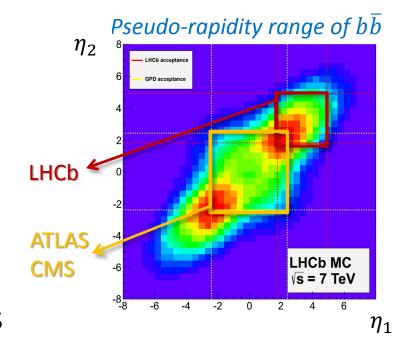
b and c hadron production and spectroscopy at LHCb

Yiming Li (Tsinghua University)
On behalf of the LHCb collaboration

The 19th PASCOS @ Taipei, 20~27 Nov 2013

Content

- Introduction
- Selected results:
 - *B* meson production
 - Observation of $B_c^+ \to B_S \pi^+$ decay
 - Observation of $B_c^+ \to J/\psi K^+ K^- \pi^+$ decay
 - D_J meson spectroscopy Search for \mathcal{E}_{cc}^+ baryon
- Summary



b,c hadron production & spectroscopy

- Various QCD models give different predictions
 - $\sigma_{\text{production}}$, M, τ , Br, ...
- Experimental measurements test these predictions
- New states/decay modes provide inputs to theorists

Why at LHCb?

- Large production yields
 - $\sim 10^{11} \ b\bar{b}$ pairs/yr,
 - 20 times for $c\bar{c}$
 - Plenty of B_c , b-baryons, ...
- Unique kinematic range
 - 2 < η < 5, access to low $p_{\rm T}$
 - Complementary to ATLAS/CMS

- State-of-art detector designed for heavy flavour studies
 - → E. Rodrigues' talk "Summary of flavour physics results" on 21 Nov.

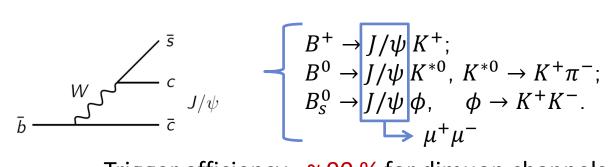
$B_{u,d,s}$ meson production

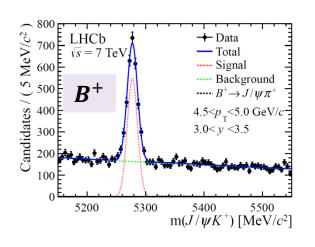
- Tests for pQCD calculations
- Status:
 - Studied by ATLAS (B^+) and CMS (B^+, B^0, B_s^0)
 - ATLAS: $9 < p_T < 120 \text{ GeV}, |y| < 2.25$
 - CMS: $p_{\rm T} > 5$ GeV, |y| < 2.4 (for B^+)

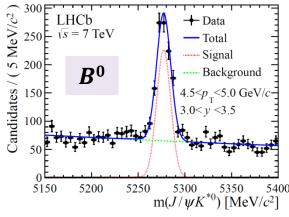
JHEP10(2013) 042 PRL 106(2011) 112001 PRL 106(2011) 252001 PRD 84 (2011) 052008

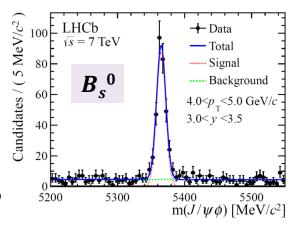
- B^+ production was previously measured at LHCb using 35 pb⁻¹ data

 JHEP04(2012) 093
- The latest analysis uses 0.36 fb⁻¹ @ 7 TeV
 - not only for B^+ but also for B^0 and B_s^0
 - $0 < p_{\rm T} < 40$ GeV, 2.0 < y < 4.5


