Mixing and CP violation in the B_s system with ATLAS

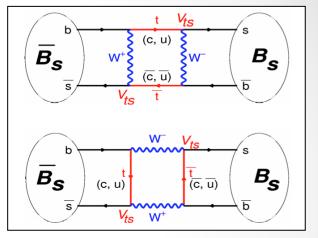
Study from $B_s^{\ 0} \rightarrow J/\psi \phi$ decay with and without flavour tagging

<u>Toyonobu OKUYAMA</u> University of Tokyo On behalf of the ATLAS Collaboration PASCOS 2013 @ Taipei, Taiwan 20-26/Nov/2013

CP violation in B_s system

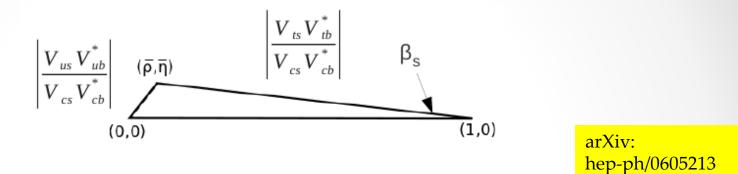
Mixing between flavour eigenstates give rise to heavy and light mass eigenstates as a results of Schrödinger's Equation

$$i\frac{\mathrm{d}}{\mathrm{d}t}\left(\begin{array}{c}\left|B^{0}(t)\right\rangle\\\bar{B}^{0}(t)\right\rangle\end{array}\right) = \begin{pmatrix}M_{11} & M_{12}\\M_{12}^{*} & M_{11}\end{array}\right) - \frac{i}{2}\begin{pmatrix}\Gamma_{11} & \Gamma_{12}\\\Gamma_{12}^{*} & \Gamma_{11}\end{array}\right)\left(\begin{array}{c}\left|B^{0}(t)\right\rangle\\\bar{B}^{0}(t)\right\rangle\right)$$

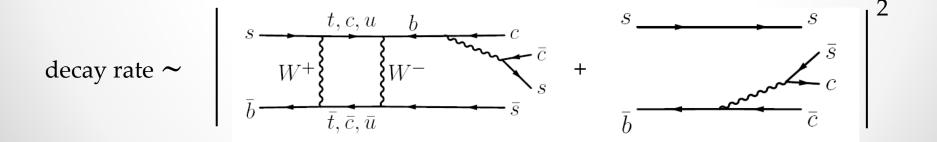

Mass Eigenstates

$$|B_s^H\rangle = p |B_s^0\rangle - q |\bar{B}_s^0\rangle |B_s^L\rangle = p |B_s^0\rangle + q |\bar{B}_s^0\rangle$$

If
$$p = q = 1$$
:
 B_s^{H} is purely CP-odd state,
 B_s^{L} is purely CP-even state.


-The mass difference is already well measured by CDF and LHCb $\Delta m_s = m^H - m^L \approx 2 |M_{12}| = 17.77 \text{ ps}^{-1}$ -The SM predicts lifetimes of B_s^{H} and B_s^{L} differ by $\sim O(10 \%)$

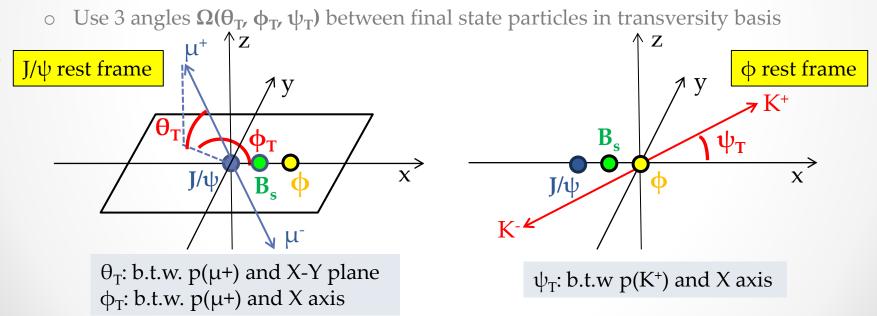
Measurements of $\angle \Gamma_s = \Gamma_s^{L} - \Gamma_s^{H}$ and $\Gamma_s = (\Gamma_s^{L} + \Gamma_s^{H})/2$ are good test for SM.



