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The SM Higgs particle was finally discovered !? 2012/7/4
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The discovery of a scalar particle/field
has a great impact not only to particle
physics but also to cosmology, since

scalar fields play very important roles
to drive inflation in the early Universe
and generate cosmological perturbations.




Here we discuss Cosmology of the Higgs Field
In several distinct cases:

|. The Higgs field is NOT the inflaton

but a subdominant field during inflation.
Kunimitsu & JY Phys.Rev. D86 (2012) 083541

Il. The Higgs field itself is responsible for

inflation in the early Universe.

Kamada, Kobayashi, Kunimitsu, Yamaguchi & JY 1309.7410
Kamada, Kobayashi, Yamaguchi & JY Phys.Rev. D86 (2012) 023504
Kamada, Kobayashi, Yamaguchi & JY Phys.Rev. D83 (2011) 083515
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I. The case Higgs field is NOT the “Inf

Whatever the inflation model is, the Higgs field exists in the
Standard Model and plays some roles.

A well known peculiar property of a practically massless field in the de Sitter
(exponentially expanding) spacetime: (Bunchi & Davis 78, Vilenkin & Ford 82...)
2

| H
(p(x, 1)) = (27) H't ~Brownian motion with step izi and interval H™

T

In each Hubble time H ', quantum fluctuations with an amplitude

0P ~ i2£ and the initial wavelength 4 ~ H'is generated and
7T
stretched by inflation continuously.

During inflation, short-wave quantum fluctuations are
continuously generated for the Higgs field and its wave length
IS stretched by inflation to yield non-vanishing expectation

values.  mmp Higes Gondensation



The most dramatic case

If the self coupling A(u) becomes negative at high energy or
high field value, the potential becomes unstable.

VIH]
2“ A
Vipl= @) o' J\:
* \
(D : real and neutral component \/ """"""""""""""""" > H

of the Higgs field

Our Universe cannot be reproduced in such a case.
(Espinosa et al 2008)



We consider the case A is positive (and constant) in the

' f int t. A
regime Of our Interes Vo] = (u)q)4

A 4 -2
~—¢p, A=0(107)>0.
s h4 (107)

The behavior of a scalar field with such a potential during
inflation has been studied using the stochastic inflation method.

Decompose the scalar field as

Ok — ea(t)H)| a,p, (e ™ +ajp; (™ ]

d’k
(272_)3/2

p(x,0)=p(x, 0+

(Starobinsky and JY 1994)

short-wave quantum fluctuations

coarse-grained mode
long wavelength

Langevin eq. for = x.7 =—LV'
long wave mode p(x.1) 3H

3

<f(x1at1)f(x29t2)> :%5@1 —4,) jo(ea(®)H | x, — x, |) Jo(2) =

& . a small parameter

act as a stochastic noise
due to cosmic expansion

((5)+f(x,f) stochastic noise term

sin z

z



We can derive a Fokker-Planck equation for the one-point (one-domain)
probability distribution function (PDF) o,[@(x,t) = ¢]= p[¢(x,1)] = p,(@,?)

Op1|p(x,1)] T & e 2 . H3 8?py[0(x, t)]

Its generic solution can be expanded as

[)J_ (u]:: . f) — {?\le . —J:WQ -L."r (\.l:) Z ”“(I)“(&:) E__\—j\.n_(f-—f.o )
3H*

n=>0

= Toprlp(x, ).

®,, () is the complete orthonormal set of eigenfunctions of the Schrédinger-type eq.

1 g
192 AN, W(p) = 3 [v/(e)* —v"(9)],
[~§0§2 + W (sﬂf)] Culp) =~ Pule), A2

v(p) = g7V (#):

If N = /m e ") is finite, we find Ay = 0 and the equilibrium PDF exists.

i ;'x:.

| | 472V ()| o .
= = _ - S~ T 2 Giss .)_;' 71 (t_f
P1 (k’g' IL) - plefl(l‘i“) T €Xp (_ IHA4 E U.-.n(I)n.(":l")E' 0) 5

n=1

L Each solution relaxes to the equilibrium PDF at late time
which has the de Sitter invariance.



