Vortex counting in vortex worldsheet theory

Toshiaki Fujimori (National Taiwan University)

JHEP 06 (2012) 028 (arXiv:1204.1968 [hep-th]) and work in progress

Taro Kimura	(CEA Saclay)
Muneto Nitta	(Keio University)
Keisuke Ohashi	(Osaka City University)

1. Introduction

Similarity between 2d and 4d gauge theories

 generation of mass gap, asymptotically free, anomaly ...instantons : non-perturbative effects

4d theory

- Yang-Mills instanton

2d models are "toy modesl" of 4d gauge theories

Lessons on 4d instantons from 2d vortices

relation between 4d instanton and 2d vortex counting

- supersymmetry \cdots smilarities \square exact relations

4d U(N) gauge theory
 +N fund. hypers

D4: 4d theory

- root of Higgs branch

$$
\vec{a}=\vec{m}
$$

> 2d U(k) gauge theory one ad. + N find. chirals

D2: 2d theory

DO: YM instantons
= vortex on vortex string

relation between 4 d instanton and 2 d vortex counting

$$
Z_{4 d}\left(\vec{a}=\vec{m}-\epsilon_{1} \vec{k}, \tau\right)=A Z_{2 d}(\vec{m}, \vec{k}, \tau)
$$

- ϵ_{i} : Omega deformation parameters
- \vec{k} : magnetic flux of vortex strings

$$
\frac{1}{2 \pi} \int F=\vec{H} \cdot \vec{k}
$$

$$
\widetilde{\mathcal{W}}_{\vec{k}}-\widetilde{\mathcal{W}}_{\vec{k}^{\prime}}=\lim _{\epsilon_{2} \rightarrow 0}\left(-\frac{\epsilon_{2}}{2 \pi} \log \frac{Z_{4 d, \vec{a}=\vec{m}-\epsilon_{1} \vec{k}}}{Z_{4 d, \vec{a}=\vec{m}-\epsilon_{1} \vec{k}^{\prime}}}\right)
$$

[Chen-Dorey-Hollowood-Lee, 2011]

- $\epsilon_{1,2} \rightarrow 0$ limit

$$
\lim _{\epsilon_{1} \rightarrow 0}\left(\widetilde{\mathcal{W}}_{\vec{k}}-\widetilde{\mathcal{W}}_{\vec{k}^{\prime}}\right)=-\frac{1}{2 \pi}\left(\vec{k}-\vec{k}^{\prime}\right) \cdot \frac{\partial}{\partial \vec{a}} \mathcal{F}
$$

- exact correspondence of 2d kink and 4d monopole masses [Dorey, 1998]

2. Vortex partition function

2d Omega deformation

dimensional reduction from 4d

$$
d s^{2}=|d z-i z(\epsilon d w+\bar{\epsilon} d \bar{w})|^{2}+\underline{|d w|^{2} \longleftarrow \text { two torus }}
$$

- background connections for R- and flavor symemtries

$$
\begin{aligned}
& V_{i} d x^{i}=-\frac{1}{2}(\epsilon d w+\bar{\epsilon} d \bar{w}) \quad \text { Killing spinors }\left(\nabla_{i}-i V_{i}\right) \epsilon=0 \\
& A_{i}^{a} d x^{i}=m^{a} d w+\bar{m}^{a} d \bar{w} \square \text { twisted mass }^{\text {tw }}
\end{aligned}
$$

- The form of the SUSY transformations are the same as $4 \mathrm{~d} \mathrm{~N}=1$

$$
\mathcal{Q}^{2}=\epsilon\left(J-\frac{1}{2} R\right)+m_{a} F_{a}, \quad \mathcal{Q}^{2} V=\mathcal{Q} I=0
$$

$Z=\int[\mathcal{D} \varphi] \exp (-\mathcal{Q} V+I) \quad \cdots$ invariant under deformations of V
Q-exact part $\quad V=\sum_{\text {fermions }} \Psi \overline{\mathcal{Q} \Psi}+V_{F I}$
$\mathcal{Q} V=S-\tau \int F \quad \underset{\epsilon \rightarrow 0}{ } \mathrm{~N}=(2,2)$ action without topological term
Q-closed operator $\quad \widetilde{W}=i \tau \Sigma \quad$ constant $\mathcal{T} \ldots$ topological term
$\mathcal{T} \cdots$ background twisted superfield $\quad \lim _{|z| \rightarrow \infty} \tau=0 \quad \lim _{\epsilon \rightarrow 0}=\tau_{0}=$ const.

