PASCOS 2013

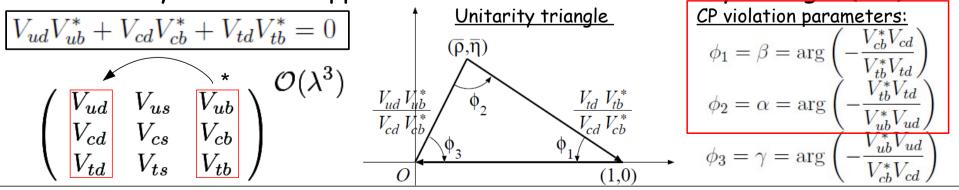
Time-Dependent CP Violation Measurements in B Mesons at Belle

Zbyněk Drásal

Charles University, Prague

For Belle collaboration

Quark Mixing and CP Violation


• The CP violation (P) established within the SM in terms of "charged" weak currents: $\boxed{\mathcal{L}_W^{(q)} = \frac{g}{\sqrt{2}}(W_\mu^+ \bar{u}_L \gamma^\mu V_{CKM} d_L + W_\mu^- \bar{d}_L \gamma^\mu V_{CKM}^\dagger u_L)}$

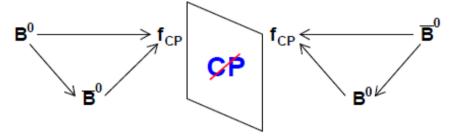
and 3-gen. quark mixing matrix: Cabibbo-Kobayashi-Maskawa matrix

$$\begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \end{pmatrix} + \mathcal{O}(\lambda^4)$$

$$A\lambda^3(1 - \rho - i\eta) - A\lambda^2 \qquad 1 \qquad \text{Wolfenstein parametrization } (\lambda = \sin \theta_c)$$

- $\rightarrow V_{CKM}$ induces \mathscr{L}^{p} due to an existence of a complex phase ($CP(\mathcal{L}_{W}^{(q)}) \neq \mathcal{L}_{W}^{(q)}$)
- \rightarrow unitarity conditions applied on V_{CKM} define a unitarity triangle (UT)

Time-Dependent & Measurements



- How can we measure the complex phases, i.e. UT angles?
- · Make use of time-dependent analysis and measure the QM interference between $B^0 - \overline{B}^0$ mixing and B^0 decay to a CP eigentstate in time:

$$A_{CP}(\Delta t) = \frac{\Gamma(\bar{B}^{0}(\Delta t) \to f_{CP}) - \Gamma(B^{0}(\Delta t) \to f_{CP})}{\Gamma(\bar{B}^{0}(\Delta t) \to f_{CP}) + \Gamma(B^{0}(\Delta t) \to f_{CP})}$$

$$= \mathcal{A}_{CP}\cos(\Delta m_{d}\Delta t) + \mathcal{S}_{CP}\sin(\Delta m_{d}\Delta t)$$

$$\mathbf{B}^{0}$$

$$S_{CP} = +\frac{2 \mathcal{I} m \lambda_{CP}}{1 + |\lambda_{CP}|^2}$$

 $S_{CP} = + \frac{2 Im \lambda_{CP}}{1 + |\lambda_{CP}|^2} \rightarrow \text{mixing-induced CP violation (interference between tree & box diagram)}$

$$\mathcal{A}_{CP} = -\frac{1 - |\lambda_{CP}|^2}{1 + |\lambda_{CP}|^2}$$

 $\mathcal{A}_{CP} = -\frac{1-|\lambda_{CP}|^2}{1+|\lambda_{CP}|^2} \rightarrow \text{direct CP violation (in addition, penguin diagram plays a role in interference)}$

$$\Delta m_d \rightarrow B^0 - \overline{B}^0$$
 mass difference

$$\Delta m_d \to B^0 - \overline{B}^0$$
 mass difference $\Delta t \to B^0 - \overline{B}^0$ proper time difference $\lambda_{f_{CP}} = \xi_{f_{CP}} \frac{q}{n} \frac{A_{\bar{f}_{CP}}}{A_c}$

$$\lambda_{f_{CP}} = \xi_{f_{CP}} \frac{q}{p} \frac{A_{\bar{f}_{CP}}}{A_{f_{CP}}}$$