JHEP08(2013) 117


B selection with dimuon


JHEP08(2013) 117


 $0 < p_{\rm T} < 40$ GeV, 2.0 < y < 4.5

Trigger efficiency: ~ 90 % for dimuon channels

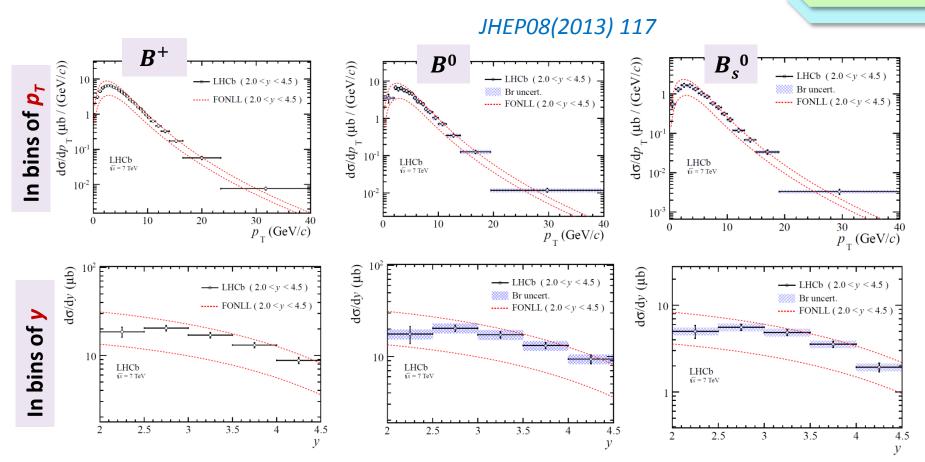
Integrated B production x-section

JHEP08(2013) 117

- $^{\blacksquare}$ B^{+} production updated with higher statistics, consistent with previous results
- New results for B^0 and B_s^0 in LHCb kinematic range

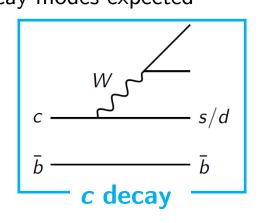
 $0 < p_{\rm T} < 40$ GeV, 2.0 < y < 4.5

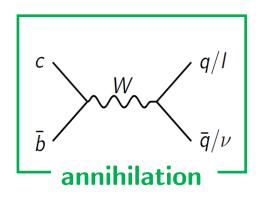
Uncertainty on branching fractions


$$\sigma(pp \to B^+ X) = 38.9 \pm 0.3 ({\rm stat}) \pm 2.5 ({\rm syst}) \pm 1.3 ({\rm norm}) \, \mu {\rm b} + 3.0 \, \mu {\rm syst} = 38.1 \pm 0.6 ({\rm stat}) \pm 3.7 ({\rm syst}) \pm 4.7 ({\rm norm}) \, \mu {\rm b} + 3.0 \, \mu {\rm syst} = 38.1 \pm 0.2 ({\rm stat}) \pm 0.8 ({\rm syst}) \pm 1.0 ({\rm norm}) \, \mu {\rm syst} = 38.1 \pm 0.2 ({\rm stat}) \pm 0.8 ({\rm syst}) \pm 1.0 ({\rm norm}) \, \mu {\rm syst} = 38.1 \pm 0.2 ({\rm stat}) \pm 0.2 ({\rm syst}) \pm 1.0 ({\rm norm}) \, \mu {\rm syst} = 38.1 \pm 0.2 ({\rm syst}) \pm 0.2 ({\rm syst}) \pm 1.0 ({\rm norm}) \, \mu {\rm syst} = 38.1 \pm 0.2 ({\rm syst}) \pm 0.2 ({\rm syst}) \pm 1.0 ({\rm norm}) \, \mu {\rm syst} = 38.1 \pm 0.2 ({\rm syst}) \pm 0.2 ({\rm syst}) \pm 1.0 ({\rm norm}) \, \mu {\rm syst} = 38.1 \pm 0.2 ({\rm syst}) \pm 0.2 ({\rm syst}) \pm 0.2 ({\rm syst}) \pm 1.0 ({\rm norm}) \, \mu {\rm syst} = 38.1 \pm 0.2 ({\rm syst}) \pm 0.2 ({\rm$$

Result with 35 pb⁻¹ data: 41.4 ± 1.4 (stat) ± 3.2 (syst) μb

Differential production x-section




- Overall scale fixed using hadronisation fractions $f_{b o B_{u,d}}$, $f_{b o B_s}$ measured by LHCb PRD85(2012) 032008
- Consistent with Fixed-order plus next-to-leading logarithm (FONLL) calculations JHEP10(2012) 137

