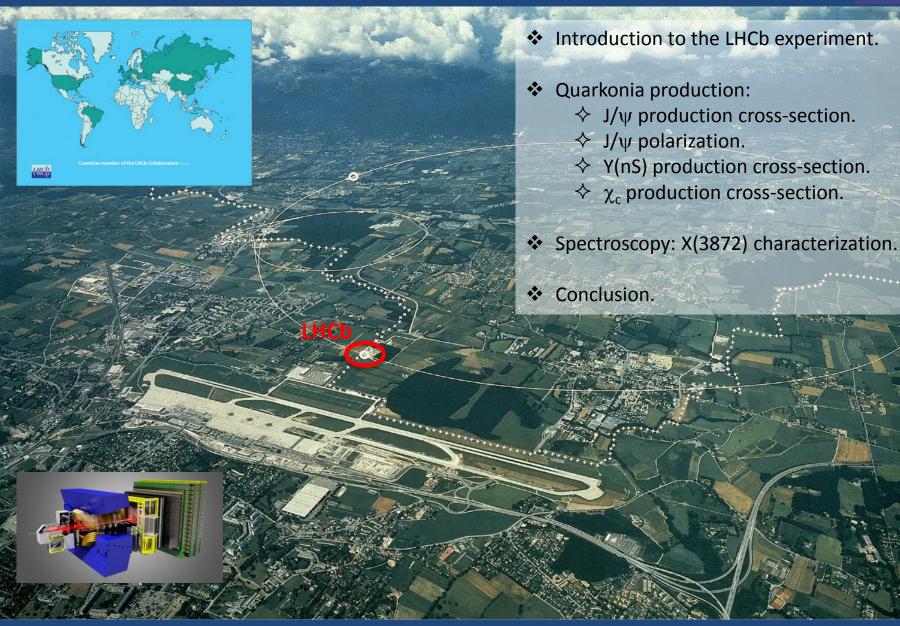
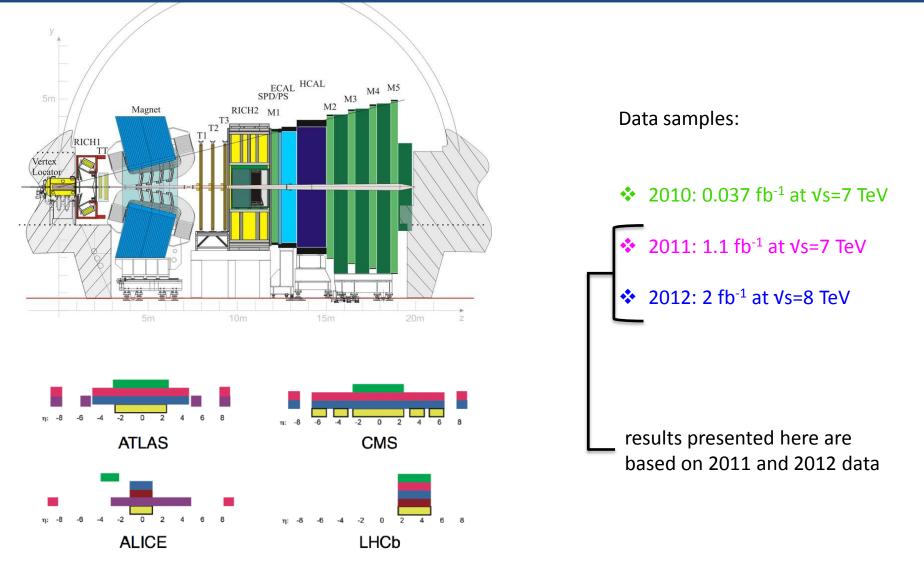


The University of Manchester

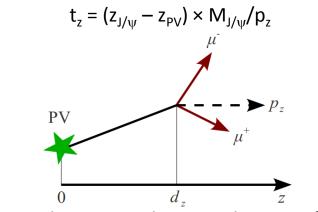
19th International Symposium on Particles, Strings and Cosmology