Measurements presented here:

 $b \rightarrow s\bar{q}q \rightarrow \phi_1$ related measurements

$$\begin{array}{ccc} B^0 & \to & \omega K_S^0 \\ B^0 & \to & \eta' K^0 \end{array}$$

$$b
ightarrow u \bar{u} d
ightarrow \phi_2$$
 related measu $B^0
ightarrow \pi^+ \pi^-$ Recent

 $b
ightarrow u \bar{u} d
ightarrow \phi_2$ related measurements

Experimental Principles of Time-Dependent © © Measurements at Belle

- How to determine time (Δt) and which $B^{\overline{0}}/B^0$ decayed to a CP-eigenstate?
 - Use asymmetric beam energy \rightarrow "increase" B decay length $\rightarrow \Delta z \approx 200 \mu m$
 - Produce $\Upsilon(4S) \to \overline{BB}$ born in a coherent QM state (C=-1 & Bose statistics):

$$B_{CP} \rightarrow \mathsf{B}^0 (\overline{\mathsf{B}}^0)$$
 at time t

$$B_{\rm tag} \rightarrow \overline{\mathsf{B}}^{\scriptscriptstyle 0} \, (\mathsf{B}^{\scriptscriptstyle 0}) \, \mathrm{at} \, \mathrm{time} \, t$$

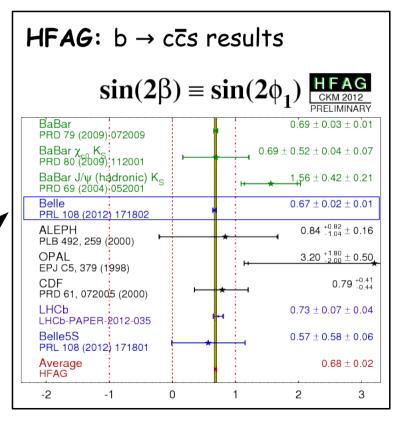
- Reconstruct $B_{CP} \rightarrow$ to a final state f_{CP}
- Determine the flavour tag of $B_{
 m tag}$ in 7 r-bins

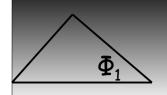
- Measure the distance between B decay vertices ≈ 200 um Aerogel Cherenkov ct. signal E CsI Calorimeter (TD, 16Xo vertexing Time of Flight 8 GeV 3.5 GeV Y(4S) $\bar{\mathsf{B}}^{0}_{\mathsf{tag}}$ $\beta y = 0.425$ Drift Chamber μ/K_L detection Si Vtx Detector 14/15 lvr. RPC+Fe 772 x 10^6 BB pairs collected 3/4 layer DSSD

\mathscr{L}^{p} Measurements in b \rightarrow qqs Decays

- Motivation for $B^0 \to \omega K_S^0$ & $B^0 \to \eta' K^0$ measurements?
 - In contrast to b \rightarrow ccs ($B^0 \rightarrow J/\Psi K_S^0$), the modes: b \rightarrow uūs, b \rightarrow dds are penguin diagram dominated (tree is Cabbibo & color suppressed), b \rightarrow sss is penguin only:

$$A(c\bar{c}s) = V_{cb}V_{cs}^{*}(T_{c\bar{c}s} + P_{s}^{c} - P_{s}^{t}) + V_{ub}V_{us}^{*}(P_{s}^{u} - P_{s}^{t})$$


$$A(u\bar{u}s) = V_{cb}V_{cs}^{*}(P_{s}^{c} - P_{s}^{t}) + V_{ub}V_{us}^{*}(T_{u\bar{u}s} + P_{s}^{u} - P_{s}^{t})$$


$$A(s\bar{s}s) = V_{cb}V_{cs}^{*}(P_{s}^{c} - P_{s}^{t}) + V_{ub}V_{us}^{*}(P_{s}^{u} - P_{s}^{t})$$