B_c decay

- A family of unique mesons consists of different heavy quarks
- Ground state only decays weakly⇒ a large variety of decay modes expected
- \bar{b} \bar{c}/\bar{u} c b decay

Experimentally confirmed channels: $B_c^+ \rightarrow ...$

 $J/\psi \ lv \ lv - J/\psi \ \pi^+$ $J/\psi \ \pi^+\pi^-\pi^+$ $\psi(2S) \ \pi^+$

observed at Tevatron

PRL 109 (2012)232001

PRL 108 (2012)251802

PRD 87 (2013)071103

 $J/\psi D_s^{(*)+}$ $J/\psi K^+$ $J/\psi K^+ K^- \pi^+$ $B_s \pi^+$

PRD 87 (2013)112012

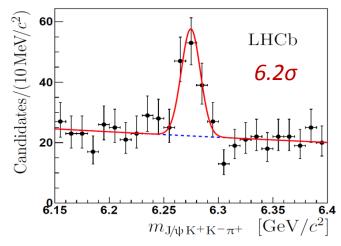
JHEP 09(2013) 075

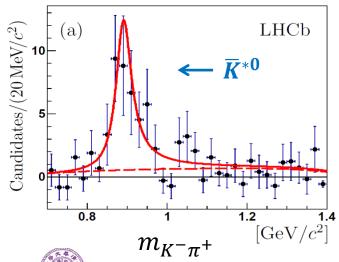
arXiv:1309.0587

PRL 111(2013)181801

Observation of $B_c^+ \rightarrow J/\psi K^+ K^- \pi^+$

- $_{\bullet}$ 1 fb⁻¹ (7 TeV) + 2 fb⁻¹ (8 TeV)
- $m_{KK\pi}$ and $m_{J/\psi KK}$ from D_s and B_s sidebands to avoid contributions from $B_c \to J/\psi D_s$ or $B_s \pi$
- Largest contribution: $B_c^+ \to J/\psi \overline{K}^{*0} K^+$


