An Non-abelian Self-duality Equation in 6d and Multiple M5-branes in String Theory

Chong-Sun Chu
National Tsing-Hua University and Durham University
PASCOS 2013, 22/11/2013

based on

1. A Theory of Non-Abelian Tensor Gauge Field with Non-Abelian Gauge Symmetry GxG, NPB, arXiv:1108.5131.
2. Non-abelian Action for Multiple Five-Branes with Self-Dual Tensors, with Sheng-Lan Ko, JHEP, arXiv:1203.4224.
3. Non-Abelian Self-Dual String Solutions, with Sheng-Lan Ko, Pichet Vanichchapongjaroen, JHEP, arXiv:1207.1095.
4. Non-abelian Self-Dual String and M2-M5 Branes Intersection in Supergravity with Pichet Vanichchapongjaroen, JHEP, arXiv:1304.4322.
5. Instanton String and M-Wave in Multiple M5-Branes System, with Hiroshi Isono, EJPC, arXiv:1305.6808.
6. Non-Abelian Self-Dual Strings in Six Dimensions from Four Dimensional 1/2-BPS Monopoles, arXiv:1310.7710.

Consider a Lie-algebra valued one-form gauge field (connection) $A=A_{\mu}^{a} T^{a} d x^{\mu}$ with the field strength (curvature)

$$
F=d A+A^{2} .
$$

The self-dual Yang-Mills equation

$$
F=* F
$$

is an interesting and important equation.

- Physically, these are instantons which describe the nonperturbative vacuum structure of Yang-Mills gauge theory.
- It has also leaded to many important results in mathematics: geometry of 4-manifolds and instantons (Donaldson), ADHM construction, twistor, ...

This talk is concerned about a generalization of the self-duality YM equation in 4-dimensions to a 2-form gauge field $B=\frac{1}{2} B_{\mu \nu}^{a} T^{a} d x^{\mu} d x^{\nu}$:

$$
H=* H .
$$

Obviously the equation lives in 6-dimensional spacetimes (Lorentzian).

My main goal is to explain:
(1) How to write down such an equation? in particular what is the definition of H ?

$$
H=d B+(?)
$$

(2) How did this equation come up in physics? What does it describe in physics (string theory)?

Outline

(1) Motiation
(2) The Proposal: A 6d Self-Duality Equation as EOM on a system of M5-branes
(3) Applications/Justifications
(4) Discussions

Outline

(1) Motiation
(2) The Proposal: A 6d Self-Duality Equation as EOM on a system of M5-branes
(3) Applications/JustificationsDiscussions

Mysteries of M5-branes

What we know:

- The low energy worldvolume dynamics is given by a $6 d(2,0)$ SCFT with $S O$ (5) R-symmetry.
(Strominger, Witten)
The $(2,0)$ tensor multiples contains 5 scalars and a selfdual antisymmetric 3 -form field strength + fermions.
(Gibbons, Townsend; Strominger; Kaplan, Michelson)
What we don't know:
- What is the form of the gauge symmetry for multiple M5-branes ?
- Interacting self-dual dynamics on M5-branes worldvolume?

Enhanced gauge symmetry of multiple M5-branes (?)

- For multiple D-branes, symmetry is enhanced from $U(1)$ to $U(N)$:

$$
\delta A_{\mu}^{a}=\partial_{\mu} \Lambda^{a}+\left[A_{\mu}, \Lambda\right]^{a}, \quad F_{\mu \nu}^{a}=\partial_{\mu} A_{\nu}^{a}-\partial_{\nu} A_{\mu}^{a}+\left[A_{\mu}, A_{\nu}\right]^{a}
$$

- For multiple M5-branes, it is not known how to non-Abelianize 2-form (or higher form) gauge fields:
$\delta B_{\mu \nu}^{a}=\partial_{\mu} \Lambda_{\nu}^{a}-\partial_{\nu} \Lambda_{\mu}^{a}+(?), \quad H_{\mu \nu \lambda}^{a}=\partial_{\mu} B_{\nu \lambda}^{a}+\partial_{\nu} B_{\lambda \mu}^{a}+\partial_{\lambda} B_{\mu \nu}^{a}+(?)$.
to have nontrivial self interaction. Besides, what is a ?
- Moreover, exists no-go theorems: there is no nontrivial deformation of the Abelian 2-form gauge theory if locality of the action and the transformation laws are assumed.
(Henneaux; Bekaert; Sevrin; Nepomechie)
- These no-go theorems, however, suggest an important direction of given up locality.
- The need of nonlocality for M5-branes should not be surprising: ABJM and BLG theory for multiple M2-branes are also non-local if one eliminates the auxillary Chern-Simons gauge field.