CP violation in $B_s^0 \rightarrow J/\psi \phi$

CP Violation in $B_s \rightarrow J/\psi \phi$ occurs through interference of mixing and decay.

- CP violation phase: $\phi_s \approx -2\beta_s = -2 \arg\left[\frac{V_{ts}V_{tb}^*}{V_{cs}V_{cb}^*}\right]$ is small in SM(~ -0.04)
- New particle could enter weak mixing box diagrams and enhance CP violation. \rightarrow Measurements of ϕ_s is very sensitive to new physics


Angular Analysis

- $B_s^0 \rightarrow J/\psi \phi$: decay from a pseudo-scalar to vector vector mesons
 - CP-even(L=0, 2) and CP-odd (L=1) in final state

Amplitudes $A_0: L=0$ CP-even $A_{\perp}: L=1$ CP-odd $A_{\parallel}: L=2$ CP-even

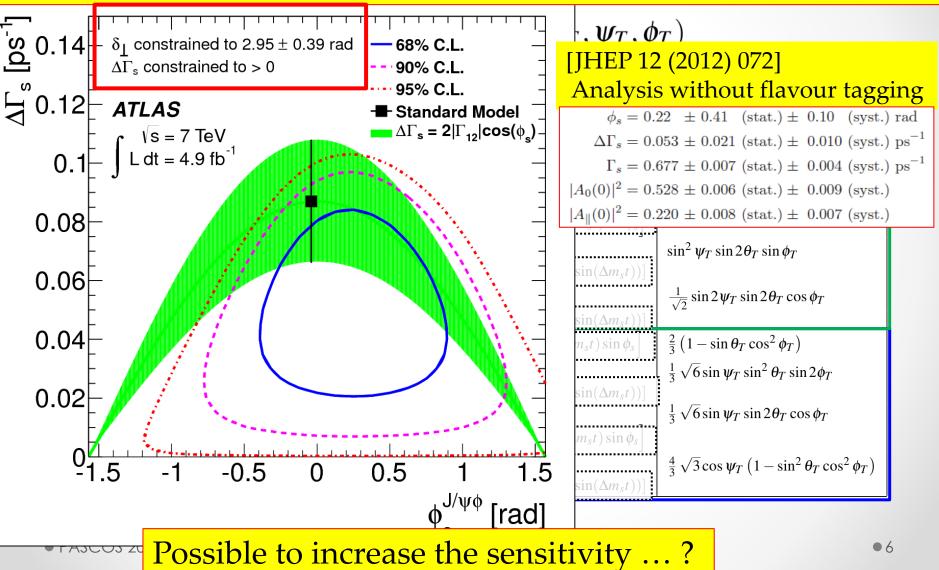
 $\begin{array}{l} \underline{Strong \, phases} \\ \delta_0 :\equiv 0 \\ \delta_{\perp} : \arg \left[A_{\perp}(0) \, A_0^{*}(0) \right] \\ \delta_{\parallel} : \arg \left[A_{\parallel}(0) \, A_0^{*}(0) \right] \end{array}$

• Distinguishable through time-dependent angular analysis

Untagged time-dependent decay rate

In absence of detector effect, time dependent decay rate can be written as follows:

$d^4\Gamma$	$-\sum_{k=1}^{10} \mathscr{O}^{(k)}(t) \mathfrak{o}^{(k)}(\theta_{\pi}) \mathfrak{u}_{\pi}(\theta_{\pi})$
$dt \ d\Omega$	$=\sum_{k=1}^{10} \mathscr{O}^{(k)}(t) g^{(k)}(\boldsymbol{\theta}_T, \boldsymbol{\psi}_T, \boldsymbol{\phi}_T)$