Onia Production and Spectroscopy at LHCb

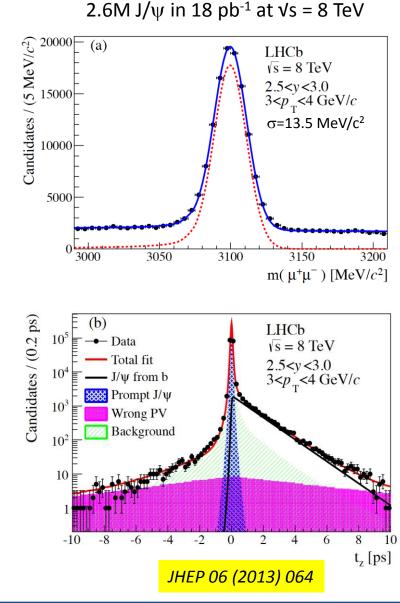
Stefano de Capua on behalf of the LHCb collaboration


Outline

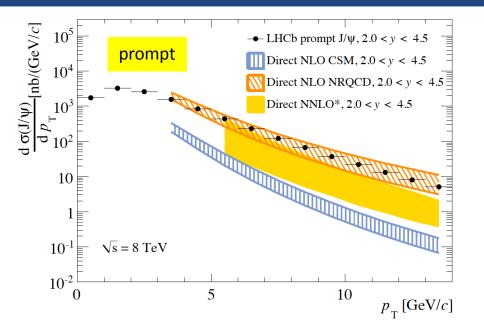
The LHCb detector


tracking, ECAL, HCAL, counters lumi, muon, hadron PID

- ↔ Abundantly produced in LHCb: ~60 Hz of J/ ψ -> $\mu^+\mu^-$ @ 2012 conditions.
- Most of them are very well known resonances (width, mass peak, br, ...).
- Production mechanism not yet fully understood.
- Active interest of theorists (Tevatron puzzle), several models of the production mechanism available:
 - ♦ Color-Singlet (CS)
 - ♦ Color-Octet (CO)
 - ♦ FONLL (production from b-hadron decays)
- For the LHC experiments, new computations are being performed: NLO, NNLO^(*) corrections to CS and CO production.
- LHCb studies quarkonium hadroproduction in a unique kinematic region:
 - ♦ Forward rapidity range (2<y<4.5)</p>
 - \diamond Low p_T range (<20 GeV/c)

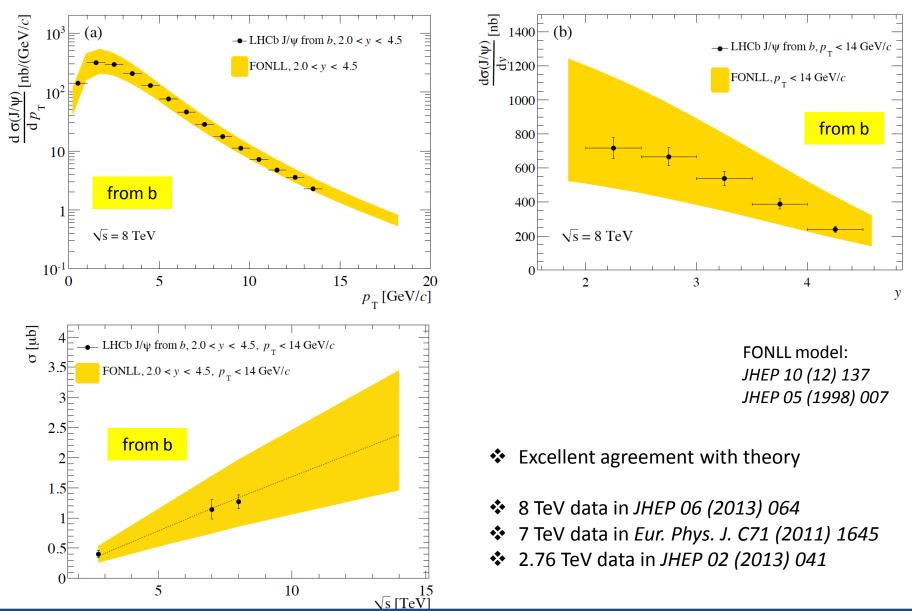

J/ψ production

- Select decays of J/ψ into muon pairs:
 - \diamond opposite charged tracks from same vertex
 - $\diamond~$ good track quality and μID
 - \diamond minimum threshold on p_T(µ)
- Measurement of the double differential production cross-section in bins of y and p_T:
 - \diamond 0 < p_T < 14 GeV/c
 - ♦ 2.0 < y < 4.5
- Prompt J/ ψ and J/ ψ from b decays components separated using pseudo-proper time:


 Signal extraction by a simultaneous fit to $m_{\mu\mu}$ and t_z in each (p_T ,y) bin

Prompt J/ ψ : results

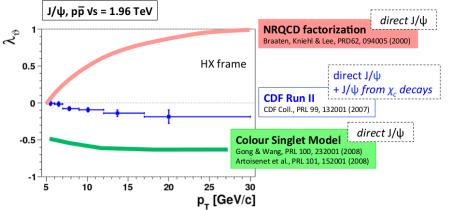
NLO CSM model: Phys. Rev. Lett. 98 (2007)


NLO NRQCD model: Phys. Rev. D84 (2011) 051501 Phys. Rev. Lett. 106 (2011) 022003

NNLO* model: Phys. Rev. Lett. 101 (2008) 152001 Eur. Phy. J. C 61 (2008) 693

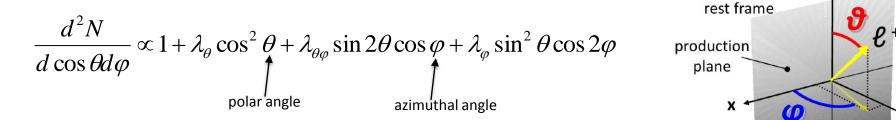
- \checkmark Prompt J/ ψ mesons assumed to be produced unpolarised
- ◆ σ (prompt J/ψ; p_T < 14 GeV/c; 2.0 < y < 4.5) = 10.94 ± 0.02 (stat) ± 0.79 (sys) µb
- ♣ σ (J/ψ from b; p_T < 14 GeV/c; 2.0 < y < 4.5) = 1.28 ± 0.01 (stat) ± 0.11 (sys) µb
- Systematic uncertainty ~ 7% (main contribution from luminosity and trigger efficiency)
- \checkmark Predictions for direct J/ ψ meson production
- Experimental data include feed-down from higher charmonium states (20% from $\chi_c \rightarrow J/\psi \gamma$ and 8% from ψ (2S) $\rightarrow J/\psi \pi \pi$)
- Data in good agreement with NLO NRQCD

J/ψ from b: results

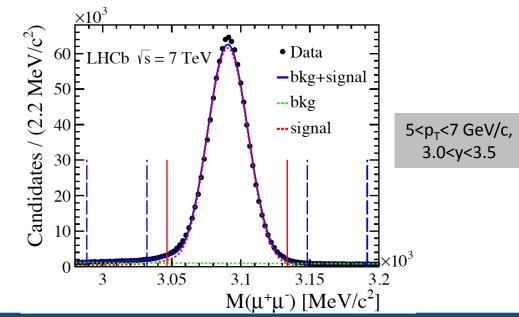


J/ψ polarisation

- Prompt charmonium production still puzzling: many theoretical models available describing well the cross section but not the polarization (NLO NRQCD).
- Prompt J/ψ cross-section depends on polarization (distortion in the decay product acceptance), may lead to large uncertainty on cross-section measurement.