Below I will explain a proposal for the equation of motion for the low energy worldvolume theory of multiple M5-branes by similarly introducing a set of auxillary fields.
(2) The Proposal: A 6d Self-Duality Equation as EOM on a system of M5-branes
(3) Applications/Justifications

4 Discussions

A proposal

- We generalize Perry-Schwarz's formulation for a single free M5-brane.

1. A direction, say x_{5}, is treated differently: denote the 5 d and 6 d coord. by x^{μ} and $x^{M}=\left(x^{\mu}, x^{5}\right)$.
2. the tensor gauge field potential is represented by a 5×5 antisymmetric tensor field $B_{\mu \nu}$. It can be thought of as a (tensor) gauge fixed formulation in which

$$
B_{\mu 5}=0 .
$$

(c.f. Yang-Mills theory in axial gauge $A_{3}=0$).

The self-duality equation $H=* H$ reads,

$$
\begin{aligned}
H_{5 \mu \nu} & =(* H)_{5 \mu \nu} \\
& =\frac{1}{6} \epsilon_{\mu \nu \rho \lambda \sigma} H^{\rho \lambda \sigma}:=\tilde{H}^{\mu \nu}
\end{aligned}
$$

In the gauge $B_{\mu 5}=0$, we have

$$
\partial_{5} B_{\mu \nu}=\tilde{H}_{\mu \nu}
$$

The equation is not manifestly 6 d Lorentz covariant.

- We propose a definition of the nonabelian H by promoting the partial derivative to a covariant derivative:

$$
\begin{aligned}
H_{M N L} & =D_{M} B_{N L}+D_{N} B_{L M}+D_{L} B_{M N} \\
D_{\mu} & =\partial_{\mu}+A_{\mu}, \quad D_{5}=\partial_{5}
\end{aligned}
$$

for some 1-form gauge field A_{m} with $A_{5}=0$.

- The self-duality equation $H=* H$ reads in the gauge $B_{\mu 5}=0$:

$$
\partial_{5} B_{\mu \nu}=\tilde{H}_{\mu \nu} .
$$

- M5-brane supermultiplet structure leaves no room for a new set of propagating degrees of freedom like the A_{μ} 's. Therefore they must be auxillary and be given in terms of the other fields. Our proposal is:

$$
F_{\mu \nu}=c \int d x_{5} \tilde{H}_{\mu \nu} .
$$

The equation is invariant under:

1. Yang-Mills gauge symmetry

$$
\delta A_{\mu}=\partial_{\mu} \Lambda+\left[A_{\mu}, \Lambda\right], \quad \delta B_{\mu \nu}=\left[B_{\mu \nu}, \Lambda\right] .
$$

2. Tensor gauge symmetry:

$$
\delta_{T} A_{\mu}=0, \quad \delta_{T} B_{\mu \nu}=D_{[\mu} \Lambda_{\nu]},
$$

for arbitrary $\Lambda_{\mu}\left(x^{M}\right)$ such that $\left[F_{[\mu \nu}, \Lambda_{\lambda]}\right]=0$.

Note:

- Our equation may be compared with the SD YM equation in the axial gauge $A_{3}=0$

$$
\partial_{3} A_{\alpha}=\tilde{F}_{\alpha}:=\frac{1}{2} \epsilon_{\alpha \beta \gamma} F_{\beta \gamma}, \quad \alpha, \beta, \gamma=0,1,2 .
$$

Only a portion of the Lorentz symmetry is manifest. Still need to discover the 6d covariant version.