For V(y) = 44" we find an equilibrium PDF corresponding to Ay = () as

() 3272\ i 1 - 2?2/\5-::-4
Dleq\¥) = €X =
Magh# 3 ) r(HE P\ 3A

First few eigenvalues (numerically obtained)

et Aa=4.453

l)\[] = ¥, j\l = 1.36859
~107"H

Equilibrium expectation values obtained using P1eq(¥)

) 3 r(é) H2 g . T R 2
%) = r~ {1139 =132\ ::H- = H
WI=Vamrd)va VA
meg = Mp?) ~1.32 x 1023\ {2 < H’
A 3H* _
(V(p)) = I(k,ﬁ) = 555 = 9.50 x 10 0 < H'
] e

where )\ = 102\ ~ 1.

Higgs condensation



Properties of the Higgs condensation

Two point equilibrium temporal correlation function can be well approximated by
! ik 2\ _—A =
Gty — ta) = (p(x, t1)p(x, t2)) = (@P)e Ml |t —ty| 2 HT.

The correlation time defined by G(t.) = LG(0) is given by t, ~ 76.2\ 2 H !,

The spatial correlation function can be evaluated from it using the de Sitter invariance.

2A 4

G(r) = (p(x1,t)p(x2, 1)) = {¢°) (Ha(t)r)™ = |x1— X,

cf de Sitter invariant separation ,

H
z(x1.19) = cosh H(t; — t3) — T(LOthHHtﬂX — X)| a(t) = a,e”

The spatial correlation length defined by G/(r.) = 1G(0) therefore reads

O™ m H .6 .
P TGBMA * Exponentially large !

So we can treat it as a homogeneous field when we discuss its effect on reheating.

at)r. =



The energy density of the Higgs condensation remains constant
until the Hubble parameter decreases to 1. ~ 0.115\/4H, ;.
After this epoch it decreases in proportion to a*(¢) since it has

a quartic potential.
4

3H:
peond = 5 2 0.50 x 10~ HL Q <0

(MG EmP,/\/g)

At this time we find p,, = 3MZmZ; ~ 3.96\2 MZH:

mf

namely, P = Peond -

So the Higgs condensation or its decay products NEVER contributes to
the total energy density appreciably in the usual inflation models, because

P, € a”(t) in the field oscillation regime before reheating,

P €A (1) after reheating.

The story is completely different in inflation modes where the total
energy density decreases more rapidly thana ™ (¢) after inflation.



In some models, inflation may end abruptly without being followed by its
coherent field oscillation and reheating proceeds only through gravitational
particle creation.

Such inflation models include k-inflation, (original) fo]
G-inflation, and quintessential inflation models.
\&k .,
In such models the Higgs condensation contributes O
to the total energy density appreciably in the end. >

Quintessential inflation
(Peebles & Vilenkin 99)

A Slmple k-lnﬂat|0n example (Armendariz-Picon, Damour & Mukhanov 99)
|

L = Kl (¢inf )X + K2 (¢inf )X2 b X = _Egﬂvgyﬁnfgvﬂnf ¢inf: inﬂaton

If K;and K, are constants with opposite sign, the kinetic function has an attractor

solution X = — 21 ~ ().

2Ko

Then the energy density and pressure are given by

0L K2
— — L = —P = constant. == inflation with H>. = !
0X " "MK,

p=2X




k-inflation ends when K;and K, both becomes positive. Then the kinetic energy
starts to redshift quickly and only the first term of the Lagrangian becomes relevant.

/ KK, <0 [ k-infl‘ation ] a(t) oc e \

K\K,>0 [ Free scalar field } a(t)oct1/3 / kination

If this change Joccurs abruptly,
numerical calculation shows that|this transition|occurs within Hubble time.