		$\kappa = 1$	
	k	$\mathscr{O}^{(k)}(t)$	$g^{(k)}(heta_T, oldsymbol{\psi}_T, oldsymbol{\phi}_T)$
L=0	1	$\frac{1}{2} A_0(0) ^2 \left[(1+\cos\phi_s) e^{-\Gamma_{\rm L}^{(s)}t} + (1-\cos\phi_s) e^{-\Gamma_{\rm H}^{(s)}t} \pm 2e^{-\Gamma_s t} \sin(\Delta m_s t) \sin\phi_s \right]$	$2\cos^2\psi_T(1-\sin^2\theta_T\cos^2\phi_T)$
L=2	2	$\frac{1}{2} A_{\parallel}(0) ^{2}\left[\left(1+\cos\phi_{s}\right)e^{-\Gamma_{\mathrm{L}}^{(s)}t}+\left(1-\cos\phi_{s}\right)e^{-\Gamma_{\mathrm{H}}^{(s)}t}\pm2e^{-\Gamma_{s}t}\sin(\Delta m_{s}t)\sin\phi_{s}\right]$	$\sin^2\psi_T(1-\sin^2\theta_T\sin^2\phi_T)$
L=1	3	$\frac{1}{2} A_{\perp}(0) ^{2}\left[(1-\cos\phi_{s})e^{-\Gamma_{\rm L}^{(s)}t}+(1+\cos\phi_{s})e^{-\Gamma_{\rm H}^{(s)}}\mp 2e^{-\Gamma_{s}t}\sin(\Delta m_{s}t)\sin\phi_{s}\right]$	$\sin^2\psi_T\sin^2 heta_T$
	4	$\frac{1}{2} A_0(0) A_{\parallel}(0) \cos\delta_{\parallel}$	$-\frac{1}{\sqrt{2}}\sin 2\psi_T\sin^2\theta_T\sin 2\phi_T$
Inter-		$\left[(1 + \cos \phi_s) e^{-\Gamma_{\rm L}^{(s)}t} + (1 - \cos \phi_s) e^{-\Gamma_{\rm H}^{(s)}} \pm 2e^{-\Gamma_s t} \sin(\Delta m_s t) \sin \phi_s \right]$	
ference	5	$ A_{\parallel}(0) A_{\perp}(0) [\frac{1}{2}(e^{-\Gamma_{\rm L}^{(s)}t}-e^{-\Gamma_{\rm H}^{(s)}t})\cos(\delta_{\perp}-\delta_{\parallel})\sin\phi_{\rm s}]$	$\sin^2\psi_T\sin 2\theta_T\sin\phi_T$
terms		$\pm e^{-\Gamma_s t} (\sin(\delta_{\perp} - \delta_{\parallel}) \cos(\Delta m_s t) - \cos(\delta_{\perp} - \delta_{\parallel}) \cos\phi_s \sin(\Delta m_s t))]$	
ici ilis	6	$ A_{0}(0) A_{\perp}(0) [\frac{1}{2}(e^{-\Gamma_{\rm L}^{(3)}t}-e^{-\Gamma_{\rm H}^{(3)}t})\cos\delta_{\perp}\sin\phi_{s}]$	$\frac{1}{\sqrt{2}}\sin 2\psi_T\sin 2\theta_T\cos\phi_T$
		$\pm e^{-\Gamma_s t}(\sin \delta_{\perp} \cos(\Delta m_s t) - \cos \delta_{\perp} \cos \phi_s \sin(\Delta m_s t))]$	
	7	$\left[\frac{1}{2} A_{\mathcal{S}}(0) ^{2}\left[\left(1-\cos\phi_{s}\right)e^{-\Gamma_{\mathrm{L}}^{(s)}t}+\left(1+\cos\phi_{s}\right)e^{-\Gamma_{\mathrm{H}}^{(s)}t}\mp 2e^{-\Gamma_{s}t}\sin(\Delta m_{s}t)\sin\phi_{s}\right]\right]$	$\frac{2}{3}\left(1-\sin\theta_T\cos^2\phi_T\right)$
	8	$ A_{S} A_{\parallel}(0) [\frac{1}{2}(e^{-\Gamma_{L}^{(s)}t}-e^{-\Gamma_{H}^{(s)}t})\sin(\delta_{\parallel}-\delta_{S})\sin\phi_{s}]$	$\frac{1}{3}\sqrt{6}\sin\psi_T\sin^2\theta_T\sin 2\phi_T$
S-wave		$\pm e^{-\Gamma_{S}t}(\cos(\delta_{\parallel}-\delta_{S})\cos(\Delta m_{s}t)-\sin(\delta_{\parallel}-\delta_{S})\cos\phi_{s}\sin(\Delta m_{s}t))]$	
	9	$\frac{1}{2} A_S A_{\perp}(0) \sin(\delta_{\perp}-\delta_S) $	$\frac{1}{3}\sqrt{6}\sin\psi_T\sin2\theta_T\cos\phi_T$
terms		$\frac{1}{2} A_{S} A_{\perp}(0) \sin(o_{\perp} - o_{S}) \\ \left[(1 - \cos\phi_{s}) e^{-\Gamma_{L}^{(s)}t} + (1 + \cos\phi_{s}) e^{-\Gamma_{H}^{(s)}t} + 2e^{-\Gamma_{s}t} \sin(\Delta m_{s}t) \sin\phi_{s} \right]$	
	10	$ A_0(0) A_S(0) [\frac{1}{2}(e^{-\Gamma_{\rm H}^{(s)}t} - e^{-\Gamma_{\rm L}^{(s)}t})\sin\delta_{\rm S}\sin\phi_{\rm s}.$	$\frac{4}{3}\sqrt{3}\cos\psi_T\left(1-\sin^2\theta_T\cos^2\phi_T\right)$
		$\pm e^{-\Gamma_s t} (\cos \delta_S \cos(\Delta m_s t) + \sin \delta_S \cos \phi_s \sin(\Delta m_s t))]$	5