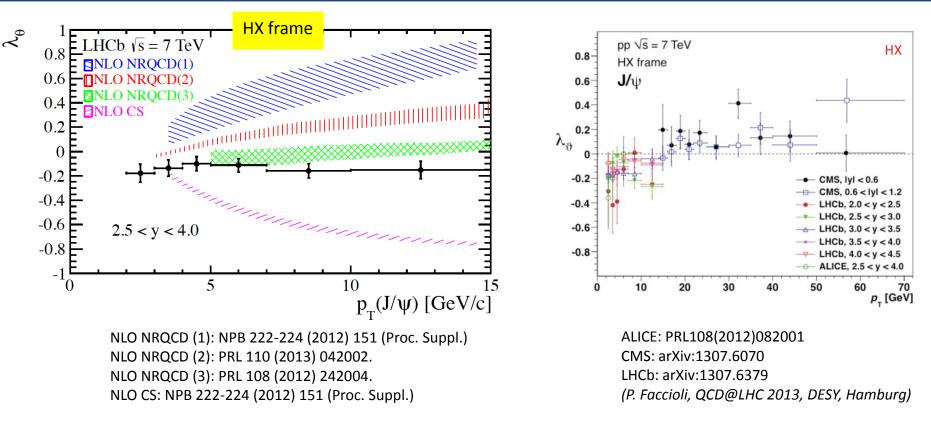

- Status of experimental studies: previous measurements from CDF, PHENIX, HERA-B (PRL 99 (2007), 132001, PRD 82 (2010), 012001, EPJ C 60 (2009), 517)
- ✤ At LHC:
 - ♦ ALICE PRL 108 (2012) 082001: overlapping kinematic region with LHCb (possible direct comparison).
 - \diamond Recent results from CMS arXiv:1307.6070.

J/ψ polarisation: strategy



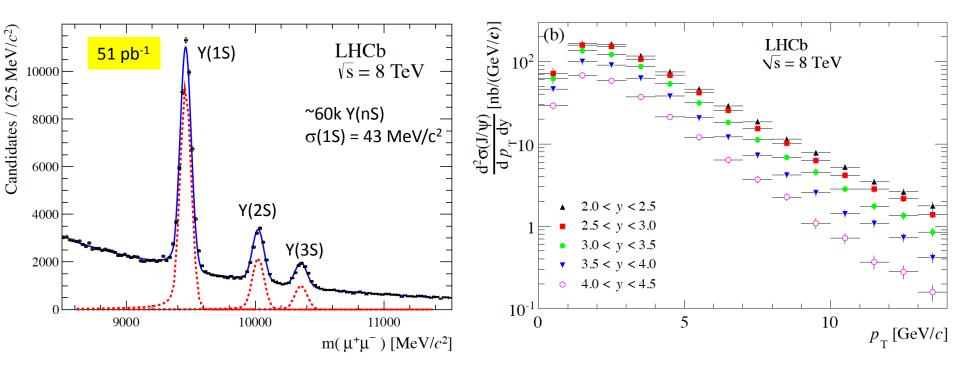
quarkonium

- Data sample: 0.37 fb⁻¹ integrated luminosity from 2011 run, in bins of p_T and y
- ↔ Extract polarization from angular distribution of the J/ ψ -> $\mu\mu$ (feed-down included)
- Full angular analysis to determine the polarisation parameters $(\lambda_{\theta}, \lambda_{\theta\phi}, \lambda_{\phi})$:


- Data presented in two different polarisation frames: Helicity frame (HX) and Collin-Soper frame (CS)
- Prompt J/ψ and J/ψ from b decays components separated by using pseudo-proper time

