}, \ 2 \ \overline{5}_{4,5}, \ H_{2,5}, \ \overline{H}_{2,5}, \ 3 \ S_{2,1}, \ 3 \ S_{5,1}, \ 5 \ S_{2,3}, \ 3 \ S_{2,4}, \ S_{5,3}\}$ Phys. Higgs: $\{H_{2,5}, \ \overline{H}_{2,5}, \ \overline$

 $rk(Y^{(u)}) = \{2, 2\}$ $rk(Y^{(d)}) = \{0, 0\}$ dim. 4 operators absent: {True, True} dim. 5 operators absent: {True, True}

Operators

basic superpotential terms:

```
\overline{H10^{p}10^{q}}: Y^{(u)} = \begin{pmatrix} (0) & (0) & (1) \\ (0) & (0) & (1) \\ (1) & (1) & (0) \end{pmatrix}\underline{H5^{p}10^{q}} Y^{(d)} = \begin{pmatrix} (0) & (0) & (0) \\ (0) & (0) & (0) \\ (0) & (0) & (0) \end{pmatrix}Saturday, November 23, 2013 0 0 0 0
```

bundle^{[i}ddta: Length[14sel], i++, PrintLineModel[14sel[[i]], OutFormat → "full"]]

- Model number 1, Identifier {7862, 4, 3}
- Basic properties

standard model? True massless U(1): 1 number of 5 $\overline{5}$ pairs: 3 $c_2(V) = \{24, 8, 20, 12\}$

 $V: (K_{a}^{i}) = \begin{pmatrix} -1 & -1 & 0 & 1 & 1 \\ 0 & -3 & 1 & 1 & 1 \\ 0 & 2 & -1 & -1 & 0 \\ 1 & 2 & 0 & -1 & -2 \end{pmatrix} \quad \longleftarrow \text{ integer matrix defining line bundle sum}$

Cohomology of V:

L ₂	$= \{-1, -3, 2, 2\}$	$h[L_2] = \{0, 8, 0, 0\}$	$h[L_2,R] = \{\{0, 0, 0, 0\}, \{2, 2, 2, 2\}, \{0, 0, 0, 0\}, \{0, 0, 0, 0\}\}$
L_5	$= \{1, 1, 0, -2\}$	$h[L_5] = \{0, 4, 0, 0\}$	$h[L_5,R] = \{\{0, 0, 0, 0\}, \{1, 1, 1, 1\}, \{0, 0, 0, 0\}, \{0, 0, 0, 0\}\}$
$L_2 \times L_4$	$= \{0, -2, 1, 1\}$	$h[L_2 \times L_4] = \{0, 4, 0, 0\}$	$h[L_2 \times L_4, R] = \{\{0, 0, 0, 0\}, \{1, 1, 1, 1\}, \{0, 0, 0, 0\}, \{0, 0, 0, 0\}\}$
$L_2 \times L_5$	$= \{0, -2, 2, 0\}$	$h[L_2 \times L_5] = \{0, 3, 3, 0\}$	$h[L_2 \times L_5, R] = \{\{0, 0, 0, 0\}, \{0, 1, 1, 1\}, \{0, 1, 1, 1\}, \{0, 0, 0, 0\}\}$
$L_4 \times L_5$	$= \{2, 2, -1, -3\}$	$h[L_4 \times L_5] = \{0, 8, 0, 0\}$	$h[L_4 \times L_5, R] = \{\{0, 0, 0, 0\}, \{2, 2, 2, 2\}, \{0, 0, 0, 0\}, \{0, 0, 0, 0\}\}$
$L_1 \times L_2^*$	$= \{0, 3, -2, -1\}$	$h[L_1 \times L_2^*] = \{0, 0, 12, 0\}$	$h[L_1 \times L_2^*, R] = \{\{0, 0, 0, 0\}, \{0, 0, 0, 0\}, \{3, 3, 3, 3\}, \{0, 0, 0, 0\}\}$
$L_1 \times L_5^*$	$= \{-2, -1, 0, 3\}$	$h[L_1 \times L_5^*] = \{0, 0, 12, 0\}$	$h[L_1 \times L_5^*, R] = \{\{0, 0, 0, 0\}, \{0, 0, 0, 0\}, \{3, 3, 3, 3\}, \{0, 0, 0, 0\}\}$
$L_2 \times L_3^*$	$= \{-1, -4, 3, 2\}$	$h[L_2 \times L_3^*] = \{0, 20, 0, 0\}$	$h[L_2 \times L_3^*, R] = \{\{0, 0, 0, 0\}, \{5, 5, 5, 5\}, \{0, 0, 0, 0\}, \{0, 0, 0, 0\}\}$
$L_2 \times L_4^*$	$= \{-2, -4, 3, 3\}$	$h[L_2 \times L_4^*] = \{0, 12, 0, 0\}$	$h[L_2 \times {L_4}^*, R] = \{\{0, 0, 0, 0\}, \{3, 3, 3, 3\}, \{0, 0, 0, 0\}, \{0, 0, 0, 0\}\}$
$L_3 \times L_5^*$	$= \{-1, 0, -1, 2\}$	$h[L_3 \times L_5^*] = \{0, 0, 4, 0\}$	$h[L_3 \times L_5^*, R] = \{\{0, 0, 0, 0\}, \{0, 0, 0, 0\}, \{1, 1, 1, 1\}, \{0, 0, 0, 0\}\}$

Wilson line: $\{\{0, 0\}, \{0, 1\}\}$ Equivariant structure: $\{\{0, 0\}, \{0, 0\}, \{0, 0\}, \{0, 0\}\}$ Higgs pairs: 1

Downstairs spectrum: $\{2 \ 10_2, \ 10_5, \ \overline{5}_{2,4}, \ 2 \ \overline{5}_{4,5}, \ H_{2,5}, \ \overline{H}_{2,5}, \ 3 \ S_{2,1}, \ 3 \ S_{5,1}, \ 5 \ S_{2,3}, \ 3 \ S_{2,4}, \ S_{5,3}\}$ Phys. Higgs: $\{H_{2,5}, \ \overline{H}_{2,5}, \ \overline$

 $rk(Y^{(u)}) = \{2, 2\}$ $rk(Y^{(d)})) = \{0, 0\}$ dim. 4 operators absent: {True, True} dim. 5 operators absent: {True, True}