@ravitational particle productionjtakes place due to this rapid change

of the expansion law. Vacuum state in de Sitter space is different from
that in the power-law expanding Universe.

T
<OdS |ap0werlawk apowerlawk |OdS> > O

The energy density of a massless boson created this way is given by

9H:

inf

29 —~2 44
32ma (cf Ford 87)

110

Pr

taking a =1 at the end of inflation.



Let us assume there are effectively N such modes and neglect the

logarithmic factor. INH

p — inf
r 2 4
energy density 327°a
A

inflation oc ¢°

kinatic energy of the inflaton p¢, = SMZHa % oc g7

radiation from gravitational particle production

p > time or scale factor
R

1
3N 30 \ 1 H2 e 3/ O N1/ T \.
Tr = . 111f23.9><1n‘%\fz( ) () GeV.
B~ 3002); (—2 ) Mg 106.75 0.01/

2
o o inf . H
r = 0.01 () T 1(;)13@9\;) Is the tensor-scalar ratio.



We incorporate the Higgs condensation. When it starts oscillation @H (¢) = m_

P = 3Mim2g ~ 3.96\2 MZ,

111f

4
ONHL, (meg\ 3
= mf(’”ﬁ) ~1.59 x 10 NHE, —

32ﬂ- Hinf

3HA
Pcond — - m om0 % 10 3H111f —
3272
energy density
A
inflation oc g°
-6
kinetic energy of the inflaton A4, — 3”"Hmt” ‘o a
Higgs

. . . —4
. Higgs oscillation oc g
condensation 99

o g’ radiation from Higgs condensation

ocaq™

radiation from gravitational particle production

> time or scale factor




If we try to estimate the reheat temperature from the equality /¢ =

taking the Higgs condensation into account, we find

1
' 1 g 107 Jx 4 r s }
I}:Lsxur(: ) (ff)GW
. 106.75 0.01/)

which is to be compared with the previous estimate

1
- - g B B NEL T X
- g3ﬁxuﬂﬁ(_“ ) (_ )Gw
I 106.75 0.01/)

Thus the Higgs condensate or its decay product contributes to
the total energy density appreciably.

Ilts fluctuation can be important.

Pcond



Higgs condensation as a curvaton

(Enqvist & Sloth, Lyth & Wands, Moroi & Takahashi 02)

Here we analyze properties of fluctuations of the Higgs condensation.

A power-law spatial correlation function like
2A4

G(r) = (p(x1, t)p(xa, 1)) = (@) (Ha(t)yr)~ 7

can be obtained from a power law power spectrum P(k) = |pi|* = Ak"
making use of the formula

Al JI(n+2) T
L —ik-R . o —n—3 . i
G(R) = /P(A)c s = AR o sin | (n+2)7]
o\ A2 3 T(3) o 2Mm
We find n=—3+ —2L and A~ 2T [ 3 (f)H;ﬁ- !
4

Hmf Hmf 2m2\ r( )
2Aq .
L 2 Slf A Hinf i.—?:lf
P ) |“r‘fx| ~ ().462 1.3 7 ~ : V2N < Hy

It practically behaves as a massless free field.



The power spectrum of (potential) energy density fluctuation is given by

= ()= dpn(r) dpn(0) _ SOV IOV — (1 (0132
=an7) = < P Ph > (V)? {VVn = (VO] |
. e _2n : (.13;}_.
L = 1y [0V = (V) = a(Hary 3 = [ P o
k) 14\/7)(1_3 by = %ln(Hm)

2
Amplitude of fractional density fluctuation on scale » = 77[

3 =
éf) Py (k) = 0.71¥/X = 0.071Az = O(0.1)

Pv(k) =

lts contribution to the curvature perturbation ¢ is unacceptably large.

cr /Ocond (C 510c0nd _Cr 5Hoscj ~ cond 731 ( ) >> 10

IO tot IO cond IO tot

HOSC
/ o can be O(1)

Hubble parameter at the onset of oscillation 7, . ~m,, = NGy,

(Kawasaki, Kobayashi & Takahashi 11)




Implication of the Higgs Condensation

Inflation models followed by kination regime with gravitational
reheating is incompatible with the Higgs condensation.