By multi-dimensional fit to the data, determine the physics quantities.

Untagged time-dependent decay rate

Constainted to LHCb result for δ_{\perp}

because without flavour tagging, sensitivity on δ_{\perp} is poor...

Flavour Tagging

• If initial flavour of B_s⁰ is known, additional terms appear in the likelihood description of the time-dependent decay rate.

 \rightarrow Enable to increase sensitivity on ϕ_s and δ_{\perp}

- Initial state flavour of B_s⁰ can be inferred using information of the other B meson.
 - Typically it has an opposite flavour.

J/ψ

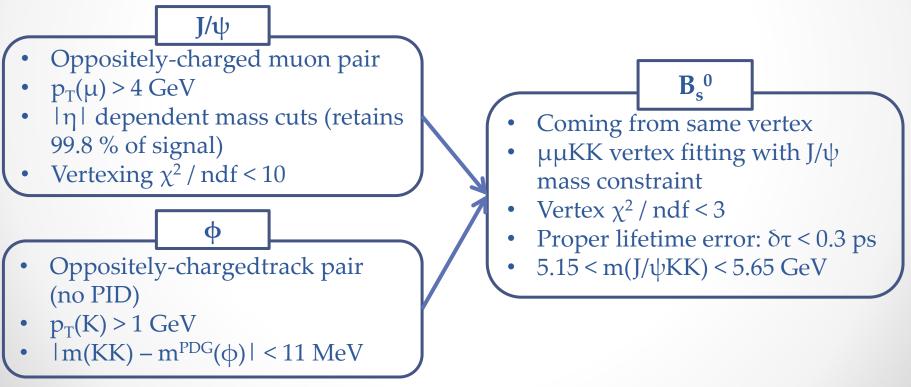
Opposite Flavour

 B_{s}

Flavour tagged time-dependent decay rate

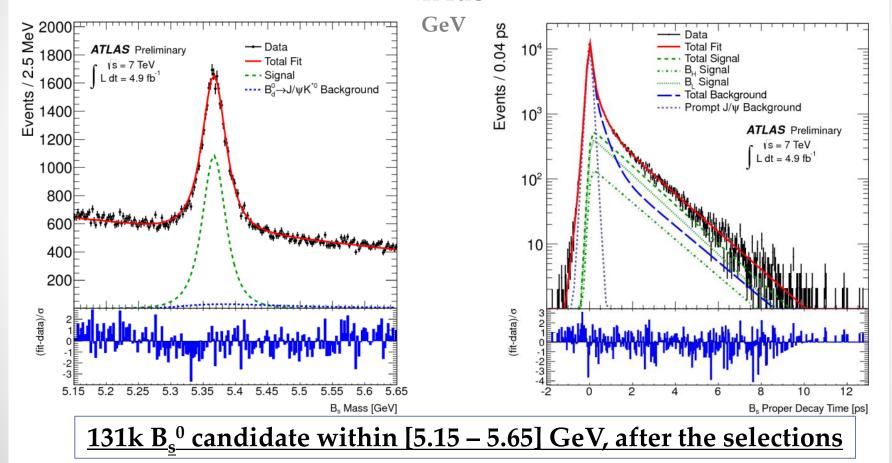
With initial flavour tagging, additional term appear.