Operators

basic superpotential terms:

```
\overline{H10^{p}10^{q}}; Y^{(u)} = \begin{pmatrix} (0) & (0) & (1) \\ (0) & (0) & (1) \\ (1) & (1) & (0) \end{pmatrix}\underline{H5^{p}10^{q}; Y^{(d)}}_{(0) & (0) & (0)} = \begin{pmatrix} (0) & (0) & (0) \\ (0) & (0) & (0) \\ (0) & (0) & (0) \end{pmatrix}Saturday, November 23, 2013 0) (0) (0)
```

bundle^{[i}ddta: Length[14sel], i++, PrintLineModel[14sel[[i]], OutFormat → "full"]]

- Model number 1, Identifier {7862, 4, 3}
- Basic properties

standard model? True massless U(1): 1 number of 5 $\overline{5}$ pairs: 3 $c_2(V) = \{24, 8, 20, 12\}$

 $V: (k_a^i) = \begin{pmatrix} -1 & -1 & 0 & 1 & 1 \\ 0 & -3 & 1 & 1 & 1 \\ 0 & 2 & -1 & -1 & 0 \\ 1 & 2 & 0 & -1 & -2 \end{pmatrix} \quad \longleftarrow \text{ integer matrix defining line bundle sum}$

Cohomology of V:

L_2	$= \{-1, -3, 2, 2\}$	h[L ₂] =	$\{0, 8, 0, 0\}$	$h[L_2,R]$	=	$\{\{0, 0, 0, 0\}, \{2, 2, 2, 2\}, \{0, 0, 0, 0\}, \{0, 0, 0, 0\}\}$
L_5	$= \{1, 1, 0, -2\}$	h[L ₅] =	$\{0, 4, 0, 0\}$	$h[L_5,R]$	=	$\{\{0, 0, 0, 0\}, \{1, 1, 1, 1\}, \{0, 0, 0, 0\}, \{0, 0, 0, 0\}\}$
$L_2 \times L_4$	$= \{0, -2, 1, 1\}$	$h[L_2 \times L_4] =$	$\{0, 4, 0, 0\}$	$h[L_2 \times L_4, R]$	=	$\{\{0, 0, 0, 0\}, \{1, 1, 1, 1\}, \{0, 0, 0, 0\}, \{0, 0, 0, 0\}\}$
$L_2 \times L_5$	$= \{0, -2, 2, 0\}$	$h[L_2 \times L_5] =$	$\{0, 3, 3, 0\}$	$h[L_2 \times L_5, R]$	=	$\{\{0, 0, 0, 0\}, \{0, 1, 1, 1\}, \{0, 1, 1, 1\}, \{0, 0, 0, 0\}\}$
$L_4 \times L_5$	$= \{2, 2, -1, -3\}$	$h[L_4 \times L_5] =$	$\{0, 8, 0, 0\}$	$h[L_4 \times L_5, R]$	=	$\{\{0, 0, 0, 0\}, \{2, 2, 2, 2\}, \{0, 0, 0, 0\}, \{0, 0, 0, 0\}\}$
$L_1 \times L_2^*$	$= \{0, 3, -2, -1\}$	$h[L_1 \times L_2^*] =$	$\{0, 0, 12, 0\}$	$h[L_1 \times L_2^*, R]$	=	$\{\{0, 0, 0, 0\}, \{0, 0, 0, 0\}, \{3, 3, 3, 3\}, \{0, 0, 0, 0\}\}$
$L_1 \times L_5^*$	$= \{-2, -1, 0, 3\}$	$h[L_1 \times L_5^*] =$	$\{0, 0, 12, 0\}$	$h[L_1 \times L_5^*, R]$	=	$\{\{0, 0, 0, 0\}, \{0, 0, 0, 0\}, \{3, 3, 3, 3\}, \{0, 0, 0, 0\}\}$
$L_2 \times L_3^*$	$= \{-1, -4, 3, 2\}$	$h[L_2 \times L_3^*] =$	$\{0, 20, 0, 0\}$	$h[L_2 \times L_3^*, R]$	=	$\{\{0, 0, 0, 0\}, \{5, 5, 5, 5\}, \{0, 0, 0, 0\}, \{0, 0, 0, 0\}\}$
$L_2 \times L_4^*$	$= \{-2, -4, 3, 3\}$	$h[L_2 \times L_4^*] =$	$\{0, 12, 0, 0\}$	$h[L_2 \times L_4^*, R]$	=	$\{\{0, 0, 0, 0\}, \{3, 3, 3, 3\}, \{0, 0, 0, 0\}, \{0, 0, 0, 0\}\}$
$L_3 \times L_5^*$	$= \{-1, 0, -1, 2\}$	$h[L_3 \times L_5^*] =$	$\{0,0,4,0\}$	$h[L_3 \times L_5^*, R]$	=	$\{\{0, 0, 0, 0\}, \{0, 0, 0, 0\}, \{1, 1, 1, 1\}, \{0, 0, 0, 0\}\}$

Wilson line: {{0, 0}, {0, 1}} Equivariant structure: {{0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}} Higgs pairs: 1

Downstairs spectrum: $\{2 \ 10_2, \ 10_5, \ \overline{5}_{2,4}, \ 2 \ \overline{5}_{4,5}, \ H_{2,5}, \ \overline{H}_{2,5}, \ 3 \ S_{2,1}, \ 3 \ S_{5,1}, \ 5 \ S_{2,3}, \ 3 \ S_{2,4}, \ S_{5,3}\}$ Phys. Higgs: $\{H_{2,5}, \ \overline{H}_{2,5}, \ \overline$

 $rk(Y^{(u)}) = \{2, 2\}$ $rk(Y^{(d)})) = \{0, 0\}$ dim 4 operators absent: {True, True} dim. 5 operators absent: {True, True}

Operators

basic superpotential terms: Spectrum: 10₂, 10₂, 10₅, $\overline{5}_{2,4}$, $\overline{5}_{4,5}$, $\overline{5}_{4,5}$, $H_{2,5}$, $\overline{H}_{2,5}$ $\overline{H}_{10^{p}10^{q}}$: Y^(u) = $\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$ H $\overline{5}^{p}_{10^{q}}$: Y^(d) = $\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ Saturday, November 23, 2013 0, 0 (0) (0)

Operators

basic superpotential terms:

 $\overline{H10^{p}10^{q}}: Y^{(u)} = \begin{pmatrix} (0) & (0) & (1) \\ (0) & (0) & (1) \\ (1) & (1) & (0) \end{pmatrix}$ $H\overline{5}^{p}10^{q}: Y^{(d)} = \begin{pmatrix} (0) & (0) & (0) \\ (0) & (0) & (0) \\ (0) & (0) & (0) \end{pmatrix}$