10-12 LT T 1 1 N S B R l, —
I s
10-14 T '\ i ] oICf
16 | H : k-inflation
L \ O :
3 1018 i _=' 1
o | r=0.001
\\ \-
o2l — T, =10°GeV
[ T _10 G V Standard inflation
7S PO AL
0% 10" 10 10° 100 10°
f [Hz]

Stochastic gravitational wave background from inflation
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I, The case Higzs field is the " Inflaton.
The SM Higgs Boson as the Inflaton.

Easy to preach  Difficult in practice

Tree level action of the SM Higgs field

So = fd%/_[ Mg - D HIP = MIFH > = uﬁ)z]
Taking ! H = 0, v + d;q/\/z) with @ being a real scalar field, we find
= fd%\/_[ "'R ——(ri b)? q‘)ﬂ

This theory is the same as that proposed by Linde in 1983 to drive
chaotic inflation at ¢ > M, .

for & > v.



my = V2Av, v =246 GeV m) A~0.13 atlow energy scale

m, =126GeV

In order to realize 5—TT=10‘5 we must have 41 =107" .

The Higgs potential is too steep as it is.

Square amplitude of curvature perturbation on scale r =27”
Pe (k) Ak ¢4l H? (5Tj2
G A) = = ‘ El — __ ~|
(27)3 871'2]\{%0551{ T
The spectral index of the curvature perturbation is given by
_ dInP¢ (k) _ _ H __ & _ ¢H
ns—l=—r=2—=—2eg—nu -5 =" "TH MTHy

In potential-driven inflation models

MV LV
n —1=-6¢, +2n, & == (7j ’7V=MG7




Models of Higgs inflation

The Higgs potential is too steep as it is.
Several remedies have been proposed to effectively flatten the potential.

MZ ]
= TR 4
I d) My =Mg

1 The most traditional one (original idea: Spokomy 1984
Cervantes-Cota and Dehnen 1995, ....

iIntroduce a large and negative nonminimal coupling to scalar curvature R
&
AL =—>¢R E~—10

2 2 2 Effectively flatten the
M3, — My, +|&|¢ Y

spectrum
47TA3 62 = 4k l\ H-

(297)° (27)3 8mAWMElc.c g

Pe (k) =




2 New Higgs inflation (Germani & Kehagias 2010)

Introduce a coupling to the Einstein tensor in the kinetic term.

1 v 1 v v 1
Lo p-Lem v o walizeon
2
During inflation w*G® = 3%

If H> M | the normalization of the scalar field changes.

.|>|~

\/ ¢ is the canonically normalized scalar field.

2
Vigl= _¢ —> V[¢] — i%¢ effectively reducing the self coupling

12 H? to an acceptable level.

(Actual dynamics is somewhat more complicated.)



3: Running kinetic inflation (Takahashi 2010, Nakayama & Takahashi 2010)

Introduce a field dependence to the kinetic term.

1

uv 1
58 0 90,0 — _Ef (4)0 90,4 f(v)=1

Canonical normalization of the scalar field changes the potential effectively.



4 Higgs G-inflation

£,= X -V($) — x=-Loro g

Galileon-type coupling
Background equations of motion

3MpH? =|1-gH(6-a) | X +V (9)
MyH = 1-gH¢(3+n-a) | X

3-n-gHHO-3c—6n+2na) |Hp+(1+2B)V'($)=0

H & g's g'x’
Slow-roll parameters e=—, n=—"—, a= . B= .
* 7 g T P v

For \8 S| K5 | ,5" <1 we find slow-roll EOMs

3H ¢ [1| )h V'g)=0  3M:LH*=V(p)

This extra friction term enhances inflation and makes
it possible to drive inflation by a standard Higgs field.