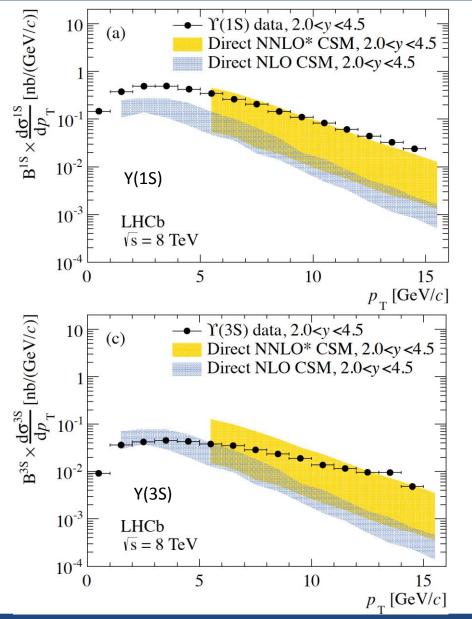
Eur. Phys. J. C (2013) 73:2631

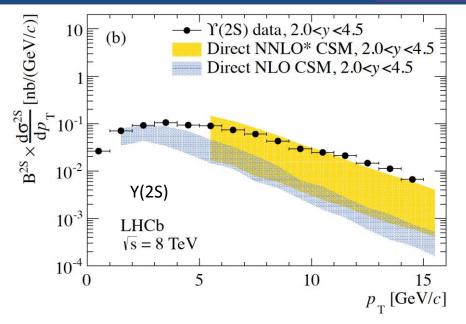
J/ψ polarisation: results



- Parameters $\lambda_{\theta\phi}$ and λ_{ϕ} consistent with 0, so $\lambda_{inv} = (\lambda_{\theta} + 3\lambda_{\phi})/(1 \lambda_{\phi}) = \lambda_{\theta}$
- ✤ A small longitudinal polarization is observed.
- Results in HX and CS are consistent.
- LHCb results are compatible with NLO NRQCD calculations that include feed-down contributions.
- Good agreement is also observed with recent measurements from ALICE and CMS (although in a different kinematic region).

Y(nS) production

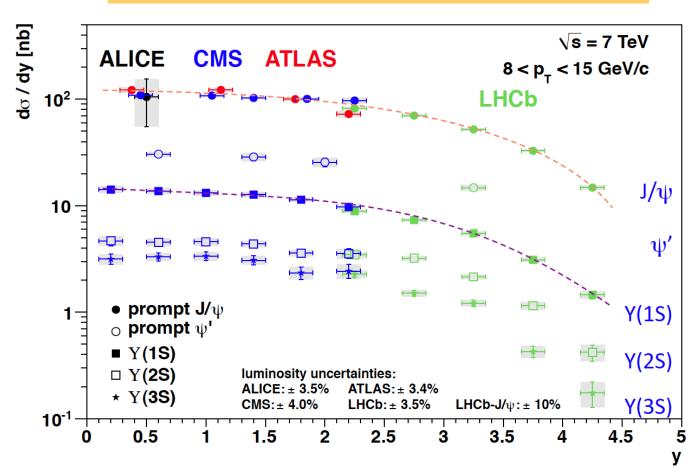

 $\sigma(pp \rightarrow Y(1S) X) \times B^{1S} = 3.241 \pm 0.018 (stat) \pm 0.231 (sys) \text{ nb}$ $\sigma(pp \rightarrow Y(2S) X) \times B^{2S} = 0.761 \pm 0.008 (stat) \pm 0.055 (sys) \text{ nb}$ $\sigma(pp \rightarrow Y(3S) X) \times B^{3S} = 0.369 \pm 0.005 (stat) \pm 0.027 (sys) \text{ nb}$


B^{iS} = Br[Y(iS) -> μμ], i=1,2,3

JHEP 06 (2013) 064

Y(nS) production: data vs. theory

- reasonable agreement with NNLO* CSM
- no feed-down included in theory
- NLO NRQCD not yet available

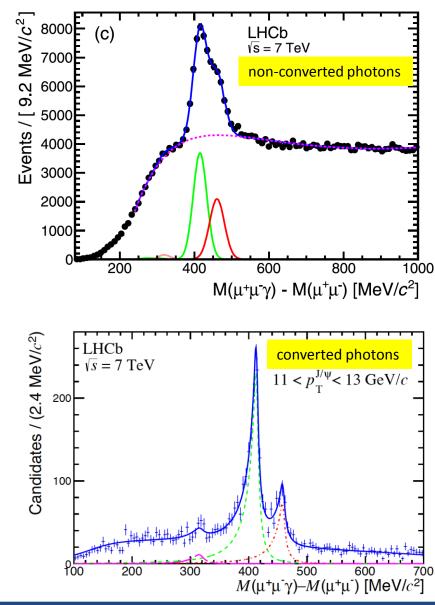

NLO CSM: PRL 98 (2007) 252002

NNLO* CSM: PRL 101 (2008) 152001

Summary of production cross-section at Vs = 7 TeV

Note: the lines do not represent any theoretical model; they are added to help guiding the eye through the points