 $H\overline{H}: \ \mu = \{1\}$

$$W_{sing} = \{0\}$$

R-parity violating terms in superpotential:

$$\overline{\mathsf{H}}\mathsf{L}^{\mathsf{p}}: \ \rho = \begin{pmatrix} \mathsf{0} \\ \mathsf{S}_{2,4} \\ \mathsf{S}_{2,4} \end{pmatrix}$$

Dimension 5 operators in superpotential:

$$\begin{aligned} \text{FI-terms: } & k^{i}{}_{a}\kappa_{i} = \begin{pmatrix} 4t_{1}t_{2} + 4t_{1}t_{3} - 4t_{2}t_{4} - 4t_{3}t_{4} \\ 16t_{1}t_{2} - 4t_{1}t_{3} + 4t_{2}t_{3} - 4t_{1}t_{4} + 4t_{2}t_{4} - 16t_{3}t_{4} \\ -4t_{1}t_{2} + 4t_{1}t_{3} - 4t_{2}t_{4} + 4t_{3}t_{4} \\ -8t_{1}t_{2} + 8t_{3}t_{4} \\ -8t_{1}t_{2} - 4t_{1}t_{3} - 4t_{2}t_{3} + 4t_{1}t_{4} + 4t_{2}t_{4} + 8t_{3}t_{4} \end{pmatrix} \end{aligned}$$
$$\begin{aligned} \text{singlet D-terms: } & q_{\alpha a}S^{\alpha}\overline{S}^{\overline{\beta}} = \begin{pmatrix} -S_{2,1}S^{\dagger}_{2,1} - S_{5,1}S^{\dagger}_{5,1} \\ S_{2,1}S^{\dagger}_{2,1} - S_{5,3}S^{\dagger}_{2,3} + S_{2,4}S^{\dagger}_{2,4} \\ -S_{2,3}S^{\dagger}_{2,3} - S_{5,3}S^{\dagger}_{5,3} \\ -S_{2,4}S^{\dagger}_{2,4} \\ S_{5,1}S^{\dagger}_{5,1} + S_{5,3}S^{\dagger}_{5,3} \end{pmatrix} \end{aligned}$$

Operators

basic superpotential terms:

$$W_{sing} = \{0\}$$

R-parity violating terms in superpotential:

$$\overline{\mathsf{H}}\mathsf{L}^{\mathsf{p}}: \ \rho = \begin{pmatrix} \mathsf{0} \\ \mathsf{S}_{2,4} \\ \mathsf{S}_{2,4} \end{pmatrix}$$

Dimension 5 operators in superpotential:

$$\begin{aligned} \text{FI-terms: } & k^{i}{}_{a}\kappa_{i} = \begin{pmatrix} 4t_{1}t_{2} + 4t_{1}t_{3} - 4t_{2}t_{4} - 4t_{3}t_{4} \\ 16t_{1}t_{2} - 4t_{1}t_{3} + 4t_{2}t_{3} - 4t_{1}t_{4} + 4t_{2}t_{4} - 16t_{3}t_{4} \\ -4t_{1}t_{2} + 4t_{1}t_{3} - 4t_{2}t_{4} + 4t_{3}t_{4} \\ -8t_{1}t_{2} + 8t_{3}t_{4} \\ -8t_{1}t_{2} - 4t_{1}t_{3} - 4t_{2}t_{3} + 4t_{1}t_{4} + 4t_{2}t_{4} + 8t_{3}t_{4} \end{pmatrix} \end{aligned}$$
$$\begin{aligned} \text{singlet D-terms: } & q_{\alpha a}S^{\alpha}\overline{S}^{\overline{\beta}} = \begin{pmatrix} -S_{2,1}S^{\dagger}_{2,1} - S_{5,1}S^{\dagger}_{5,1} \\ S_{2,1}S^{\dagger}_{2,1} - S_{5,3}S^{\dagger}_{2,3} + S_{2,4}S^{\dagger}_{2,4} \\ -S_{2,3}S^{\dagger}_{2,3} - S_{5,3}S^{\dagger}_{5,3} \\ -S_{2,4}S^{\dagger}_{2,4} \\ S_{5,1}S^{\dagger}_{5,1} + S_{5,3}S^{\dagger}_{5,3} \end{pmatrix} \end{aligned}$$

Operators

basic superpotential terms:

$$\overline{H}10^{p}10^{q}: Y^{(u)} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \quad \longleftarrow \quad rank 2$$
$$H\overline{5}^{p}10^{q}: Y^{(d)} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad \longleftarrow \quad rank 0$$

 $H\overline{H}: \ \mu = \{1\}$

 $W_{sing} = \{0\}$

R-parity violating terms in superpotential:

$$\overline{\mathsf{H}}\mathsf{L}^{\mathsf{p}}: \ \rho = \begin{pmatrix} \mathsf{0} \\ \mathsf{S}_{2,4} \\ \mathsf{S}_{2,4} \end{pmatrix}$$

Dimension 5 operators in superpotential:

$$\begin{aligned} \text{FI-terms: } & k^{i}{}_{a}\kappa_{i} = \begin{pmatrix} 4t_{1}t_{2} + 4t_{1}t_{3} - 4t_{2}t_{4} - 4t_{3}t_{4} \\ 16t_{1}t_{2} - 4t_{1}t_{3} + 4t_{2}t_{3} - 4t_{1}t_{4} + 4t_{2}t_{4} - 16t_{3}t_{4} \\ -4t_{1}t_{2} + 4t_{1}t_{3} - 4t_{2}t_{4} + 4t_{3}t_{4} \\ -8t_{1}t_{2} + 8t_{3}t_{4} \\ -8t_{1}t_{2} - 4t_{1}t_{3} - 4t_{2}t_{3} + 4t_{1}t_{4} + 4t_{2}t_{4} + 8t_{3}t_{4} \end{pmatrix} \end{aligned}$$
$$\begin{aligned} \text{singlet D-terms: } & q_{\alpha a}S^{\alpha}\overline{S}^{\overline{\beta}} = \begin{pmatrix} -S_{2,1}S^{\dagger}_{2,1} - S_{5,1}S^{\dagger}_{5,1} \\ S_{2,1}S^{\dagger}_{2,1} + S_{2,3}S^{\dagger}_{2,3} + S_{2,4}S^{\dagger}_{2,4} \\ -S_{2,3}S^{\dagger}_{2,3} - S_{5,3}S^{\dagger}_{5,3} \\ -S_{2,4}S^{\dagger}_{2,4} \\ S_{5,1}S^{\dagger}_{5,1} + S_{5,3}S^{\dagger}_{5,3} \end{pmatrix} \end{aligned}$$