- c is a constant that is initially arbitrary but actually fixed by properties of its solutions (charge quantization). The whole proposal would be wrong otherwise as there is no free tunable parameter in M-theory.

Outline

(1) Motiation

(2) The Proposal: A 6d Self-Duality Equation as EOM on a system of M5-branes
(3) Applications/Justifications

Self-dual string on M5-brane

- M2-branes can end on M5-brane. The endpoint gives strings living on the M5-brane.
These self-dual strings appear as solitons of the M5-branes theory.
- In a series of papers, we constructed non-abelian self-dual string solutions to our self-duality equation and obtained full agreement with the description of the M2-M5 intersection branes system in terms of supergravity.
(Chu, Ko, Vanichchapongjaroen 2012, 2013)
- For the abelian case, Perry-Schwarz has obtained a self-dual string solution:

$$
B_{i j}=-\frac{1}{2} \frac{\beta \epsilon_{i j k} x_{k}}{r^{3}}\left(\frac{x^{5} r}{\rho^{2}}+\tan ^{-1}\left(x^{5} / r\right)\right), \quad B_{04}=-\frac{\beta}{2 \rho^{2}}
$$

$i, j=1,2,3$.

- Although the auxillary field does not appear in the PS construction, it is amazing that

$$
F_{i j}=-\frac{c \beta \pi}{2} \frac{\epsilon_{i j k} x_{k}}{r^{3}}, \quad F_{04}=0
$$

i.e. a Dirac monopole in the (x, y, z) subspace if $c \beta=-2 / \pi$!

It turns out the use of an non-abelian monopole in place of the Dirac monopole is precisely what is needed to construct the non-abelian self-dual string solution.

Wu-Yang

- Consider SU(2) gauge group

$$
\left[T^{a}, T^{b}\right]=i \epsilon^{a b c} T^{c}, \quad a, b, c=1,2,3
$$

- The non-abelian Wu-Yang monopole is given by

$$
A_{i}^{a}=-\epsilon_{a i k} \frac{x_{k}}{r^{2}}, \quad F_{i j}^{a}=\epsilon_{i j m} \frac{x_{m} x_{a}}{r^{4}}, \quad i, j=1,2,3 .
$$

- Note that the field strength for the Wu-Yang solution is related to the field strength of the Dirac monopole by a simple relation:

$$
F_{i j}^{a}=F_{i j}^{(\operatorname{Dirac})} \frac{x^{a}}{r}
$$

Non-abelian self-dual string solution

- Inspired by the relation of Dirac monopole to the Wu-Yang solution, try the ansatz

$$
H_{\mu \nu \lambda}^{a}=H_{\mu \nu \lambda}^{(\mathrm{PS})} \frac{x^{a}}{r}
$$

Here $r=\sqrt{x^{2}+y^{2}+z^{2}}$ and $H_{\mu \nu \lambda}^{(\mathrm{PS})}$ is the field strength for the linearized Perry-Schwarz solution aligning in the x^{4} direction. Self-duality is automatically satisfied!

- B can be obtained by integrating $H_{\mu \nu 5}=\partial_{5} B_{\mu \nu}$ and we obtain

$$
B_{\mu \nu}^{a}=B_{\mu \nu}^{(\mathrm{PS})} \frac{x^{a}}{r}
$$

- It is amusing that the auxillary field configuration is given by

$$
F_{i j}^{a}=-\frac{c \beta \pi}{2} \frac{\epsilon_{i j m} x_{m} x_{a}}{r^{4}}, \quad F_{t w}^{a}=0
$$

This is the Wu -Yang monopole if we take $c \beta=-\frac{2}{\pi}$.

- The BPS equation of Howe-Lambert-West:

$$
H_{i j k}=\epsilon_{i j k} \partial_{5} \phi, \quad H_{i j 5}=-\epsilon_{i j k} D_{k} \phi
$$

can be solved with

$$
\phi^{a}=-\left(u+\frac{\beta}{2 \rho^{2}}\right) \frac{x^{a}}{r},
$$

- The transverse distance $|\phi|$ defined by $|\phi|^{2}=\phi^{a} \phi^{a}$ gives

$$
|\phi|=\left|u+\frac{\beta}{2 \rho^{2}}\right| .
$$

- This describes a system of M5-branes with a spike at $\rho=0$ and level off to u as $\rho \rightarrow \infty$. Hence the physical interpretation of our self-dual string is that two M5-branes are separating by a distance u and with an M2-brane ending on them.