$$\frac{Br(B_c \to J/\psi K^+ K^- \pi^+)}{Br(B_c \to J/\psi \pi^+)}$$

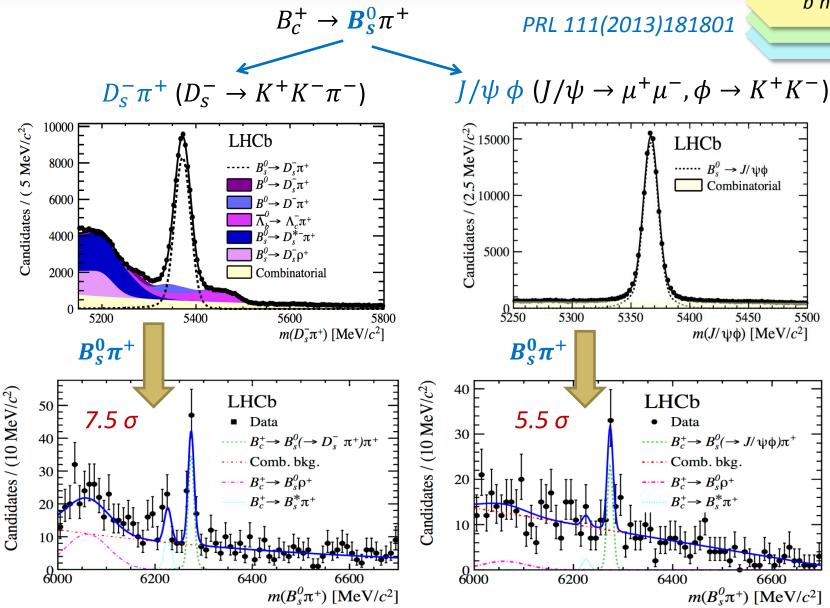

 $=0.53\pm0.10(\mathsf{stat})\pm0.05(\mathsf{syst})$

In good agreement with theoretical predictions 0.49 and 0.47

arXiv: 1307.0953, Nucl.Phys.B585(2000)353, PRD 68(2003) 094020

arXiv:1309.0587





Observation of $B_c^+ \to B_s^0 \pi^+$

PRL 111(2013)181801

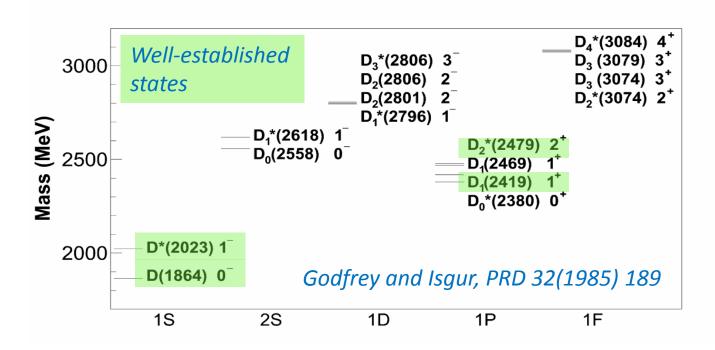
- First observation of c decay in B_c^+
- First decay of $B \rightarrow B$ decay
- $\mathcal{L} = 3 \text{ fb}^{-1}$
- B_s^0 decaying to two final states: $D_s^-\pi^+$ and $J/\psi\phi$
- Two-stage BDT for successive B_s and B_c selection

$B_c^+ \to B_s^0 \pi^+$ branching fraction

Combining $(D_s^-\pi^+)_{B_s}\pi^+$ and $(J/\psi\phi)_{B_s}\pi^+$:

PRL 111(2013)181801

$$\frac{\sigma(B_c^+)}{\sigma(B_s^0)} \times \mathcal{B}(B_c^+ \to B_s^0 \pi^+)
= (2.37 \pm 0.31(\text{stat}) \pm 0.11(\text{syst})_{-0.13}^{+0.17}(\tau_{B_c^+})) \times 10^{-3}$$


- Theory predicts $\mathcal{B}(B_c^+ \to J/\psi \pi^+) \sim 0.15\%$ PRD 73(2006) 054024
- $\frac{\sigma(B_c^+)}{\sigma(B^+)} \frac{\mathcal{B}(B_c^+ \to J/\psi \pi^+)}{\mathcal{B}(B^+ \to J/\psi K^+)} \ , \ f_s/f_d \ \text{measured at LHCb} \\ PRL \ 109(2012) \ 232001 \\ JHEP \ 04(2013) \ 1$

$$\Rightarrow \frac{\sigma(B_c^+)}{\sigma(B_s^0)} \sim 0.02$$

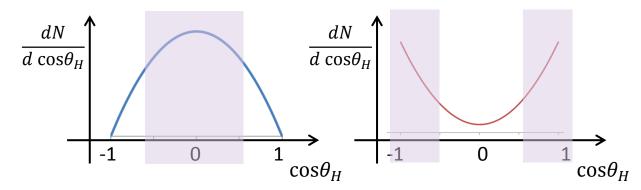
 $\Rightarrow \mathcal{B}(B_c \to B_s \pi) \sim 10\%$, largest for any known B meson weak decay

Excited D mesons

- Quark model predicts many excited D_I states
- Only a few are well established
- Search for new states using 1.0 fb⁻¹ data @ 7 TeV
 - $D_I \to D^+\pi^-$, $D^0\pi^+$ and $D^{*+}\pi^ (D^{*+} \to D^0\pi^+)$ JHEP 09(2013) 145

c hadron

Resonances decaying to $D^{*+}\pi^-$ ($D^{*+} \rightarrow D^0\pi^+$) are divided by helicity angle distribution


natural parity unnatural parity
$$P = (-1)^J$$
 $P = (-1)^{J+1}$ $J^P = 0^+, 1^-, 2^+ \dots$ $J^P = 0^-, 1^+, 2^- \dots$