Operators

basic superpotential terms:

 $\overline{H}10^{p}10^{q}: Y^{(u)} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \quad \longleftarrow \text{ rank 2}$ $H\overline{5}^{p}10^{q}: Y^{(d)} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad \longleftarrow \text{ rank 0}$ $H\overline{H}: \mu = \{1\} \quad \longleftarrow \quad \mu \text{ -term vanishes}$ $W_{\text{sing}} = \{0\}$

R-parity violating terms in superpotential:

$$\overline{\mathsf{H}}\mathsf{L}^{\mathsf{p}}: \ \rho = \begin{pmatrix} \mathsf{0} \\ \mathsf{S}_{2,4} \\ \mathsf{S}_{2,4} \end{pmatrix}$$

Dimension 5 operators in superpotential:

$$\begin{aligned} \text{FI-terms: } & k^{i}{}_{a}\kappa_{i} = \begin{pmatrix} 4t_{1}t_{2} + 4t_{1}t_{3} - 4t_{2}t_{4} - 4t_{3}t_{4} \\ 16t_{1}t_{2} - 4t_{1}t_{3} + 4t_{2}t_{3} - 4t_{1}t_{4} + 4t_{2}t_{4} - 16t_{3}t_{4} \\ -4t_{1}t_{2} + 4t_{1}t_{3} - 4t_{2}t_{4} + 4t_{3}t_{4} \\ -8t_{1}t_{2} + 8t_{3}t_{4} \\ -8t_{1}t_{2} - 4t_{1}t_{3} - 4t_{2}t_{3} + 4t_{1}t_{4} + 4t_{2}t_{4} + 8t_{3}t_{4} \end{pmatrix} \end{aligned}$$
$$\begin{aligned} \text{singlet D-terms: } & q_{\alpha a}S^{\alpha}\overline{S}^{\overline{\beta}} = \begin{pmatrix} -S_{2,1}S^{\dagger}_{2,1} - S_{5,1}S^{\dagger}_{5,1} \\ S_{2,1}S^{\dagger}_{2,1} - S_{5,3}S^{\dagger}_{2,3} + S_{2,4}S^{\dagger}_{2,4} \\ -S_{2,3}S^{\dagger}_{2,3} - S_{5,3}S^{\dagger}_{5,3} \\ -S_{2,4}S^{\dagger}_{2,4} \\ S_{5,1}S^{\dagger}_{5,1} + S_{5,3}S^{\dagger}_{5,3} \end{pmatrix} \end{aligned}$$

Operators

basic superpotential terms:

 $\overline{H}10^{p}10^{q}: Y^{(u)} = \begin{pmatrix} (0) & (0) & (1) \\ (0) & (0) & (1) \\ (1) & (1) & (0) \end{pmatrix} \quad \text{rank 2}$ $H\overline{5}^{p}10^{q}: Y^{(d)} = \begin{pmatrix} (0) & (0) & (0) \\ (0) & (0) & (0) \\ (0) & (0) & (0) \end{pmatrix} \quad \text{rank 0}$ $H\overline{H}: \mu = \{1\} \quad \checkmark \quad \mu \text{-term vanishes}$ $W_{sing} = \{0\}$

R-parity violating terms in superpotential:

$\overline{HL}^{p}: \rho = \begin{pmatrix} 0 \\ S_{2,4} \\ S_{2,4} \end{pmatrix} \quad \leftarrow \text{zero for } \langle \mathbf{1}_{2,4} \rangle = 0, \text{ non-zero otherwise}$

Dimension 5 operators in superpotential:

$$\begin{aligned} \text{FI-terms: } k^{i}{}_{a}\kappa_{i} &= \begin{pmatrix} 4t_{1}t_{2}+4t_{1}t_{3}-4t_{2}t_{4}-4t_{3}t_{4} \\ 16t_{1}t_{2}-4t_{1}t_{3}+4t_{2}t_{3}-4t_{1}t_{4}+4t_{2}t_{4}-16t_{3}t_{4} \\ -4t_{1}t_{2}+4t_{1}t_{3}-4t_{2}t_{4}+4t_{3}t_{4} \\ -8t_{1}t_{2}-8t_{3}t_{4} \\ -8t_{1}t_{2}-4t_{1}t_{3}-4t_{2}t_{3}+4t_{1}t_{4}+4t_{2}t_{4}+8t_{3}t_{4} \end{pmatrix} \end{aligned}$$

$$\begin{aligned} \text{singlet D-terms: } q_{\alpha a}S^{\alpha}\overline{S}^{\overline{\beta}} &= \begin{pmatrix} -S_{2,1}S^{\dagger}_{2,1}-S_{5,1}S^{\dagger}_{5,1} \\ S_{2,1}S^{\dagger}_{2,1}+S_{2,3}S^{\dagger}_{2,3}+S_{2,4}S^{\dagger}_{2,4} \\ -S_{2,3}S^{\dagger}_{2,3}-S_{5,3}S^{\dagger}_{5,3} \\ -S_{2,4}S^{\dagger}_{2,4} \\ S_{5,1}S^{\dagger}_{5,1}+S_{5,3}S^{\dagger}_{5,3} \end{pmatrix} \end{aligned}$$

Operators

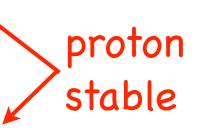
basic superpotential terms:

 $\overline{H}10^{p}10^{q}: Y^{(u)} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \quad \longleftarrow \text{ rank 2}$ $H\overline{5}^{p}10^{q}: Y^{(d)} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad \longleftarrow \text{ rank 0}$ $H\overline{H}: \mu = \{1\} \quad \longleftarrow \mu \text{ -term vanishes}$ $W_{\text{sing}} = \{0\}$

R-parity violating terms in superpotential:

$\overline{HL}^{p}: \rho = \begin{pmatrix} 0 \\ S_{2,4} \\ S_{2,4} \end{pmatrix} \quad \leftarrow \text{ zero for } \langle \mathbf{1}_{2,4} \rangle = 0, \text{ non-zero otherwise}$