5 b




A X¢ag
L¢ =X _Z¢4 - IVE
P (k)=2.4x10" @k =0.002Mpc™" (N ¢y, = 60)

M =47x10° 27 M,, =10°GeV.

i
o | | T
B Planck+WP+BAO: ACDM + r
B Planck+~WP-+BAO: ACDM =+ r + (dn./dInk)
—~ o | 1
Bt BT
e
&
Y
e
8 S -
v
C:I - -
L Hi G inflation
€
Lol =
o] |
< 0.94 0.96 0.08 1.00

Primordial Tilt (n.)



Higgs inflation models as variants
of Generalized G-inflation

In fact, all these models can be described in the context of
seamlessly, which is the most
general single-field inflation model with 2"9 order field equations.

5
Inflation from a gravity + scalar system ¢ _ LA]—gd*x
LZ :K(¢,X) ;-‘. l

L,=-G, (¢, X ng
L, =G, (¢9X)R + Gy [(E@)Z B (VﬂVV¢)2}

L;=Gs(¢.X)G, V'V ‘%Gsx (09) ~3(00)(V,V.0) +2(V,V.9) |

These Lagrangians are obtained by covariantizing
the Galileon theory.




The Galileon

Higher derivative theory with a Galilean shift symmetry
0,4 —0,4+const, in the flat spacetime.

L, = ¢
2
L, =(V¢) nonreleativistic limit of 4D probe brane action
L. Z(V¢)2D¢/ in 5D theory
B 2
L,= (V¢)2 _2(D¢)2 B 2(V,UVV¢) } (V.V.9) =V, V,¢V'V'¢
£.5 _ (V¢)2 _(|:|¢)3 —3(D¢)(Vﬂvv¢)2 N 2(Vﬂvv¢)3:| (V#VV¢) ZVAZVV¢VVV4¢V,1V”¢

Field equation contains
‘ derivatives up to second-order
at most.

Galilean symmetry exists only in flat spacetime.




Covariantization: Generalized Galileon

]

no longer Galilean invariant
but field equations remain of second-order.

Generic theory with second-order field egs.

b :[K(¢’X) 4 arbitrary functions of ¢ and Xz—l(aqﬁ)2
L, = —@ (¢,X)|:| 2

— : — ’ — an
L4 F4 (¢9X R G4X |:(D¢) (v,uvv¢) :| GiX =8_X

L, = Fs (¢.X)G, V'V % Gy [(E@)g —3(og) (VﬂVV¢)2 2 (V”vv¢)3J

This theory includes the Einstein action with G, > M, /2
as well as a nonminimal coupling with G, >—-&¢*/2 .
Gravity is naturally included by construction.




In fact the most general scalar+gravity theory that yields
second-order field egs. was discovered by Horndeski
already in 1974. (recently revisited by Charmousis et al. 2011)

L, =82 KV, BR, +(26, V'V, 9+ 205,V V)V VN gV VPR,

y7i%ez
+80| FR /" +2FE V'V V'V s+ 2N NIV 1 |- 6( F, — Xic Jop+ 5,
With 6% =31616757  Fy =2(i+2XK,, —Kk,) &, K, Kg Ko (4, X)

Uvo u v o

We have found that the Generalized Galileon is equivalent
to Horndeski theory by the following identification.

v X
K = kg +4X / dX" (Kk8g — 2K340) .

X
(1:;3; = flE: —2X K8 — SAYH;}'_,.___:, + 2 / [LY! '[ K8 — QH_"_?“..:'_., j

{f;_l = 2F — '—LKFH;},.