$$
I=\int d z^{2} d \theta d \bar{\theta} \widetilde{W}=\frac{2 \pi i \tau_{0}}{\epsilon} \sigma+\mathcal{O}(\epsilon)
$$

$$
\begin{array}{lc}
\mathcal{D}_{\bar{z}} \phi_{a}=0, \quad 2 i F_{z \bar{z}}+g^{2}\left(\left|\phi_{a}\right|^{2}-r\right)=0 & \xi^{i} \partial_{i}=\partial_{w}+i \epsilon\left(z \partial_{z}+\bar{z} \partial_{\bar{z}}\right) \\
F_{\xi \bar{\xi}}=F_{\xi z}=F_{\xi \bar{z}}=\mathcal{D}_{\xi} \phi_{a}=\mathcal{D}_{\xi} \bar{\phi}_{a}=0 & \text { Killing vector }
\end{array}
$$

- saddle points $=$ BPS vortex configurations

$$
\phi_{a}=\sqrt{r} e^{-\frac{1}{2} \psi} z^{k}, \quad A_{\bar{z}}=-\frac{i}{2} \partial_{\bar{z}} \psi, \quad A_{\xi}=-m_{a}-k \epsilon \longrightarrow \sigma=-m_{a}-k \epsilon
$$

fluctuations

$$
\mathcal{Q} V=\delta \Phi^{\dagger} \Delta_{B} \delta \Phi+\delta \Psi^{\dagger} \Delta_{F} \delta \Psi+\cdots
$$

$$
Z=\sum_{s . p .} \exp (I) \frac{\operatorname{det}\left(\Delta_{F}\right)}{\operatorname{det}\left(\Delta_{B}\right)}=\left.\sum_{s . p .} \exp \left(-\frac{2 \pi i \sigma \tau}{\epsilon}\right) \frac{1}{\operatorname{det}\left(-i \mathcal{D}_{\xi}\right)}\right|_{\text {short }}
$$

short multiplets = solutions of linearized vortex equation

- solutions of linearized eq. ... holomorphic polynomials

$$
\delta \phi_{a}=\sqrt{r} e^{-\frac{1}{2} \psi}\left[\Delta h_{a}(z)-\frac{1}{2} \Delta \psi h_{a}(z)\right], \quad \Delta h_{a}(z)=\sum_{l=0}^{\infty} c_{a, l} z^{l}
$$

- each monomial $\cdot \cdot$ eigenmode $-i \mathcal{D}_{\xi}=\sigma+m_{a}+l \epsilon$

$$
\frac{1}{\operatorname{det}\left(-i \mathcal{D}_{\xi}\right)}=\prod_{a=1}^{N} \prod_{l=0}^{\infty} \frac{\Lambda_{0}}{\sigma+m_{a}+l \epsilon} \sim\left(\frac{\Lambda_{0}}{\epsilon}\right)^{N} \prod_{a=1}^{N} \Gamma\left(\frac{\sigma+m_{a}}{\epsilon}\right)
$$

unphysical "gauge" modes $\Gamma\left(\frac{\sigma-\sigma_{s}}{\epsilon}\right) \quad \sigma_{s}=-m_{a}-k \epsilon$

$$
\exp (I) \frac{\operatorname{det}\left(\Delta_{F}\right)}{\operatorname{det}\left(\Delta_{B}\right)}=\left[\exp \left(-\frac{2 \pi i \sigma \tau}{\epsilon}\right) \prod_{a=1}^{N} \Gamma\left(\frac{\sigma+m_{a}}{\epsilon}\right)\right] \Gamma\left(\frac{\sigma-\sigma_{s}}{\epsilon}\right)^{-1}
$$

- value at the saddle point $\quad \sigma \rightarrow \sigma_{s}=-m_{a}-k \epsilon$

Integral representation of vortex partition function

$$
Z_{a}=\int_{C_{a}} \frac{d \sigma}{2 \pi i \epsilon} \exp \left(-\frac{2 \pi i \sigma \tau}{\epsilon}\right) \prod_{b=1}^{N} \Gamma\left(\frac{\sigma+m_{b}}{\epsilon}\right)
$$

- expectation value of σ

$$
\langle\sigma\rangle_{a}=\lim _{\epsilon \rightarrow 0}\left(-\frac{\epsilon}{2 \pi} \partial_{\tau} \log Z_{a}\right)
$$

agree with known results [D'Adda et al, Witten, " " "]

$$
\begin{gathered}
\cdots \cdots \\
\sigma \stackrel{\cdots}{=}-m_{2} \\
\underset{\sim=-m_{1}}{C_{1}}
\end{gathered}
$$