Dimension 5 operators in superpotential:



$$FI-terms: \ k^{i}{}_{a}\kappa_{i} = \begin{pmatrix} 4t_{1}t_{2} + 4t_{1}t_{3} - 4t_{2}t_{4} - 4t_{3}t_{4} \\ 16t_{1}t_{2} - 4t_{1}t_{3} + 4t_{2}t_{3} - 4t_{1}t_{4} + 4t_{2}t_{4} - 16t_{3}t_{4} \\ -4t_{1}t_{2} + 4t_{1}t_{3} - 4t_{2}t_{4} + 4t_{3}t_{4} \\ -8t_{1}t_{2} + 8t_{3}t_{4} \\ -8t_{1}t_{2} - 4t_{1}t_{3} - 4t_{2}t_{3} + 4t_{1}t_{4} + 4t_{2}t_{4} + 8t_{3}t_{4} \end{pmatrix}$$

singlet D-terms:
$$q_{\alpha a}S^{\alpha}\overline{S}^{\beta} = \begin{pmatrix} -S_{2,1}S^{\dagger}_{2,1} - S_{5,1}S^{\dagger}_{5,1} \\ S_{2,1}S^{\dagger}_{2,1} + S_{2,3}S^{\dagger}_{2,3} + S_{2,4}S^{\dagger}_{2,4} \\ -S_{2,3}S^{\dagger}_{2,3} - S_{5,3}S^{\dagger}_{5,3} \\ -S_{2,4}S^{\dagger}_{2,4} \\ S_{5,1}S^{\dagger}_{5,1} + S_{5,3}S^{\dagger}_{5,3} \end{pmatrix}$$

Superpot. for example: $W = \lambda_i \overline{H}_{2,5}(Q_2^{(i)}u_5 + Q_5u_2^{(i)}) + \rho_{\alpha i}\mathbf{1}_{2,4}^{(\alpha)}L_{4,5}^{(i)}\overline{H}_{2,5}$

Singlets for example: $3\mathbf{1}_{2,1}, 3\mathbf{1}_{5,1}, 5\mathbf{1}_{2,3}, 3\mathbf{1}_{2,4}, \mathbf{1}_{5,3}$

Superpot. for example: $W = \lambda_i \overline{H}_{2,5}(Q_2^{(i)}u_5 + Q_5u_2^{(i)}) + \rho_{\alpha i}\mathbf{1}_{2,4}^{(\alpha)}L_{4,5}^{(i)}\overline{H}_{2,5}$

Singlets for example: $3\mathbf{1}_{2,1}, 3\mathbf{1}_{5,1}, 5\mathbf{1}_{2,3}, 3\mathbf{1}_{2,4}, \mathbf{1}_{5,3}$

Suggests: massless Higgs doublet pair throughout moduli space as long as $\langle {\bf 1}^\alpha_{2,4}\rangle=0$.

Superpot. for example: $W = \lambda_i \overline{H}_{2,5}(Q_2^{(i)}u_5 + Q_5u_2^{(i)}) + \rho_{\alpha i}\mathbf{1}_{2,4}^{(\alpha)}L_{4,5}^{(i)}\overline{H}_{2,5}$

Singlets for example: $3\mathbf{1}_{2,1}, 3\mathbf{1}_{5,1}, 5\mathbf{1}_{2,3}, 3\mathbf{1}_{2,4}, \mathbf{1}_{5,3}$

Suggests: massless Higgs doublet pair throughout moduli space as long as $\langle {\bf 1}^\alpha_{2,4}\rangle=0$.

What happens to bundle when singlets are switched on?

• All singlet VEVs non-zero: $V = \bigoplus_{a=1}^{5} L_a \to \tilde{V}$ $S(U(1)^5) \to SU(5)$

Superpot. for example: $W = \lambda_i \overline{H}_{2,5}(Q_2^{(i)}u_5 + Q_5u_2^{(i)}) + \rho_{\alpha i}\mathbf{1}_{2,4}^{(\alpha)}L_{4,5}^{(i)}\overline{H}_{2,5}$

Singlets for example: $3\mathbf{1}_{2,1}, 3\mathbf{1}_{5,1}, 5\mathbf{1}_{2,3}, 3\mathbf{1}_{2,4}, \mathbf{1}_{5,3}$

Suggests: massless Higgs doublet pair throughout moduli space as long as $\langle {\bf 1}^\alpha_{2,4}\rangle=0$.

What happens to bundle when singlets are switched on?

• All singlet VEVs non-zero: $V = \bigoplus_{a=1}^{5} L_a \to \tilde{V}$ $S(U(1)^5) \to SU(5)$

• $\langle \mathbf{1}_{2,4} \rangle = 0$, others non-zero: $V = \bigoplus_{a=1}^5 L_a \to \tilde{V} = U \oplus L_4$ $S(U(1)^5) \to SU(4) \times U_X(1)$

Superpot. for example: $W = \lambda_i \overline{H}_{2,5}(Q_2^{(i)}u_5 + Q_5u_2^{(i)}) + \rho_{\alpha i}\mathbf{1}_{2,4}^{(\alpha)}L_{4,5}^{(i)}\overline{H}_{2,5}$

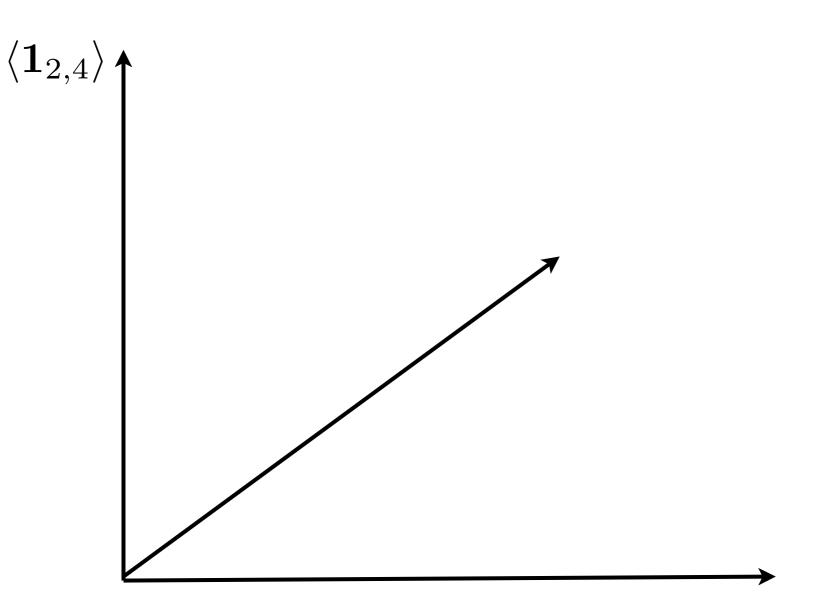
Singlets for example: $3\mathbf{1}_{2,1}, 3\mathbf{1}_{5,1}, 5\mathbf{1}_{2,3}, 3\mathbf{1}_{2,4}, \mathbf{1}_{5,3}$