	k	$\mathscr{O}^{(k)}(t)$	$g^{(k)}(oldsymbol{ heta}_T,oldsymbol{\psi}_T,\phi_T)$
L=0	1	$\frac{1}{2} A_0(0) ^2 \left[(1+\cos\phi_s) e^{-\Gamma_{\rm L}^{(s)}t} + (1-\cos\phi_s) e^{-\Gamma_{\rm H}^{(s)}t} \pm 2e^{-\Gamma_s t} \sin(\Delta m_s t) \sin\phi_s \right]$	$2\cos^2\psi_T(1-\sin^2\theta_T\cos^2\phi_T)$
L=2	2	$\frac{1}{2} A_{\parallel}(0) ^{2}\left[(1+\cos\phi_{s})e^{-\Gamma_{L}^{(s)}t}+(1-\cos\phi_{s})e^{-\Gamma_{H}^{(s)}t}\pm 2e^{-\Gamma_{s}t}\sin(\Delta m_{s}t)\sin\phi_{s}\right]$	$\sin^2\psi_T(1-\sin^2\theta_T\sin^2\phi_T)$
L=1	3	$\frac{1}{2} A_{\perp}(0) ^{2}\left[(1-\cos\phi_{s})e^{-\Gamma_{L}^{(s)}t}+(1+\cos\phi_{s})e^{-\Gamma_{H}^{(s)}}\mp 2e^{-\Gamma_{s}t}\sin(\Delta m_{s}t)\sin\phi_{s}\right]$	$\sin^2\psi_T\sin^2\theta_T$
	4	$\frac{1}{2} A_0(0) A_{\parallel}(0) \cos\delta_{\parallel}$	$-\frac{1}{\sqrt{2}}\sin 2\psi_T\sin^2 heta_T\sin 2\phi_T$
Inter-		$\left[(1+\cos\phi_s) e^{-\Gamma_{\mathrm{L}}^{(s)}t} + (1-\cos\phi_s) e^{-\Gamma_{\mathrm{H}}^{(s)}t} \pm 2e^{-\Gamma_s t} \sin(\Delta m_s t) \sin\phi_s \right]$	
ference	5	$ A_{\parallel}(0) A_{\perp}(0) [\frac{1}{2}(e^{-\Gamma_{\rm L}^{(s)}t}-e^{-\Gamma_{\rm H}^{(s)}t})\cos(\delta_{\perp}-\delta_{\parallel})\sin\phi_{s}$	$\sin^2\psi_T\sin 2\theta_T\sin\phi_T$
terms		$\pm e^{-\Gamma_s t} (\sin(\delta_{\perp} - \delta_{\parallel}) \cos(\Delta m_s t) - \cos(\delta_{\perp} - \delta_{\parallel}) \cos\phi_s \sin(\Delta m_s t))]$	
icinis	6	$ A_0(0) A_{\perp}(0) [\frac{1}{2}(e^{-\Gamma_{\rm L}^{(s)}t} - e^{-\Gamma_{\rm H}^{(s)}t})\cos\delta_{\perp}\sin\phi_s$	$\frac{1}{\sqrt{2}}\sin 2\psi_T\sin 2\theta_T\cos\phi_T$
		$\pm e^{-\Gamma_s t} (\sin \delta_{\perp} \cos(\Delta m_s t) - \cos \delta_{\perp} \cos \phi_s \sin(\Delta m_s t))]$	
	7	$\frac{1}{2} A_{S}(0) ^{2}\left[\left(1-\cos\phi_{s}\right)e^{-\Gamma_{L}^{(s)}t}+\left(1+\cos\phi_{s}\right)e^{-\Gamma_{H}^{(s)}t}\mp 2e^{-\Gamma_{s}t}\sin(\Delta m_{s}t)\sin\phi_{s}\right]$	$\tfrac{2}{3}\left(1-\sin\theta_T\cos^2\phi_T\right)$
	8	$ A_{S} A_{\parallel}(0) [\frac{1}{2}(e^{-\Gamma_{L}^{(s)}t}-e^{-\Gamma_{H}^{(s)}t})\sin(\delta_{\parallel}-\delta_{S})\sin\phi_{S}$	$\frac{1}{3}\sqrt{6}\sin\psi_T\sin^2\theta_T\sin 2\phi_T$
S-wave		$\pm e^{-\Gamma_s t} (\cos(\delta_{\parallel} - \delta_S) \cos(\Delta m_s t) - \sin(\delta_{\parallel} - \delta_S) \cos\phi_s \sin(\Delta m_s t))]$	
	9	$\frac{1}{2} A_S A_{\perp}(0) \sin(\delta_{\perp}-\delta_S)$	$\frac{1}{3}\sqrt{6}\sin\psi_T\sin2\theta_T\cos\phi_T$
terms		$\left[(1 - \cos \phi_s) e^{-\Gamma_{\rm L}^{(s)}t} + (1 + \cos \phi_s) e^{-\Gamma_{\rm H}^{(s)}} \right] \mp 2e^{-\Gamma_s t} \sin(\Delta m_s t) \sin \phi_s$	
	10	$ A_0(0) A_S(0) [\frac{1}{2}(e^{-\Gamma_{\rm H}^{(s)}t} - e^{-\Gamma_{\rm L}^{(s)}t})\sin\delta_{\rm S}\sin\phi_{\rm c}$	$\frac{4}{3}\sqrt{3}\cos\psi_T\left(1-\sin^2\theta_T\cos^2\phi_T\right)$
		$\pm e^{-\Gamma_s t} (\cos \delta_S \cos(\Delta m_s t) + \sin \delta_S \cos \phi_s \sin(\Delta m_s t))]$	