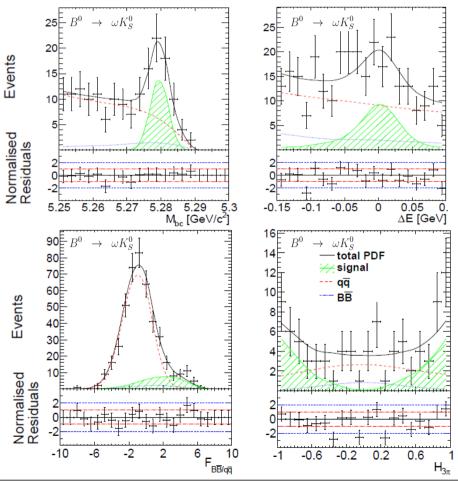
- → measurements sensitive to New Physics (NP)!
- Expected parameters within the SM:

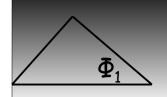
$$\mathcal{A}_{CP} \simeq 0$$
 $\mathcal{S}_{CP} \simeq -\xi_{f_{CP}} \sin 2\phi_1$

- Observing a large difference $|\mathcal{S}_{CP} - \mathcal{S}_{J/\Psi K_S^0}|$ $(\mathcal{S}_{CP} = -\xi_{f_{CP}} \sin 2\phi_1^{\mathrm{eff}})$ \rightarrow a clear sign for NP

$B^0 \rightarrow w K_s^0$ Analysis

- Simultaneous 7D unbinned ML fit ($B^0 \rightarrow \omega K_S^0 \& B^\pm \rightarrow \omega K^\pm$ (control sample)) to:
 - $\rightarrow M_{bc}, \ \Delta E, \ \mathcal{F}_{B\bar{B}/q\bar{q}}(\mathcal{L}\mathcal{R}_{B\bar{B}/q\bar{q}}), \ m_{3\pi} (\omega \rightarrow \pi^+\pi^-\pi^0), \ \cos\theta_{3\pi}^{\mathrm{Hel}}, \ \Delta t, \ q \ (B \ flavour)$


$$M_{\rm bc} \equiv \sqrt{(E_{\rm beam}^{\rm CMS})^2 - (p_{\rm B}^{\rm CMS})^2}$$


$$\Delta E \equiv E_{\rm B}^{\rm CMS} - E_{\rm beam}^{\rm CMS}$$

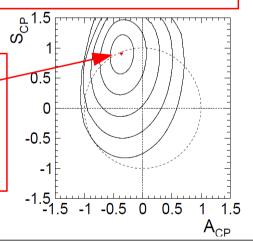
$$\mathcal{F}_{B\bar{B}/q\bar{q}} = \log \frac{\mathcal{LR} - 0.2}{1 - \mathcal{LR}}$$

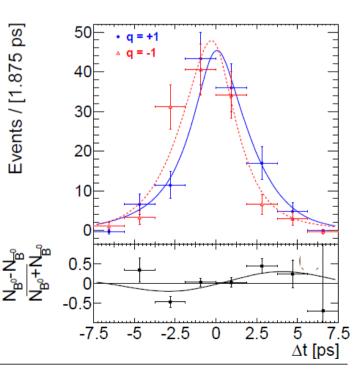
Separate B events / continuum $e^+e^- \rightarrow q\bar{q}$ q=u,d,s,c

A simultaneous fit with a calibration (control) sample performed to significantly suppress systematic effects

$B^0 \rightarrow w K_s^0$ Analysis

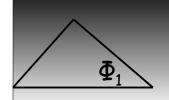
• Fit results:


- Branching fraction measurements:


$$\mathcal{B}(B^0 \to \omega K_S^0) = (4.5 \pm 0.4 \text{ (stat)} \pm 0.3 \text{ (syst)}) \times 10^{-6}$$

 $\mathcal{B}(B^\pm \to \omega K^\pm) = (6.8 \pm 0.4 \text{ (stat)} \pm 0.4 \text{ (syst)}) \times 10^{-6}$

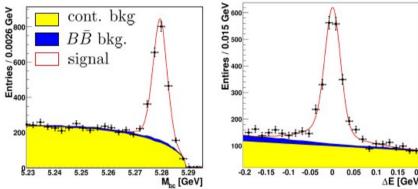
- CF measurement:

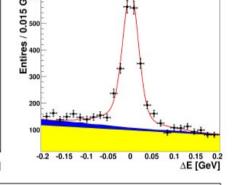

$$\mathcal{A}_{CP}(B^0 \to \omega K_S^0) = -0.36 \pm 0.19 \text{ (stat)} \pm 0.05 \text{ (syst)}$$

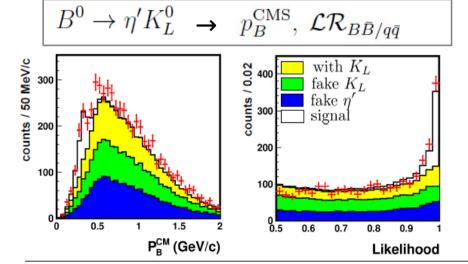
 $\mathcal{S}_{CP}(B^0 \to \omega K_S^0) = +0.91 \pm 0.32 \text{ (stat)} \pm 0.05 \text{ (syst)}$

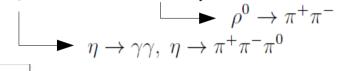
- → First evidence of $\mathscr{L}\mathscr{P}$ (3.1 σ) in B° → w K°_{s}
- → No sign for NP

Preliminary results

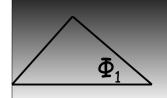



B° → n' K° Analysis




• S/B yield \rightarrow 3D (2D) unbinned ML fit (where $\eta' \rightarrow \eta \pi^+ \pi^- \& \eta' \rightarrow \rho^0 \gamma$) to:

$$B^0 \to \eta' K_S^0 \to M_{bc}, \ \Delta E, \ \mathcal{L} \mathcal{R}_{B\bar{B}/q\bar{q}}$$

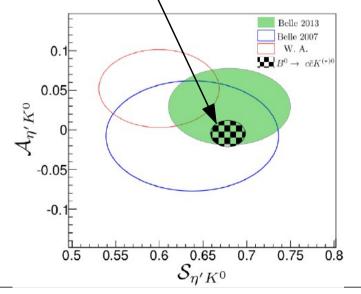


All n' decay modes combined

	This analysis	2007 analysis
	$772~\mathrm{M}~Bar{B}$	$534~\mathrm{M}~Bar{B}$
mode	N_{sig}	N_{sig}
$\eta' K_S$	2506.3 ± 63.1	1256.6 ± 42.1
$\eta' K_L$	1041.7 ± 41.1	478.8 ± 41.1

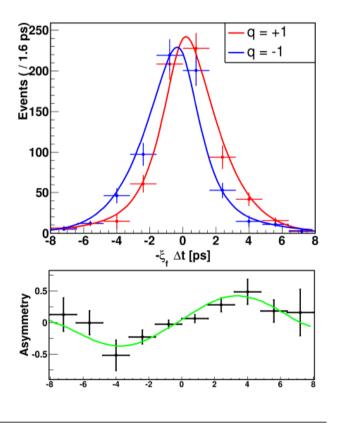
Data reprocessed with new tracking code → improved reconstruction efficiency

$B^0 \rightarrow \eta' K^0$ Analysis


- $\Delta t \times q$ CP fit with fixed S/B performed ...
- Fit results:

$$\mathcal{A}_{CP}(B^0 \to \eta' K^0) = +0.03 \pm 0.05 \text{ (stat)} \pm 0.03 \text{ (syst)}$$