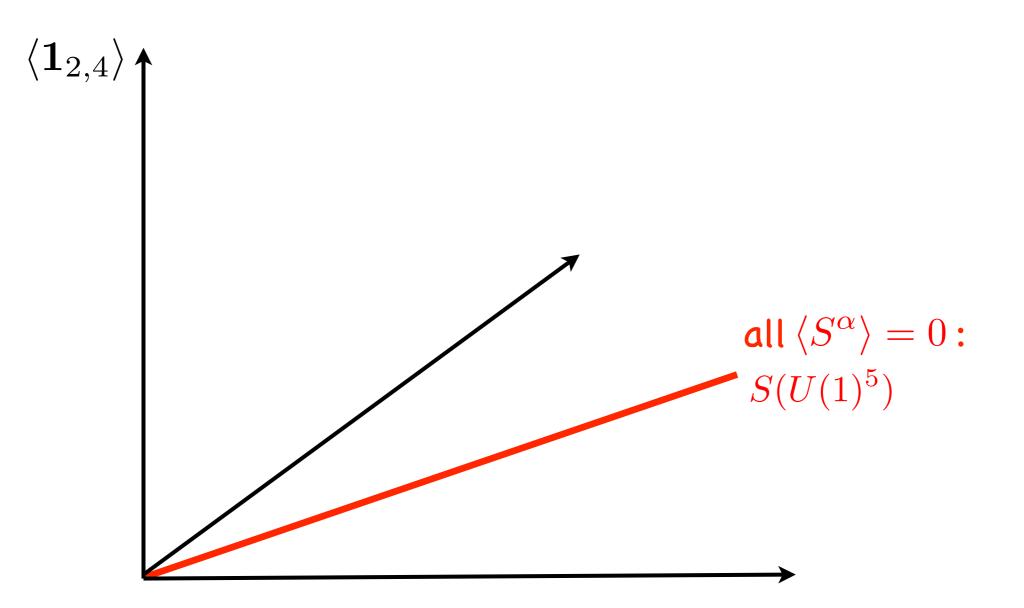
Suggests: massless Higgs doublet pair throughout moduli space as long as $\langle {\bf 1}^\alpha_{2,4}\rangle=0$.

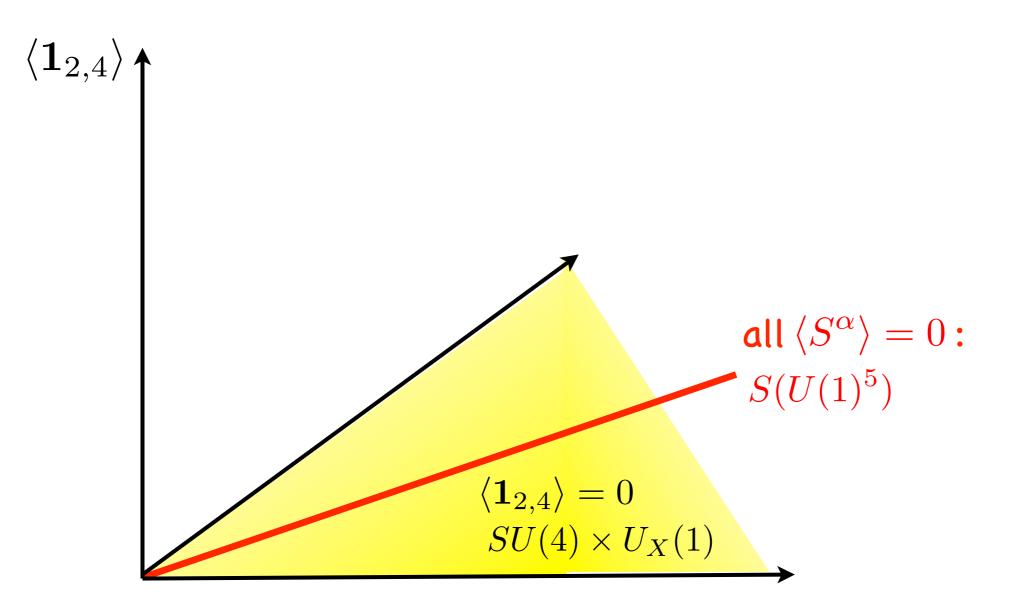
What happens to bundle when singlets are switched on?

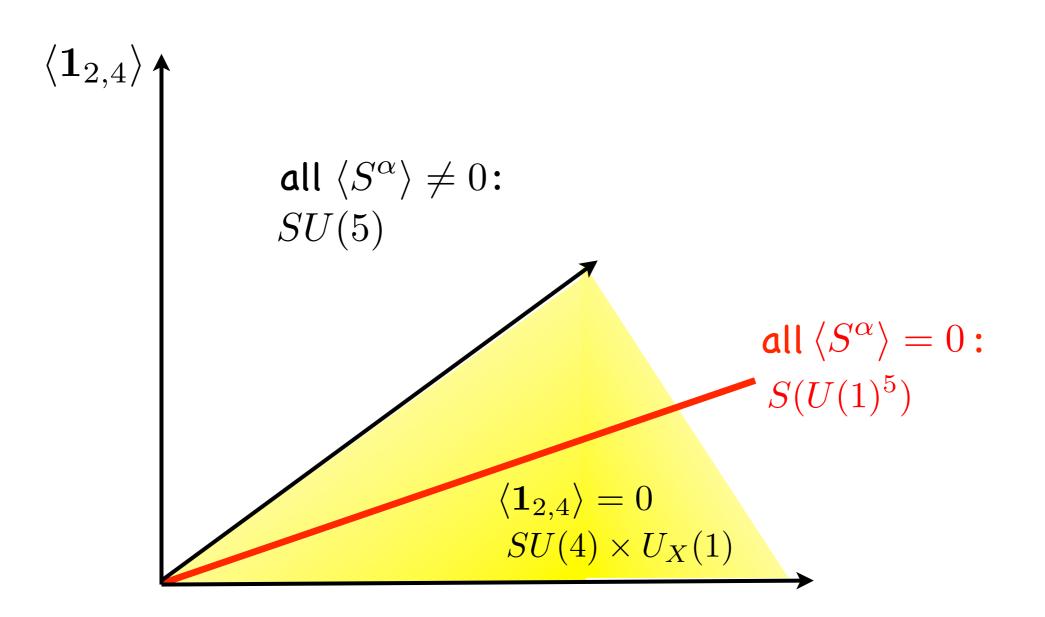
• All singlet VEVs non-zero: $V = \bigoplus_{a=1}^{5} L_a \to \tilde{V}$ $S(U(1)^5) \to SU(5)$