- general gauge group and matter representation

$$
Z=\int \prod_{i=1}^{r}\left(\frac{d \sigma_{i}}{2 \pi i \epsilon}\right) \exp \left(-\frac{2 \pi i \vec{\sigma} \cdot \vec{\tau}}{\epsilon}\right)\left[\prod_{\vec{\alpha} \in G} \Gamma\left(\frac{\vec{\alpha} \cdot \vec{\sigma}}{\epsilon}\right)\right]^{-1} \prod_{a=1}^{N_{\mathrm{F}}} \prod_{\vec{\rho}_{a} \in R_{a}} \Gamma\left(\frac{\vec{\rho}_{a} \cdot \vec{\sigma}+m_{a}}{\epsilon}\right)
$$

differential equation for \mathbf{Z}

$$
Z_{a}=\int \frac{d \sigma}{2 \pi i \epsilon} e^{-\frac{2 \pi i \sigma \tau}{\epsilon}} \prod \Gamma\left(\frac{\sigma+m_{b}}{\epsilon}\right)
$$

- shift of the contour $\sigma \rightarrow \sigma+\epsilon$

$$
\begin{aligned}
Z_{a} & =\int \frac{d \sigma}{2 \pi i \epsilon} e^{-\frac{2 \pi i(\sigma+\epsilon) \tau}{\epsilon}} \prod_{b=1}^{N} \frac{\sigma+m_{b}}{\epsilon} \Gamma\left(\frac{\sigma+m_{b}}{\epsilon}\right) \\
& \left.=e^{-2 \pi i \tau}\left(\prod_{b=1}^{N} \frac{\hat{\sigma}+m_{b}}{\epsilon}\right) Z_{a} \quad \square \prod_{b=1}^{N} \frac{\hat{\sigma}+m_{b}}{\epsilon}-e^{2 \pi i \tau}\right] Z_{a}=0
\end{aligned}
$$

differential operator

$$
\hat{\sigma} \equiv-\frac{\epsilon}{2 \pi i} \partial_{\tau}
$$

- vortex partition functions $Z_{a}(a=1,2, \cdots, N)$ are linearly independent regular solutions
$\langle\sigma\rangle_{a}=\lim _{\epsilon \rightarrow 0}\left(-\frac{\epsilon}{2 \pi} \partial_{\tau} \log Z_{a}\right)$
regular in the limit

differential equation (general case)
 $$
G=U(1)^{n} \times G^{\prime}
$$

$$
Z=\int \prod_{i=1}^{r} \frac{d \sigma_{i}}{2 \pi i \epsilon} \exp \left(-\frac{2 \pi i \vec{\sigma} \cdot \vec{\tau}}{\epsilon}\right) \cdots
$$

- physical τ_{i} are defined only for $U(1)$ parts
for all the Cartan parts $\quad \hat{\sigma}_{i}=-\frac{\epsilon}{2 \pi i} \frac{\partial}{\partial \tau_{i}} \quad(i=1, \cdots, r)$

$$
\mathrm{r}=\mathrm{rank} \mathrm{G}
$$

- r independent differential equations

$$
\begin{gathered}
{\left[\Delta(\overrightarrow{\hat{\sigma}}+\epsilon \vec{\lambda}) P_{\lambda}^{+}(\overrightarrow{\hat{\sigma}})-\epsilon^{\vec{\rho}_{t} \cdot \vec{\lambda}} \exp \left\{2 \pi i \vec{\lambda} \cdot\left(\vec{\tau}+\vec{\rho}_{w}\right)\right\} \Delta(\overrightarrow{\hat{\sigma}}-\epsilon \vec{\lambda}) P_{\lambda}^{-}(\overrightarrow{\hat{\sigma}})\right] Z=0} \\
\Delta(\vec{\sigma})=\prod_{\vec{\alpha}>0} \vec{\alpha} \cdot \vec{\sigma} \quad P_{\lambda}^{ \pm}(\vec{\sigma})=\prod_{a=1}^{N_{\mathrm{F}}} \prod_{\rho_{a} \in R_{a, \lambda}^{ \pm}} \prod_{j=1}^{\left|\vec{\rho}_{a} \cdot \vec{\lambda}\right|}\left\{\vec{\rho}_{a} \cdot \vec{\sigma}+m_{a}+(j-1) \epsilon\right\}
\end{gathered}
$$