(Kobayashi, Yamaguchi & JY 2011)




Generalized G-inflation

- 5 5
Inflation from a gravity + scalar system ¢ _ Zjﬁi h—ga"‘x
i=2

L,=K(¢,X)
G, oM /2 gives the Einstein action

L,=-G,(¢, X )og
s A s

L,=G,(¢,X)G, V"V —%GSX [(u¢)3 ~3(og)(V,V,4)
This theory includes

2

+ 2(vﬂvv¢ﬂ

hotential-driven inflation models K (¢, X)=X —V[g]
K-inflation model K(4,X)=K(X)

Higgs inflation model —ERP* 2 =G, o -7 /2
New Higgs inflation model G*0,40,6 =G < ¢

G-inflation model K($, X) - G(4, X)ogp




Generalized G-inflation

Inflation from a gravity + scalar system q_ ZJ‘L \/7“’4

L,=K(¢,X)
G, oM /2 gives the Einstein action

L,=-G,(¢, X )og
s A s

L5 _ G5 (¢,X) Gﬂvvﬂvv¢ _éGSX |:(|:|¢)3 — 3(D¢)(Vﬂvv¢)2 + Z(Vﬂvv¢)3:|

Generalized G-inflation is a framework to study
the most general single-field inflation model

with second-order field equations.




In fact, all these models can be described in the context of
the Generalized G-inflation model seamlessly, which is the most
general single-field inflation model with 29 order field equations.

5
Inflation from a gravity + scalar system g — LA]—gd*x
LZ _ K(¢,X) ;.‘. l

L, =, (¢,X)|:|¢
£, =Gy (¢ X) R+ Gy (00) ~(V,9.9) |
L5 _ G5 (¢,X) Gﬂvvﬂvv¢ _éGSX |:(|:|¢)3 — 3(D¢)(Vﬂvv¢)2 + Z(Vﬂvv¢)3:|

This theory includes
botential-driven inflation models K (4, X)=X -V[4]

K-inflation model K(¢,X)=K(X)
Higgs inflation model —ERY* 2 =G, o &4 )2
New Higgs inflation model G*'0,40,¢ <G, < ¢

G-inflation model K(¢,X)-G(4,X)ng




L, =K, X),

L3 = —G;(¢, X)Ud,

G;x =0G;/0X
L 4= Gy(d, X)R + Gix[(O¢)* — (V,V,¢)*]

Ls = Gs(¢, X)G,,VHV'¢ — iGsx[(Op)* — 3(0P) (V. V,0)* + 2(V,V,¢)°]

We consider potential-driven inflation in the generalized G-inflation context.
So we expand

K@, X) = —V(p) + K(P)X + = =%,
Gi(d, X) = gi(d) + hi(p)X + -+ -.

and neglect higher orders in X.



M3 ] A
L="PRr—(3,¢)? - ¢*

AL = k"X (running kinetic inflation),

AL = %XDQS (Higgs G-inflation),
AL = — ‘Ecgﬁsz (nonminimal Higgs inflation),
1 o )
AL — 5 [XR i (D(fb)z T (vju_vvffb)—]

(new Higgs inflation).

Yet another new model:

Running Einstein Inflation

K(p) =1+ k",

0
h3(¢’) = W

_M%l_-f 2
g(e‘))—T 5 9%

|
hy(h) = —5

20’
N

hs(db) = 0.

in the generalized G-inflation

¢

simplest case  hg(¢p) = n




We analyze all these possibilities on equal footing, characterizing
Higgs inflation by five functions ¢. K. g. hs. hy. hs and potential.

Potential-driven slow-roll inflation

E == H<<l 3= GB<*<I 3 ‘Q“<<1 : X < 1

— T 5 2 e 2 7 i 4 (:F,.! & 1
h,; . t P .

a; = < 1 (i =3,4,5). 0/HS8,¢;/Ha; < 1(i =2,3,4,5).

h:

Slow-roll field equation
3HJ =~ —V' + 12H%g! wi J =K + 3h:Hd* + 6hyH>p + 3hsH? ¢’

Gravitational field equations
6gH> =V, —4gH + 2g'oH =~ ¢ J.