 $\mathcal{S}_{CP}(B^0 \to \eta' K^0) = +0.68 \pm 0.07 \text{ (stat)} \pm 0.03 \text{ (syst)}$


 \rightarrow the world's most precise ${\mathcal L}^{\rm p}$ measurement in $B^0 \rightarrow \eta' K^0$

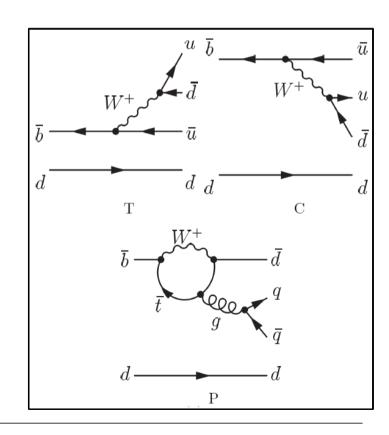
 \rightarrow results well consistent with b \rightarrow ccs measurements

 \rightarrow no sign for NP

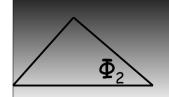
Preliminary results

CP Measurements in b → uūd Decays

Recent measurements at Belle in b → uūd decays:


$$B^0 \to \pi^+\pi^- \to \text{tree (T)} + \text{penguin (P)} \text{ diagram dominated}$$

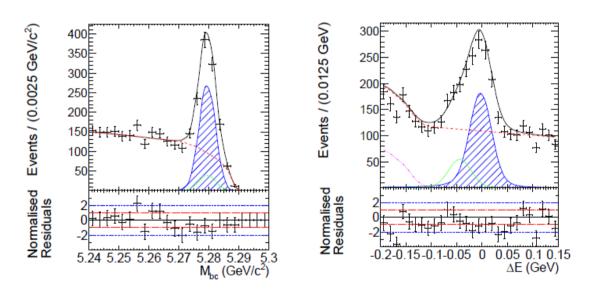
 $B^0 \to \rho^0 \rho^0 \to \text{colour suppressed tree (C) (+ penguin (P) diagram dominated)}$

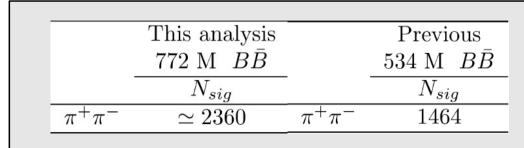

- penguin contribution can't be ignored ...
- both weak and strong phases play a role ...
- → expected non-zero effect of direct CF in SM
- → no clean extraction of single CKM phase possible:

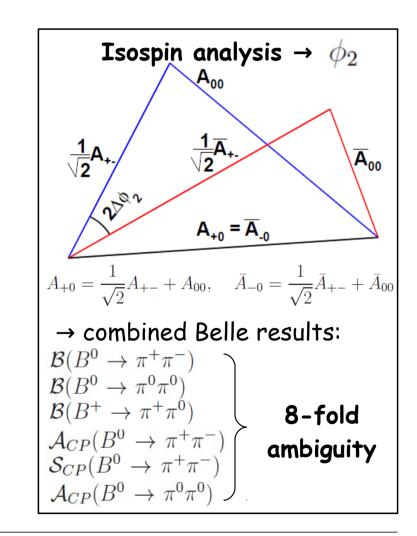
$$S_{CP} \sim \sin(2\phi_2 + 2\Delta\phi_2)$$

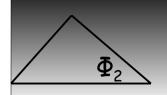
How to extract $\phi_2 \rightarrow \text{combine } \pi\pi$ (pp) results using isospin analysis ...