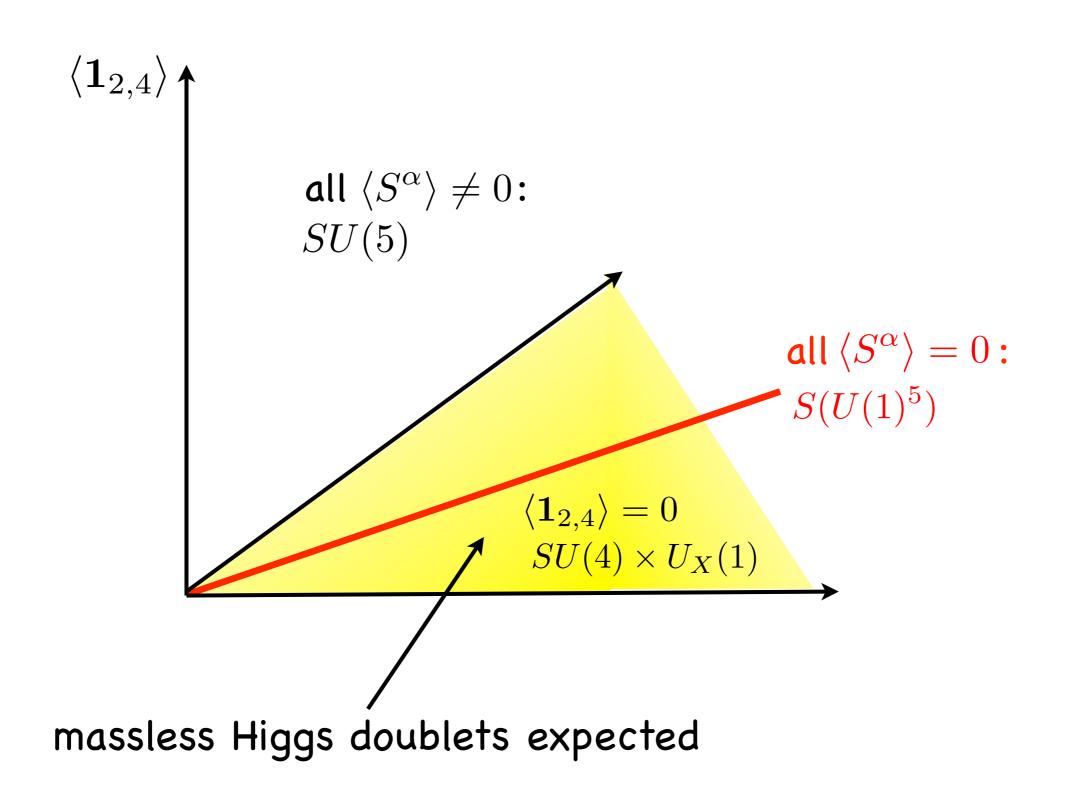
• $\langle \mathbf{1}_{2,4} \rangle = 0$, others non-zero: $V = \bigoplus_{a=1}^{5} L_a \to \tilde{V} = U \oplus L_4$ $S(U(1)^5) \to SU(4) \times U_X(1)$ $U_{B-L}(1)$











Check fate of Higgs by constructing non-Abelian bundle

Recall: $L_1 = \mathcal{O}_X(-1,0,0,1)$, $L_2 = \mathcal{O}_X(-1,-3,2,2)$, $L_3 = \mathcal{O}_X(0,1,-1,0)$ $L_4 = \mathcal{O}_X(1,1,-1,-1)$, $L_5 = \mathcal{O}_X(1,1,0,-2)$ Check fate of Higgs by constructing non-Abelian bundle

Recall:
$$L_1 = \mathcal{O}_X(-1,0,0,1)$$
, $L_2 = \mathcal{O}_X(-1,-3,2,2)$, $L_3 = \mathcal{O}_X(0,1,-1,0)$
 $L_4 = \mathcal{O}_X(1,1,-1,-1)$, $L_5 = \mathcal{O}_X(1,1,0,-2)$

1) Extension bundles

For $V_1 = L_2 \oplus L_5, \ V_2 = L_1 \oplus L_3 \oplus L_4$ define extension

$$0 \longrightarrow V_1 \longrightarrow \tilde{V} \longrightarrow V_2 \longrightarrow 0$$

Check fate of Higgs by constructing non-Abelian bundle

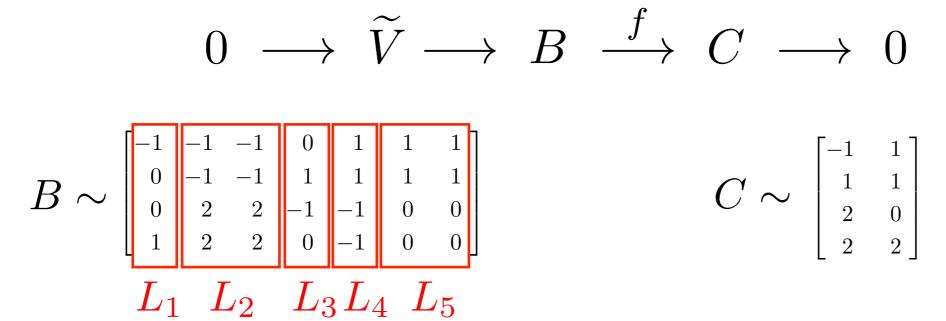
Recall:
$$L_1 = \mathcal{O}_X(-1,0,0,1)$$
, $L_2 = \mathcal{O}_X(-1,-3,2,2)$, $L_3 = \mathcal{O}_X(0,1,-1,0)$
 $L_4 = \mathcal{O}_X(1,1,-1,-1)$, $L_5 = \mathcal{O}_X(1,1,0,-2)$