 $d\sigma \propto \sin^2 \theta_H$

unnatural parity

$$P = (-1)^{J+1}$$

 $J^P = 0^-, 1^+, 2^-...$

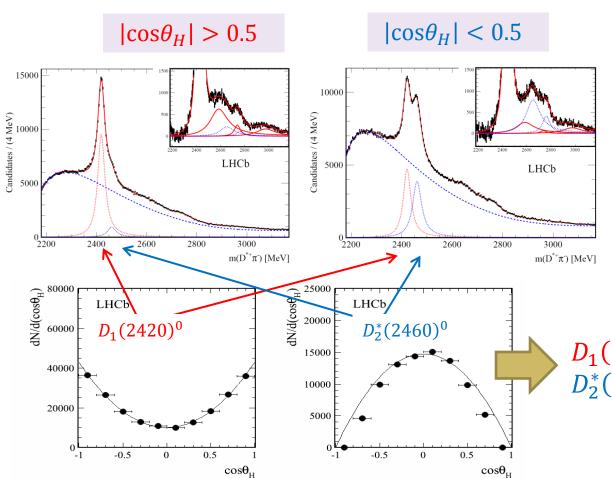
 $d\sigma \propto 1 + h \cos^2 \theta_H \ (h > 0)$

 $|\cos\theta_H| < 0.5$:

Natural parity states are more prominent

$$|\cos\theta_H| > 0.5$$
:

Unnatural parity states are more prominent

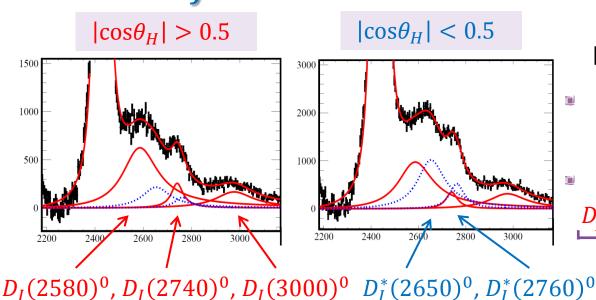


In $D^{*+}\pi^{-}$ c.m.s

$D_1(2420)^0$, $D_2^*(2460)^0$

JHEP 09(2013) 145

 $D^{*+}\pi^-$ invariant mass spectrum, 1 fb⁻¹ @ 7 TeV


 $D_1(2420)^0$, $D_2^*(2460)^0$: well-established states, with $J^{P} = 1^{+}$ and 2^{+} respectively

Both confirmed in $D^{*+}\pi^-$, angular analyis results consistent with known I^P

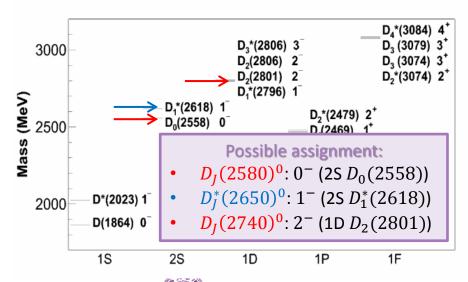
 $D_1(2420)^0$: unnatural parity $D_2^*(2460)^0$: natural parity

c hadron

JHEP 09(2013) 145

More resonances in $D^{*+}\pi^-$

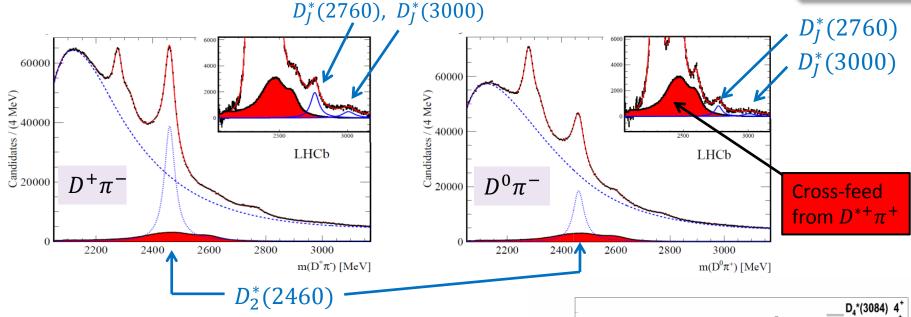
Two natural parity states:

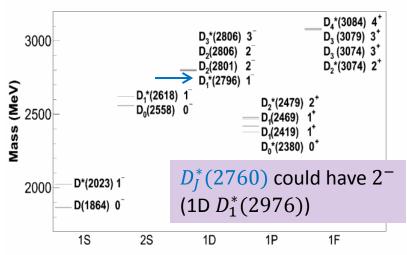

$$D_I^*(2650)^0$$
, $D_I^*(2760)^0$

Three unnatural parity states:

$$D_J(2580)^0$$
, $D_J(2740)^0$, $D_J(3000)^0$

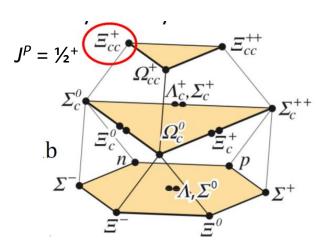
Consistent with BaBar PRD 82 (2010) 111101

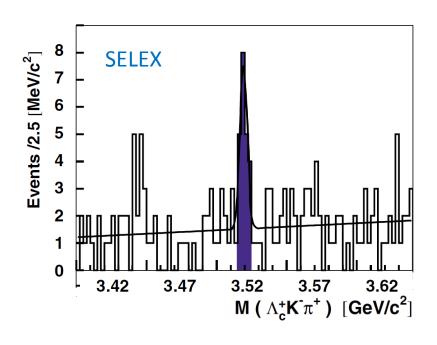

- All observed with significance $>5\sigma$
- Properties for all states are uncertain
- To determine J^P , studies needed in decay from B


D_I in $D^+\pi^-$ and $D^0\pi^+$

JHEP 09(2013) 145

c hadron


- $D^+\pi^-$ and $D^0\pi^+$ spectra affected by cross-feeds from $D^{*+}\pi^-$. In both final states:
 - $D_2^*(2460)$ are confirmed, and found to have natural parity, consistent with $J^P = 2^+$
 - $D_J^*(2760)$, $D_J^*(3000)$ observed (> 5σ)
- Precise quantum numbers cannot be determined

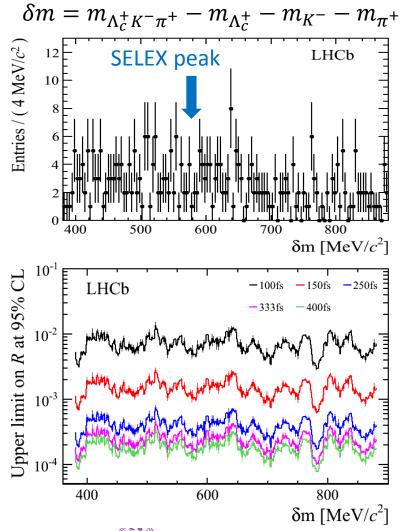


- Predicted by quark model
 - $m \sim [3500, 3700] \text{ MeV/c}^2$
 - $\tau \sim [100, 250]$ fs
- Expected cross-section at LHCb: $\mathcal{O}(10^2)$ nb

- $_{\blacksquare}$ SELEX claimed observation of Ξ_{cc}^{+} in $\varLambda_{c}^{+}K^{-}\pi^{+}$ and $pD^{+}K^{-}$
 - $m = 3519 \text{ MeV/c}^2$
 - $\tau < 30 \text{ fs } @ 90\% \text{ CL}$

PRL 89(2002) 112001, PLB 628(2005) 18

Not confirmed by FOCUS, BaBar or Belle



Search for \mathcal{E}_{cc}^+

- Search for $\Xi_{cc}^+ \to \Lambda_c^+ K^- \pi^+$, $(\Lambda_c^+ \to p K^- \pi^+)$ with 0.65 fb⁻¹ data @ 7 TeV
- No significant signal
- Upper limits for production crosssection as a function of δm for various lifetime assumptions

$$R = rac{\sigma(\Xi_{cc}^+)}{\sigma(\Lambda_c^+)} imes \mathcal{B}(\Xi_{cc}^+ o \Lambda_c^+ K^- \pi^+)$$

arXiv: 1310.2538

Summary

- LHCb has been fruitful in b and c hadron production and spectroscopy with the data collected in the first stage of LHC operation
 - B production studied in unique kinematic range
 - Many new B_c^+ decay channels observed, incl. first c decay
 - New D_I mesons observed
 - Upper limits given for \mathcal{Z}_{cc}^+ production
- Many more results are not covered due to time constraint
- Analyses on 3 fb⁻¹ data still onging, more excitement to come!