(For $B \to \pi\pi$, see Gronau & London PRL 65, 3381, 1990)



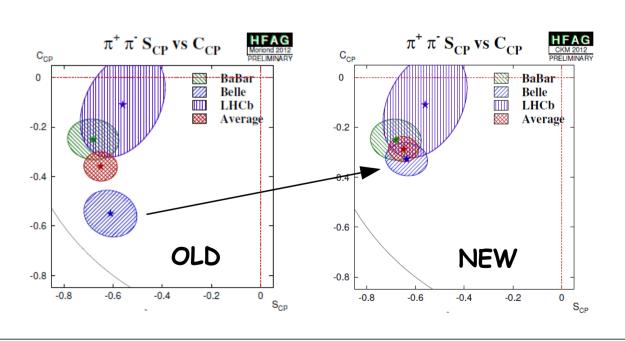

$B^0 \to \pi^+\pi^-$ Analysis

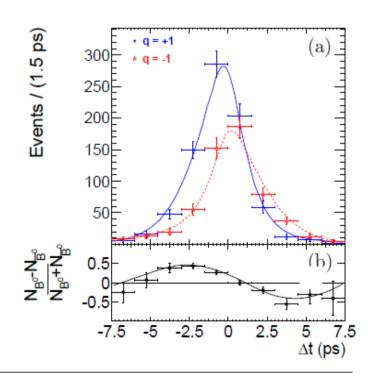


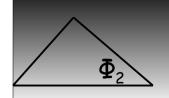

• 7D unbinned ML fit to:

$$M_{bc}$$
, ΔE , $\mathcal{F}_{B\bar{B}/q\bar{q}}$, $\mathcal{LR}^{+}_{K/\pi}$, $\mathcal{LR}^{-}_{K/\pi}$, Δt , q

$B^0 \to \pi^+\pi^-$ Analysis



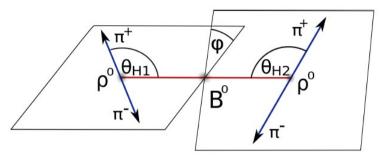

• Fit results:

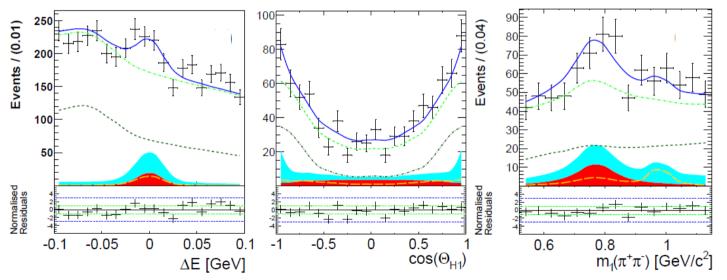

http://arxiv.org/abs/1302.0551v2

$$\mathcal{A}_{CP}(B^0 \to \pi^+ \pi^-) = +0.33 \pm 0.06 \text{ (stat)} \pm 0.03 \text{ (syst)}$$

 $\mathcal{S}_{CP}(B^0 \to \pi^+ \pi^-) = -0.64 \pm 0.08 \text{ (stat)} \pm 0.03 \text{ (syst)}$

ightarrow the world's most precise $\mathscr{L}^{\not\!\!D}$ measurement in $B^0 \rightarrow \pi^+\pi^-$



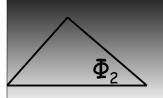

$B^0 \rightarrow \rho^0 \rho^0$ Analysis

• 6D unbinned ML fit to:

$$\Delta E, M_{\pi^{+}\pi^{-}}^{1}, M_{\pi^{+}\pi^{-}}^{2}, \cos \theta_{\text{Hel}}^{1}, \cos \theta_{\text{Hel}}^{2}, \mathcal{F}_{B\bar{B}/q\bar{q}}$$

$^-B^0 \to \rho^0 \rho^0, B^0 \to f_0 \rho^0$, all $B^0 \to 4\pi$, non-peaking $B\bar{B}$ all non-peaking

Dominant background → continuum


ef & angular analysis:

 $\rho^0 \rho^0 \rightarrow$ not a pure CP state

- longitudinal → CP even
- transversal → mixed
- \rightarrow use angular analysis to find long. component f_L

Isospin analysis $\rightarrow \phi_2$

The same procedure as for $B^0 \to \pi^+\pi^-$ but with long. component f_L only

$B^0 \rightarrow \rho^0 \rho^0$ Analysis

• Fit results:

http://arxiv.org/abs/1212.4015v2

$$\mathcal{B}(B^0 \to \rho^0 \rho^0) = (1.02 \pm 0.30 \; (\mathrm{stat}) \pm 0.15 \; (\mathrm{syst})) \times 10^{-6} \to 3.4 \sigma \; \mathrm{significance}$$
 $f_L = 0.21^{+0.18}_{-0.22} \; (\mathrm{stat}) \pm 0.13 \; (\mathrm{syst})$

Compared to BaBar (387M \overline{BB}) & previous Belle (535M \overline{BB}) results:

- → BR consistent with previous results
- \rightarrow f_L differs by 2.1 σ from BaBar!

Belle: $f_L = 0.21^{+0.18}_{-0.22} \text{ (stat)} \pm 0.13 \text{ (syst)}$

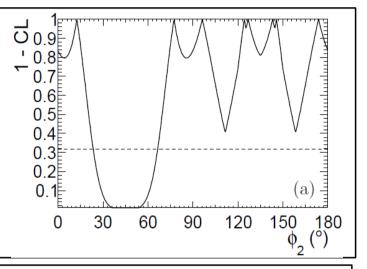
BaBar: $f_L = 0.75^{+0.11}_{-0.14} \text{ (stat)} \pm 0.04 \text{ (syst)}$

$$\mathcal{B}(B^0 \to f_0 \rho^0) \times \mathcal{B}(f_0 \to \pi^+ \pi^-) = (0.86 \pm 0.27 \text{ (stat)} \pm 0.14 \text{ (syst)}) \times 10^{-6}$$

 \rightarrow 3.0 σ significance

$B^0 \to \pi^+\pi^-$, $B^0 \to \rho^0 \rho^0$ Isospin Analyses

• Isospin analyses $\rightarrow \phi_2$ constraints:

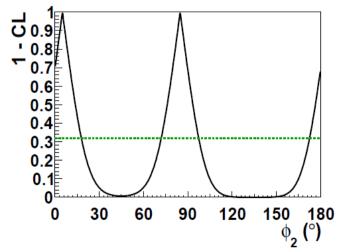

$$B \to \pi\pi$$

$$23.8^{\circ} < \phi_2 < 66.8^{\circ}$$

→ excluded @ 10 CL

Combined:

$$\begin{array}{c} B^0 \to \pi^+\pi^- \\ B^+ \to \pi^+\pi^0 \end{array} \right\} \quad \hbox{772M B\overline{B} pairs used ...} \\ B^0 \to \pi^0\pi^0 \qquad \hbox{275M B\overline{B} pairs} \end{array}$$


$$B \to \rho \rho$$

$$\phi_2 = (84.9 \pm 12.9)^{\circ} \ \Delta \phi_2 = (0.0 \pm 9.6)^{\circ}$$

- \rightarrow negligible penguin contribution \rightarrow small BR(B° \rightarrow ρ ° ρ °)
- → 8-fold ambiguity degenerated to 2-fold only

Combined:

$$B^0
ightarrow
ho^0
ho^0$$
 772M $B\overline{B}$ pairs used ... $B^\pm
ightarrow
ho^\pm
ho^0$ 85M $B\overline{B}$ pairs $B^0
ightarrow
ho^+
ho^-$ 535M (275M) $B\overline{B}$ pairs

Summary

- 2 new measurements of time-dependent \mathcal{C}^{p} in $b \rightarrow q\bar{q}s$ transitions:
 - First evidence of \mathscr{C} in $B^0 \to \omega K_S^0$:

$$S_{CP}(B^0 \to \omega K_S^0) = +0.91 \pm 0.32 \text{ (stat)} \pm 0.05 \text{ (syst)}$$