3. Vortex counting on vortex worldsheet

4d $\mathcal{N}=2 \mathrm{U}(\mathrm{N})$ gauge theory

$$
N \leq N_{\mathrm{F}} \leq 2 N
$$

N fundamental hypermutiplets \vec{m}

- $\epsilon_{1}, \epsilon_{2}: 4 d$ omega deformation parameters
- root of Higgs branch $\vec{a}=\vec{m}-\epsilon_{1} \vec{k}$
- magnetic flux $\frac{1}{2 \pi} \int F=\vec{H} \cdot \vec{k}, \quad k=|\vec{k}|$: number of vortex strings
\downarrow
effective worldsheet theory of k-vortex strings
2d $\mathcal{N}=(2,2) U(k)$ gauge theory

effective vortex worldsheet theory

2d $\mathcal{N}=(2,2) U(k)$ gauge theory one adjoint + \mathbf{N} fundamental

- Higgs branch . . . moduli space of vortices
- \vec{k} : label of vacua (in mass and omega deformed theory)
- ϵ_{2} : 2d omega deformation parameter
- ϵ_{1} : mass for adjoint chiral \cdot.. positions of vortex strings vortex on vortex worldsheet $=$ Yang-Mills instanton

vortex partition function in vortex worldsheet effective theory

integral representation

adjoint

$$
Z\left(\tau_{1}, \cdots, \tau_{k}\right)=\int \prod_{i=1}^{k}\left[\frac{d \sigma_{i}}{2 \pi i \epsilon_{2}} e^{-\frac{2 \pi i \sigma_{i} \tau}{\epsilon_{2}}}\right] \prod_{i \neq j} \frac{\Gamma\left(\frac{\sigma_{i}-\sigma_{j}-\epsilon_{1}}{\epsilon_{2}}\right)}{\Gamma\left(\frac{\sigma_{i}-\sigma_{j}}{\epsilon_{2}}\right)} \prod_{i=1}^{k} \prod_{a=1}^{N} \Gamma\left(\frac{\sigma_{i}+m_{a}}{\epsilon_{2}}\right)
$$

- each pole is labeled by \mathbf{N} Young tableaux $Y_{a}=\left(\lambda_{a}^{1}, \lambda_{a}^{2}, \cdots, \lambda_{a}^{k_{a}}\right)$

$$
\sigma_{i}=-m_{a}+\left(j-k_{a}\right) \epsilon_{1}-\lambda_{a}^{p} \epsilon_{2}
$$

$$
\begin{aligned}
& Y_{a}=(4,3,2,2) \\
& k_{a}=4 \quad \text { (height) }
\end{aligned}
$$

- perturbative part (vacuum = empty Young tableaux)

$$
Z_{2 d, p e r t}=\exp \left[\frac{\pi i \tau}{\epsilon_{2}}\left\{2 \vec{k} \cdot \vec{m}-(\vec{k} \cdot \vec{k}-k) \epsilon_{1}\right\}\right] \prod_{a=1}^{N} \prod_{j=1}^{k_{a}} \prod_{b=1}^{N} \Gamma\left(\frac{-m_{a b}-\left(j-k_{a b}\right) \epsilon_{1}}{\epsilon_{2}}\right)
$$

4d perturbative part

$$
Z_{4 d, p e r t}=\exp \left[\frac{\pi i \vec{a} \cdot \vec{a} \tau}{\epsilon_{1} \epsilon_{2}}\right] \prod_{a=1}^{N} \prod_{b=1}^{N} \frac{\Gamma_{2}\left(a_{a}-m_{b} \mid \epsilon_{1}, \epsilon_{2}\right)}{\Gamma_{2}\left(a_{a b} \mid \epsilon_{1}, \epsilon_{2}\right)}
$$

double gamma function $\quad \Gamma_{2}\left(x \mid \epsilon_{1}, \epsilon_{2}\right)=\Gamma\left(x / \epsilon_{1}\right) \Gamma_{2}\left(x+\epsilon_{1} \mid \epsilon_{1}, \epsilon_{2}\right)$

$$
\begin{aligned}
& \vec{a}=\vec{m}-\epsilon_{1} \vec{k} \text { root of Higgs branch } \\
& Z_{4 d, p e r t}=\exp \left[\frac{\pi i \tau}{\epsilon_{2}}\left(\vec{m}-\vec{k} \epsilon_{1}\right)^{2}\right] \prod_{a=1}^{N} \prod_{b=1}^{N} \prod_{j=1}^{k_{b}} \Gamma\left(\frac{m_{a b}-\left(j-k_{a}\right) \epsilon_{1}}{\epsilon_{2}}\right) \\
&= A_{2 d, p e r t} \\
& \text { independent of choice of vacuum } \vec{k}
\end{aligned}
$$