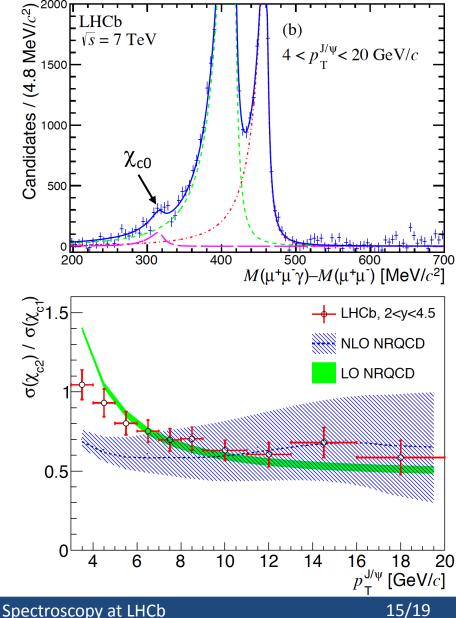
- impressive amount of results
- nice complementarity in acceptance among GPDs and LHCb


ALICE : 5.6 nb⁻¹ ATLAS : 2.2 pb⁻¹ CMS : 37, 36 pb⁻¹ LHCb : 5.2, 36, 25 pb⁻¹

> ALICE: arXiv:1205.5880 ATLAS: NPB850 (2011) 38 CMS: JHEP02 (2012) 011 LHCb: EPJC71 (2011) 164! LHCb: arXiv:1204.1258 CMS: BPH-11-001 LHCb: EPJC72 (2012) 202!

χ_c production at $\sqrt{s} = 7$ TeV

- Studies on χ_c production provide an important test for understanding quarkonium production.
 - ↔ substantial feed-down contribution to prompt J/ψ from χ_c states impact on J/ψ polarization measurements.
 - ♦ $\sigma(\chi_{c2})/\sigma(\chi_{c1})$ is sensitive to CS and CO models.
- Select prompt χ_{cj} -> (J/ψ->μμ) γ
- photons reconstructed in the calorimeter:
 - ♦ high statistics
 - \diamond poor resolution
- photons converted in the detector material before the magnet (γ->e⁺e⁻):
 - ♦ improve mass resolution (tracker)
 - lower statistics (light material budget in the vertex locator)



χ_c production at $\sqrt{s} = 7$ TeV

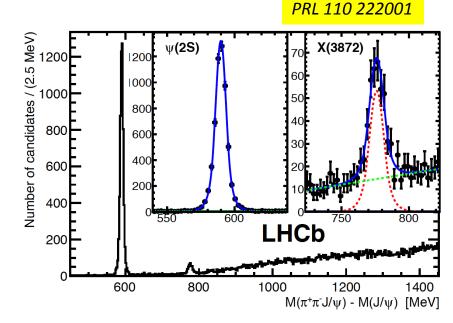
JHEP 10 (2013) 115

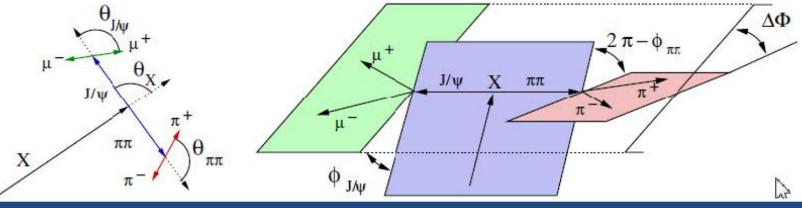
- ☆ Measurement with 1 fb⁻¹ at √s = 7 TeV, in bins of p_T and integrated over rapidity in the range 2.0 < y < 4.5, using converted photons.
- First evidence of the χ_{c0} state at a hadron collider with a significance of 4.3 σ !
- $\sigma(\chi_{c2})/\sigma(\chi_{c1})$ in reasonable agreement with (N)LO NRQCD predictions for $p_T > 4$ GeV/c
- Systematic uncertainty (~6%) dominated by photon efficiency
- Large uncertainty (not included) from the unknown polarisation of the two χ_c states

NLO: PRD 83 (2011) 111503 LO: arXiv:1305.2389.