- The world's most precise measurement of $\mathcal{B}(B^0 \to \omega K_S^0)$ and $\mathcal{B}(B^\pm \to \omega K^\pm)$
- The world's most precise measurement of \mathscr{L} in $B^0 \to \eta' K^0$:

$$S_{CP}(B^0 \to \eta' K^0) = +0.68 \pm 0.07 \text{ (stat)} \pm 0.03 \text{ (syst)}$$

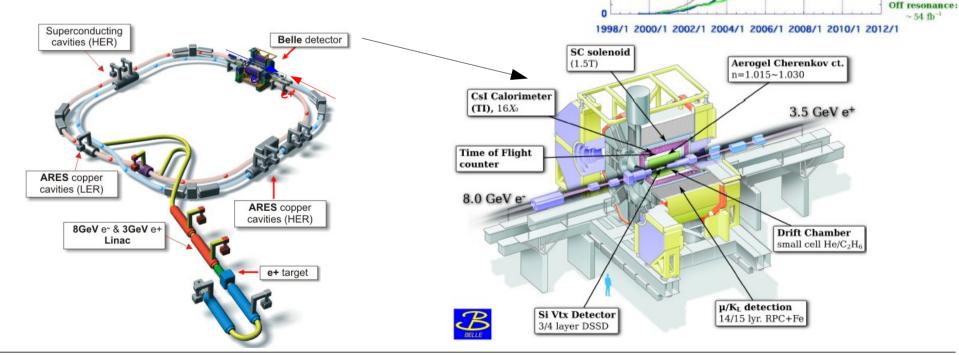
- 2 recent measurements providing new constraints on ϕ_2
 - The world's most precise measurement of \mathscr{L}^{p} in $B^{0} \rightarrow \pi^{+}\pi^{-}$

$$\mathcal{A}_{CP}(B^0 \to \pi^+ \pi^-) = +0.33 \pm 0.06 \text{ (stat)} \pm 0.03 \text{ (syst)}$$

 $\mathcal{S}_{CP}(B^0 \to \pi^+ \pi^-) = -0.64 \pm 0.08 \text{ (stat)} \pm 0.03 \text{ (syst)}$

- \rightarrow excluded $23.8^{\circ} < \phi_2 < 66.8^{\circ}$ @ 1 1 CL using isospin analysis
- Measurement of $\mathcal{B}(B^0 \to \rho^0 \rho^0) = (1.02 \pm 0.30 \; (\mathrm{stat}) \pm 0.15 \; (\mathrm{syst})) \times 10^{-6}$, extracted ϕ_2 using isospin analysis: $\phi_2 = (84.9 \pm 12.9)^\circ$ & $\Delta\phi_2 = (0.0 \pm 9.6)^\circ$ → penguin negligible
- First evidence of $B^0 o f_0
 ho^0$

Back-up Slides


Belle Experiment (Tsukuba, Japan)

- Operated at KEKB collider (1999-2010)
- KEKB asymmetric e^+e^- collider
 - 3.5 on 8.0 GeV ($\beta\gamma=0.425$)
 - 772 \times 10⁶ BB pairs data sample accumulated
 - Peak luminosity (world record) 2.1×10^{34} cm⁻²s⁻¹

$({\bf f}{\bf b}^{-1})$ $> 1 \text{ ab}^{-1}$ -KEKB On resonance Y(5S): 121 fb 1500 Y(4S): 711 fb Y(3S): 3 fb-1 Y(2S): 24 fb Y[1S]: 6 fb Off reson./scan: 1000 ~ 100 fb ~ 550 fb-1 On resonance: 500 (4S): 433 fb Y(3S): 30 fb-1 Y(25): 14 fb-1

Luminosity at B factories

~ 54 fb