Cosmological Pertu
Tensor perturbation
7 :éf‘f“ﬁ/“ﬂf‘[%l%?j — T (Tn, ) ]

Fr:=2[G; — X(¢Gsx + Gsy)]
Gr:=2[G; —2XGyx — X(H)Gsx — Gsy)].




Scalar perturbations

§) = fdrd’*m [gsg TS V)2 ]

TS:—EK—!( GT) Gs

a dt

7+ 3Gy,

S = XKy + 2X?Kyy + 12HAXGy + 6H pX?Gaxy — 2XG3y — 2X°Gayyx — 6H?>G, + 6[H*(TXG 44
+ 16X2Gaxx + 4X3Gaxxx) — HP(Guay + 5XGuapx + 2X2Gaypxx)] + 30H> pXGsy + 26H> pX*Gsyx
+ dH3 P X*Gsxxx — 6H*X(6Gsy + 9XGsyx + 2X2Gsyxy),

O = —dpXGsx + 2HG, — 8HXGyx — SHX?Gaxx
+ ¢Guy + 2XPGagx — H*H(5XGsxt+ 2X2Gsyy) + 2HX(3Gsy + 2X Gsyy).
1/2 142
_vs GJ° H T
P,= ———| ng—1=3—"12vg
2 "]?;f 4r-

S_E‘i_gs
2—2e— fg+ gs

Vg .=



So far each model
has been analyzed

separately.

MCMC analysis
By Popa 2011

Higgs mass

170

165

160

155

150

&
T 145

140

135

130

125

120

nonminimal

- G-inflation
- E-inflation
- L-inflation

ne

0.967

0.968

0.969

097 0.971 0972
n

spectral index

0.973

0974

0.975

0.976



In fact, as for Higgs G-inflation, it was recently found
that inclusion of higher order kinetic term X' (¢>2)

is required to make the theory well behaved in the
field oscillation regime after inflation, which makes it
possible to give various predictions for (n,r) .

(cf Ohashi & Tsujikawa 2012)



AIQ XE 1 Lp‘.Zn—l—le.
S= [ d*zy/—q¢ | =L + X + — N VT O
| 2 AfA—D) 477 T ppemEam ¥
X
= < | sl Planck+WP: ACDM + r
'ﬁ i n=~>0
o — L n=1 _
LLU o n =2
E =0
o =
rol i
O
&
< 8
d » e
S .
S 0.94 0.96 0.98 1.00

Primordial Tilt (n)

(Kunimitsu et al 2013 in preparation)






The Higgs self coupling must remain positive
to well above the scale of inflation.

Inflation followed by a kination regime with
gravitational reheating should be ruled out.

Higgs inflation is possible and subject to
observational tests in the context of the
Generalized G inflation.









Stability of the SM Higgs field

Just after the CERN seminars in 2011/12 announcing “hints of the Higgs boson”
an analysis of the renormalized Higgs potential was done for m=124~126GeV.
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For m, =126GeV there is a finite parameter region within 20 where the Higgs
potential is stable, or its self coupling remain positive even after renormalization.



All the Higgs inflation models are unified in the
Generalized G-inflation.

Open issue:

Quantum corrections in the presence
of these new interaction terms.



L, =K(¢,X),

L;=—Gs3(¢, X)0g,
L4 =G4, X)R + Gux[(O)* — (V,V, )]
Ls=Gs(¢, X)G,, VAV’ ¢ — 1G5y [(O)? — 3(0d)(V,V, ) + 2(V,V, )]

We consider potential-driven inflation in the qeneralized G-inflation context.
So we expand K(¢, X) = —V(¢) + K(d)X

Gi(d, X) = gi(d) + hi(¢)X + -

and neglect higher orders in X.

We find the following identities. (t.d.) =total derivative
g3(P)g = 2g3X + (t.d.),
gs(P)G*'V ,V,p = —gi| XR + (Lo)? —(V,V,¢) 21+ 3e/X b —221'X% + (td

As a result we can set £3 = 0 = g5 in the Lagrangian without loss of generality.
4= 8