Onia production and Spectroscopy at LHCb

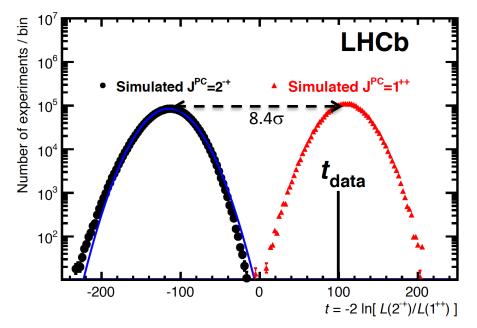
X(3872)


- New exotic mesons have been observed by different experiments: X(3872), X(4140), Z[±](4430), which don't fit into the *ccbar* conventional picture.
- X(3872) discovered by Belle (2003) in B[±]-> X(3872)K[±] [PRL 91 (2003) 262001] and confirmed by CDF, D0 and BaBar. Also LHCb measured production cross-section and mass with 34.7 pb⁻¹ at √s = 7 TeV [EPJ C72, 1972 (2012)]
- After 10 years, its nature still uncertain (conventional charmonium, bound D⁰D* molecule, tetraquark state,...)
- C-parity known to be positive as X(3872) -> J/ψ γ observed by Belle [PRL 107 091803] and BaBar [PRD 74 071101 (R)]
- CDF helicity angle measurement [PRL 98 132002] excluded all J^{PC} except:
 ♦ JPC = 2⁻⁺: η_{c2}(1¹D₂)
 ♦ JPC = 1⁺⁺: χ_{c1}(2³P₁) or exotic D⁰D* bound state or tetraquark
- Selle data of X(3872) -> J/ $\psi \pi \pi$ equally well described by 1⁺⁺ and 2⁻⁺ [PRD 84 052004]
- SaBar analysis of X(3872) -> J/ $\psi \omega$ prefers 2⁻⁺ but does not exclude 1⁺⁺ [PRD 82, 011101(R)]

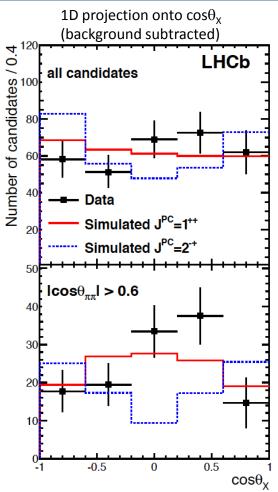

X(3872): analysis strategy

- ✤ Goal: measure the X(3872) J^{PC}
- ✤ 5-D angular correlations of decay products in B⁺ -> X(3872) K⁺ decay mode, with X(3872) -> J/ψ π⁺π⁻
- Data sample: 1 fb⁻¹ at vs = 7 TeV (2011)
 - ♦ B⁺ -> ψ (2S) K⁺ as a control channel

 - \diamond 68% signal purity in ± 2.5 $\sigma_{\rm X}$ region
 - $\diamond \sigma_x = 5.5 \pm 0.5 \text{ MeV}$
- Angular correlations in the B⁺ decay chain carry information on the J^{PC} of the X(3872)
- ★ 5-D angular space: Ω = (cosθ_X, cosθ_{ππ}, Δφ_{X,ππ}, cosθ_{J/ψ}, Δφ_{X,J/ψ})


Stefano de Capua

Onia production and Spectroscopy at LHCb


X(3872): results

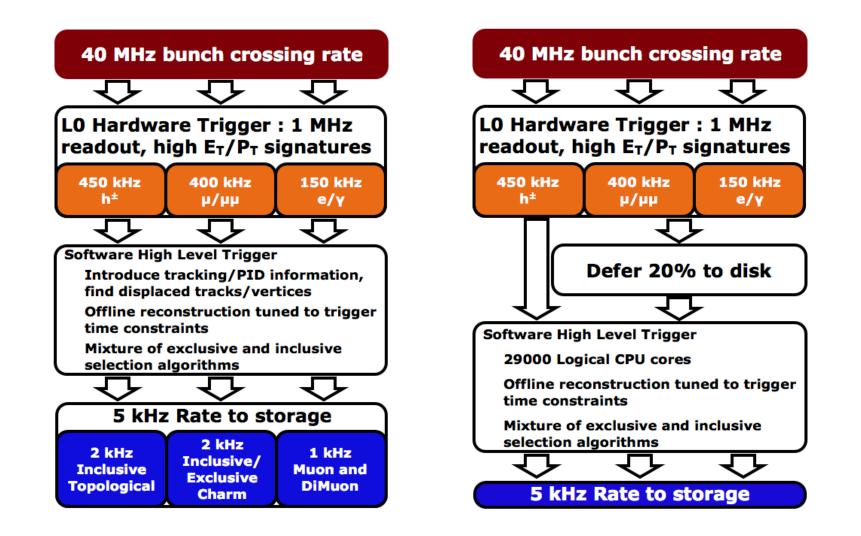
- Likelihood ratio test to discriminate between the two J^{PC} hypotheses:
 - test statistic t = -2 ln[L(2-+)/L(1++)]
 - ✤ t > 0 favors 1⁺⁺, t < 0 favors 2⁻⁺
 - ↔ we observe t_{data} =99, which favours 1⁺⁺ over 2⁻⁺ (rejected at >8 σ)