BACKUP

Inclusive $b\bar{b}$ and $c\bar{c}$ production

7 TeV, in LHCb acceptance:

 $\sigma_{b\bar{b}} = 75.5 \pm 14.1 \,\mu b$ Phys. Lett. B694, 209 $\sigma_{c\bar{c}} = 1419 \pm 134 \,\mu b$ Nucl. Phys. B871, 1

Trigger efficiencies of B^+ mesons

Table 55: Trigger efficiencies (in %) for $B^+ \to J/\psi K^+$ in bins of $B p_T$ and y.

$p_{\rm T} ({\rm GeV}/c)$	2.0 < y < 2.5	2.5 < y < 3.0	3.0 < y < 3.5	3.5 < y < 4.0	4.0 < y < 4.5
(0.0, 0.5]	29.9 ± 0.2	53.9 ± 0.4	63.0 ± 0.4	64.7 ± 0.4	69.2 ± 0.4
(0.5, 1.0]	35.3 ± 0.2	52.6 ± 0.2	63.0 ± 0.3	65.7 ± 0.3	69.3 ± 0.3
(1.0, 1.5]	36.0 ± 0.1	52.7 ± 0.2	62.6 ± 0.2	66.5 ± 0.2	69.8 ± 0.2
(1.5, 2.0]	37.3 ± 0.1	52.4 ± 0.2	62.5 ± 0.2	66.6 ± 0.2	70.1 ± 0.2
(2.0, 2.5]	38.8 ± 0.1	53.4 ± 0.2	63.6 ± 0.2	67.3 ± 0.2	71.0 ± 0.2
(2.5, 3.0]	42.2 ± 0.1	55.5 ± 0.2	64.7 ± 0.2	68.6 ± 0.2	70.8 ± 0.2
(3.0, 3.5]	42.7 ± 0.1	57.1 ± 0.2	65.4 ± 0.2	69.6 ± 0.2	71.7 ± 0.2
(3.5, 4.0]	46.5 ± 0.1	58.0 ± 0.1	67.0 ± 0.2	70.9 ± 0.2	73.0 ± 0.2
(4.0, 4.5]	47.8 ± 0.1	60.3 ± 0.1	68.4 ± 0.1	72.5 ± 0.2	73.8 ± 0.2
(4.5, 5.0]	49.4 ± 0.1	62.1 ± 0.1	70.2 ± 0.2	73.5 ± 0.2	74.7 ± 0.2
(5.0, 5.5]	50.7 ± 0.1	64.0 ± 0.1	71.4 ± 0.2	74.8 ± 0.2	75.9 ± 0.2
(5.5, 6.0]	52.5 ± 0.1	64.8 ± 0.1	72.6 ± 0.1	76.3 ± 0.1	76.9 ± 0.1
(6.0, 6.5]	55.5 ± 0.1	66.7 ± 0.1	73.8 ± 0.1	77.1 ± 0.1	77.7 ± 0.1
(6.5, 7.0]	56.7 ± 0.1	68.2 ± 0.1	74.7 ± 0.1	77.9 ± 0.2	78.8 ± 0.2
(7.0, 7.5]	58.7 ± 0.1	69.9 ± 0.1	75.7 ± 0.1	78.6 ± 0.2	79.5 ± 0.2
(7.5, 8.0]	59.8 ± 0.1	71.0 ± 0.1	76.0 ± 0.2	79.3 ± 0.2	80.6 ± 0.2
(8.0, 8.5]	62.0 ± 0.1	72.4 ± 0.1	77.1 ± 0.1	79.7 ± 0.2	80.7 ± 0.2
(8.5, 9.0]	61.7 ± 0.1	73.8 ± 0.1	77.7 ± 0.2	80.1 ± 0.2	82.0 ± 0.2
(9.0, 9.5]	63.0 ± 0.1	74.4 ± 0.1	78.4 ± 0.1	80.8 ± 0.2	81.9 ± 0.2
(9.5, 10.0]	64.5 ± 0.1	74.7 ± 0.1	79.0 ± 0.2	81.2 ± 0.2	83.0 ± 0.2
(10.0, 10.5]	66.4 ± 0.1	75.3 ± 0.1	79.1 ± 0.2	80.9 ± 0.2	82.8 ± 0.2
(10.5, 11.5]	67.3 ± 0.2	76.3 ± 0.2	79.6 ± 0.2	81.2 ± 0.2	83.1 ± 0.2
(11.5, 12.5]	67.6 ± 0.2	76.7 ± 0.2	79.4 ± 0.2	81.0 ± 0.2	83.3 ± 0.2
(12.5, 14.0]	69.2 ± 0.2	77.4 ± 0.2	79.8 ± 0.2	80.7 ± 0.2	82.9 ± 0.2
(14.0, 16.5]	70.1 ± 0.2	78.6 ± 0.2	80.0 ± 0.2	80.0 ± 0.2	82.3 ± 0.2
(16.5, 23.5]	71.1 ± 0.3	80.1 ± 0.3	80.3 ± 0.3	79.1 ± 0.3	74.8 ± 0.3
(23.5, 40.0]	71.7 ± 0.4	81.5 ± 0.4	80.5 ± 0.4	77.5 ± 0.4	68.7 ± 0.4