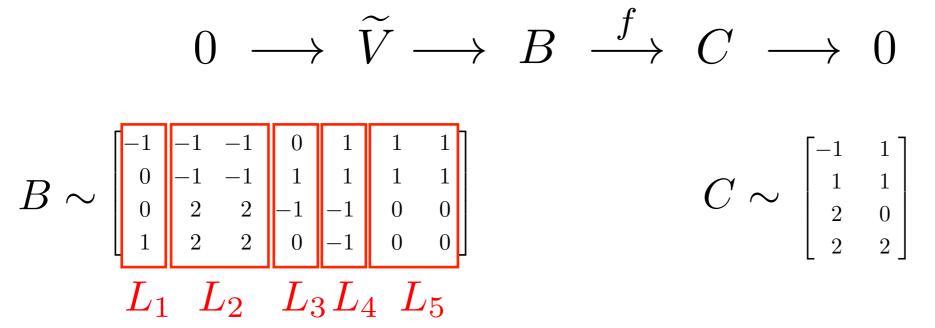
1) Extension bundles

For $V_1 = L_2 \oplus L_5, \ V_2 = L_1 \oplus L_3 \oplus L_4$ define extension

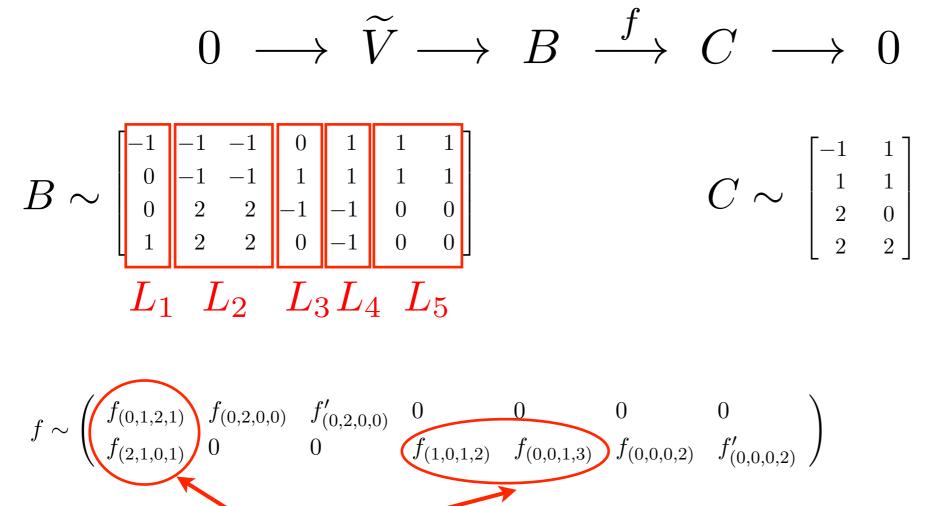
$$0 \longrightarrow V_1 \longrightarrow \tilde{V} \longrightarrow V_2 \longrightarrow 0$$

Compute
$$\#\mathbf{5} = h^2(X, \wedge^2 \tilde{V}) = \begin{cases} 3 & \text{for} \quad \langle \mathbf{1}_{2,4} \rangle = 0 \\ 0 & \text{for} \quad \langle \mathbf{1}_{2,4} \rangle \neq 0 \end{cases}$$

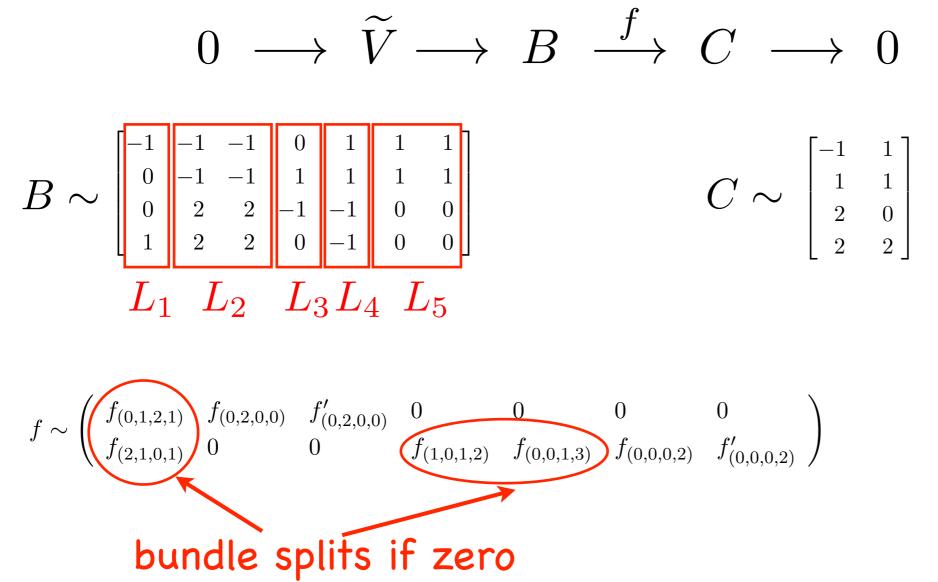




$$f \sim \left(\begin{array}{ccccc} f_{(0,1,2,1)} & f_{(0,2,0,0)} & f_{(0,2,0,0)}' & 0 & 0 & 0 \\ f_{(2,1,0,1)} & 0 & 0 & f_{(1,0,1,2)} & f_{(0,0,1,3)} & f_{(0,0,0,2)} & f_{(0,0,0,2)}' \end{array}\right)$$



bundle splits if zero



We can show for $\langle \mathbf{1}_{2,4} \rangle = 0$, $\tilde{V} = U \oplus L_4$:

• bundle \tilde{V} is supersymmetric

•
$$\#\mathbf{5} = h^2(X, \wedge^2 \tilde{V}) = 3$$

Features of the $SU(4) \times U_X(1)$ model:

- $U_X(1) \longrightarrow U_{B-L}(1)$
- μ -term forbidden
- dangerous dim. 4 terms forbidden by $U_{B-L}(1)$
- $\bullet~\overline{5}\,10\,10\,10$ operators still absent, due to existence of line bundle locus

Conclusions and outlook

- We can "mass-produce" heterotic CY standard models from line bundles. 2000 models have been found from 200 GUT models.
- We have found all viable line bundle GUT models on favourable Cicys with freely-acting symmetries: 35000 models
- These models will lead to a large number of standard models which will form the starting point for a detailed phenom. analysis.
- Higgs can be kept light away from the line bundle locus.
- We can study the non-Abelian continuation of line bundle models: "Unexpected" absences of operators due to line bundle locus.
- What is the total number of string standard models?

Conclusions and outlook

- We can "mass-produce" heterotic CY standard models from line bundles. 2000 models have been found from 200 GUT models.
- We have found all viable line bundle GUT models on favourable Cicys with freely-acting symmetries: 35000 models
- These models will lead to a large number of standard models which will form the starting point for a detailed phenom. analysis.
- Higgs can be kept light away from the line bundle locus.
- We can study the non-Abelian continuation of line bundle models: "Unexpected" absences of operators due to line bundle locus.
- What is the total number of string standard models?

Thanks