- Angular correlations in 5-D allow for very clear separation between the two J^{PC} hypotheses
- ✤ Conventional charmonium fading: only *ccbar* possibility is $\chi_{c1}(2^{3}P_{1})$, but mass is off
- Stay tuned for more results in the exciting field!

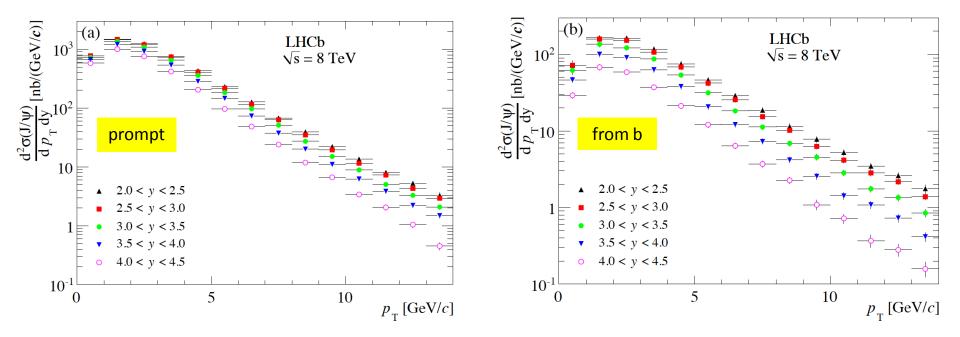
- Marginal differences in 1D distributions between 1⁺⁺ and 2⁻⁺
- Discrimination relies on correlations in specific phasespace regions

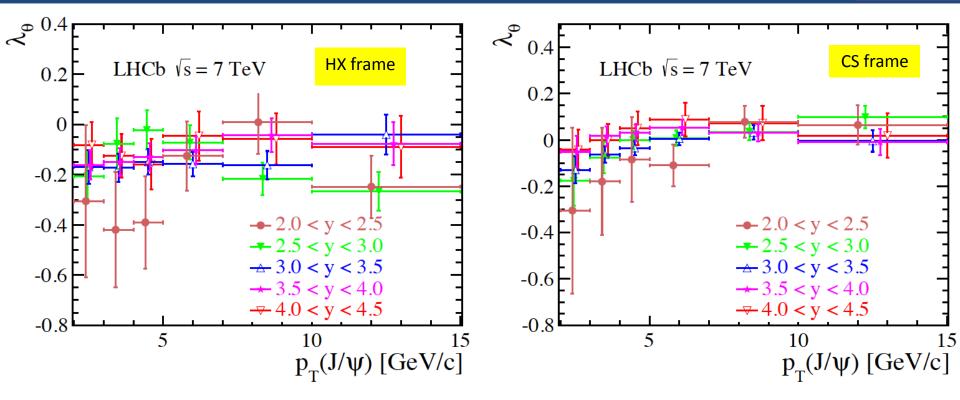
Onia production and Spectroscopy at LHCb

Conclusions



- Lots of contributions in quarkonium sector from LHCb, both in production and spectroscopy.
- Prompt J/ψ polarization: measurement indicates a small longitudinal polarization.
- Measurement of χ_{c2}/χ_{c1} production cross-section
- Determination of the X(3872) quantum numbers: measurement favours the 1⁺⁺ state.
 - If conventional charmonium state: exclude the η_{c2} (1¹D₂), still a possibility with χ_{c1} (2³P₁), but disfavoured by mass.
 - More exotic nature: DD molecule, tetraquark or charmonium-molecule mixture.


LHCb Trigger


J/ψ double differential cross-section

J/ψ polarisation: results