$$
Z=Z_{\text {pert }} \sum_{\vec{Y}} e^{2 \pi i|\vec{Y}| \tau} Z_{\vec{Y}}
$$

differential equations

$$
Z_{2 d}\left(\tau_{1}, \cdots, \tau_{k}\right)=\sum_{\vec{Y}} \exp \left(-\sum_{i=1}^{k} \frac{2 \pi i \sigma_{i} \tau_{i}}{\epsilon_{2}}\right) Z_{\vec{Y}}
$$

$$
\left[\prod_{a=1}^{N}\left(m_{a}+\hat{\sigma}_{n}\right)\right]\left[\prod_{i \neq n}\left(\hat{\sigma}_{n}-\hat{\sigma}_{i}-\epsilon_{1}\right)\left(\hat{\sigma}_{n}-\hat{\sigma}_{i}+\epsilon_{2}\right)\right] Z_{2 d}=
$$

$$
\epsilon_{2}^{N} e^{2 \pi i \tau_{n}}\left[\prod_{i \neq n}\left(\hat{\sigma}_{n}-\hat{\sigma}_{i}+\epsilon_{1}\right)\left(\hat{\sigma}_{n}-\hat{\sigma}_{i}-\epsilon_{2}\right)\right] Z_{2 d}
$$

recursion relations

$\left|\vec{Y}^{\prime}\right|=|\vec{Y}|+1 \cdots$ vortex (instanton) number

$$
Z_{\vec{Y}^{\prime}}=e^{2 \pi i \tau_{i}}\left[\prod_{j \neq i} \frac{\left(\sigma_{i}-\sigma_{j}-\epsilon_{2}\right)\left(\sigma_{i}-\sigma_{j}-M\right)}{\left(\sigma_{i}-\sigma_{j}\right)\left(\sigma_{i}-\sigma_{j}-\epsilon_{1}-\epsilon_{2}\right)}\right]\left[\prod_{a=1}^{N} \frac{\epsilon_{2}}{\sigma_{i}+m_{a}-\epsilon_{2}}\right] Z_{\vec{Y}}
$$

4d instanton part

[Kanno-Matsuo-Zhang, 2013]

\Rightarrow Simplifies at $\vec{a}=\vec{m}-\epsilon_{1} \vec{k}$

$$
Z_{4 d, \vec{Y}}=\int \prod_{l=1}^{|\vec{Y}|}\left[\frac{d \Phi_{l}}{2 \pi i} \frac{\epsilon_{+}}{\epsilon_{1} \epsilon_{2}} \prod_{m<l} \frac{\Phi_{l m}^{2}\left(\Phi_{l m}^{2}-\epsilon_{+}^{2}\right)}{\left(\Phi_{l m}^{2}-\epsilon_{1}^{2}\right)\left(\Phi_{l m}^{2}-\epsilon_{2}^{2}\right)} \prod_{a=1}^{N} \frac{\Phi_{l}-m_{a}}{\left(\Phi_{l}-a_{a}\right)\left(a_{a}+\epsilon-\Phi_{l}\right)}\right]
$$

- poles … positions of boxes (i, j) in Young tableaux

$$
\Phi_{l}=a_{a}+(j-1) \epsilon_{1}+(i-1) \epsilon_{2} \quad m_{a}+\left(j-k_{a}-1\right) \epsilon_{1}+(i-1) \epsilon_{2}
$$

- residue at $\Phi_{l}=m_{a}$ vanishes box at $(i, j)=\left(k_{a}+1,1\right)$
same recursion relation

$$
\begin{array}{ll}
\text { same recursion retation } & Y_{a}=(4,3,2,2) \\
Z_{4 d, \text { full }}=A Z_{2 d, \text { full }} & k_{a}=4 \quad \text { (height) }
\end{array}
$$

4. Summary

- vortex partition function in general 2d $\mathcal{N}=(2,2)$ models
- integral representation $Z_{a}=\int_{C_{a}} \frac{d \sigma}{2 \pi i \epsilon} \exp \left(-\frac{2 \pi i \sigma \tau}{\epsilon}\right) \prod_{b=1}^{N} \Gamma\left(\frac{\sigma+m_{b}}{\epsilon}\right)$
- differential equation (recursion relation) $\left[\prod_{b=1}^{N} \frac{\hat{\sigma}+m_{b}}{\epsilon}-e^{2 \pi i \tau}\right] Z_{a}=0$
- relation between 2d vortex counting and 4d instanton counting

$$
Z_{4 d}\left(\vec{a}=\vec{m}-\epsilon_{1} \vec{k}, \tau\right)=A Z_{2 d}(\vec{m}, \vec{k}, \tau)
$$