2013.11.24

Excited D_J :

resonance parameters, yields and sigfinicance

Resonance	Final	Mass (MeV)		Width (MeV)			Yields $\times 10^3$	Significance	
	state								(σ)
$D_1(2420)^0$	$D^{*+}\pi^{-}$	$2419.6\pm$	0.1	± 0.7	$35.2\pm$	0.4	± 0.9	$210.2 \pm\ 1.9\ \pm0.7$	
$D_2^*(2460)^0$	$D^{*+}\pi^{-}$	$2460.4\pm$	0.4	±1.2	$43.2\pm$	1.2	± 3.0	$81.9 \pm 1.2 \pm 0.9$	
$D_J^*(2650)^0$	$D^{*+}\pi^{-}$	$2649.2 \pm$	3.5	± 3.5	$140.2\pm$	17.1	±18.6	$50.7 \pm 2.2 \pm 2.3$	24.5
$D_J^*(2760)^0$	$D^{*+}\pi^{-}$	$2761.1 \pm$	5.1	± 6.5	$74.4\pm$	3.4	±37.0	$14.4 \pm 1.7 \pm 1.7$	10.2
$D_J(2580)^0$	$D^{*+}\pi^{-}$	$2579.5 \pm$	3.4	± 5.5	$177.5\pm$	17.8	±46.0	$60.3 \pm 3.1 \pm 3.4$	18.8
$D_J(2740)^0$	$D^{*+}\pi^{-}$	$2737.0 \pm$	3.5	± 11.2	$73.2\pm$	13.4	±25.0	$7.7 \pm 1.1 \pm 1.2$	7.2
$D_J(3000)^0$	$D^{*+}\pi^{-}$	$2971.8 \pm$	8.7		$188.1\pm$	44.8		9.5 ± 1.1	9.0
$D_2^*(2460)^0$	$D^+\pi^-$	$2460.4 \pm$	0.1	± 0.1	$45.6\pm$	0.4	±1.1	$675.0 \pm 9.0 \pm 1.3$	
$D_J^*(2760)^0$	$D^+\pi^-$	$2760.1 \pm$	1.1	±3.7	$74.4\pm$	3.4	± 19.1	$55.8 \pm 1.3 \pm 10.0$	17.3
$D_J^*(3000)^0$	$D^+\pi^-$	$3008.1 \pm$	4.0		$110.5\pm$	11.5		17.6 ± 1.1	21.2
$D_2^*(2460)^+$	$D^0\pi^+$	$2463.1 \pm$	0.2	± 0.6	$48.6 \pm$	1.3	± 1.9	$341.6 \pm 22.0 \pm 2.0$	
$D_J^*(2760)^+$	$D^0\pi^+$	$2771.7\pm$	1.7	± 3.8	$66.7\pm$	6.6	± 10.5	$20.1 \pm\ 2.2\ \pm 1.0$	18.8
$D_J^*(3000)^+$	$D^0\pi^+$	3008.1	(fixed	l)	110.5	(fixed	l)	$7.6 \pm\ 1.2$	6.6