- Asymptotic $U(1) B$-field is $\mathcal{B}_{\mu \nu} \equiv \hat{\phi}_{\infty}^{a} B_{\mu \nu}^{a}= \pm B_{\mu \nu}^{(\mathrm{PS})}$ and we obtain

$$
P=Q=-\frac{4 \pi}{|c|}
$$

Charge quantization

$$
e^{i\left(P Q^{\prime}+Q P^{\prime}\right)}=1
$$

implies

$$
P Q^{\prime}+Q P^{\prime}=2 \pi Z
$$

This fixes

$$
c= \pm 4 \sqrt{\pi}
$$

- One may generalize the above to a system of N_{5} coincident M5-branes with a spike with N_{2} self-dual strings.
- In particular, since for $U\left(N_{5}\right)$ theory with adjoint fields, there is a nontrivial center Z_{N} in the gauge group. Charge quantization condition is modified to

$$
P Q^{\prime}+Q P^{\prime}=2 \pi \frac{Z}{N_{5}}
$$

(Corrigan, Olive 1976)

- Making use of this, we find the spike

$$
|\phi|=u+\frac{N_{2}}{N_{5}} \frac{1}{\rho^{2}} .
$$

The N_{2}, N_{5} dependence agree precisely with the supergravity solution for intersecting M2-M5 branes.
(Niarchos, Siampos 2013)

Instanton String

- The previous solution was based on a configuration of the auxillary gauge field being given by the monopole. We can call our self-dual string solution monopole string. And we have shown that it describes precisely the M2-M5 intersections.
- Another well known configuration in Non-abelian gauge theory is the instanton. construct instanton string? what does it describe in M-theory?
- Turns out such a solution is not difficult to construct.
- Consider an ansatz

$$
B_{a b}=F_{a b} f\left(x^{0}, x^{5}\right), \quad B_{a 0}=0, \quad a=1,2,3,4 .
$$

then our self-duality eqn reads

$$
F_{a b} \partial_{5} f=\frac{1}{2} \epsilon_{a b c d} F_{c d} \partial_{0} f .
$$

This can be solved with

$$
\begin{aligned}
F_{a b} \text { being SD and } & f=f\left(x^{0}+x^{5}\right), \\
\text { or, } F_{a b} \text { being ASD and } & f=f\left(x^{0}-x^{5}\right),
\end{aligned}
$$

where (A)SD stands for (anti)self-dual.

- This solution describes a wave supported by an instanton.

A detailed studies of the properties of the solution reveals that the solution corresponds to M-wave (MW) on the worldvolume of multiple M5-branes.

Outline

(1) Motiation
(2) The Proposal: A 6d Self-Duality Equation as EOM on a system of M5-branes
(3) Applications/Justifications
(4) Discussions

- Supersymmetry on the system of multiple M5-branes tell us that the worldvolume theory is govern by a non-abelian self-duality equation. We have constructed such an equation of motion for the multiple M5-branes

$$
H=* H
$$

and show that it contains soltonic solutions whose properties agree with known brane systems in M-theory:

Auxillary A_{μ}	M-theory system
Wu-Yang monopole	M2-branes ending on M5-branes
Instanons	M-wave propagating on M5's
\vdots	\vdots

This provides some dynamical support to our proposed theory.

- Supersymmetry: $(2,0)$? $(1,0)$? Scalar potential and BPS equation?
- Covariant PST extension of our model?
- Classical integrability?

In some sense, our non-abelian self-duality eqn generalizes the self-dual Yang-Mills instanton equation

$$
F=* F
$$

. The instanton equation is exactly solvable.
(ADHM; Penrose; Ward; Atiyah; ...)
Q: Could our non-abelian self-duality eqn for H be integrable also?