 $\pm or \mp$ The upper sign reflects initial B_s^0 The lower sign reflects initial \bar{B}_s^0

sensitive on CP violation phase $\varphi_{\rm s}$

Event Selection

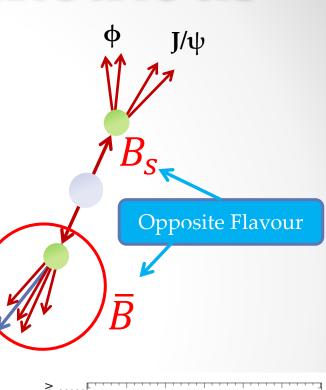

- 4.9 fb⁻¹ pp collisions at $\sqrt{s} = 7$ TeV run collected in 2011 with ATLAS detector
- Collected by triggers based on identification of $J/\psi \rightarrow \mu^+\mu^-$
 - At least one muon which $p_T > 4 \text{ GeV}$

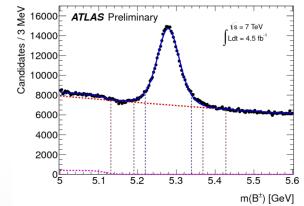
Event Selection:

Event Selection

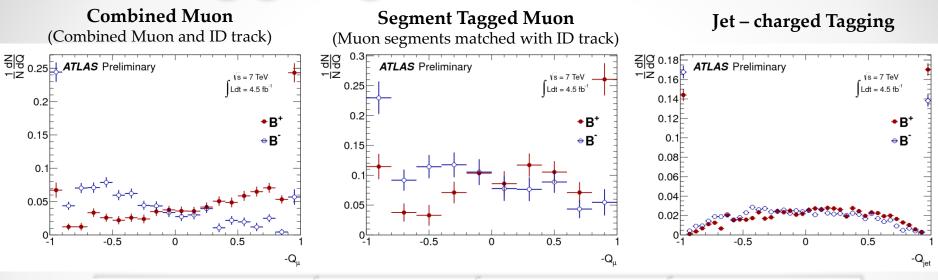
- 4.9 fb⁻¹ pp collisions at $\sqrt{s} = 7$ TeV run collected in 2011 with ATLAS detector
- · Collected by triccore based on identification of I/4b ->utur

Flavour tagging methods


• 2 tagging methods for the other B.


Muon Tagging

- Use semi-leptonic decay of the B.
- Use momentum weighed charge of muon and tracks around the muon.
- diluted through $b \rightarrow c \rightarrow \mu$, but even have good separation power.


Jet-charge Tagging

- Used if the additional muon is absent
- Use momentum-weighted track-charge in jet
- Self-tagging $B^{\pm} \rightarrow J/\psi K^{\pm}$ is used for calibration and performance estimation

Tagging Performance

Tagger	Efficiency [%]	Dilution [%]	Tagging Power [%]	
Combined Muon	3.37±0.04	50.6±0.5	0.86±0.04	
Segment Tagged Muon	1.08±0.02 36.7±0.7		0.15±0.02	
Jet-charge	27.7±0.1	12.68±0.06	0.45±0.03	
Total	32.1±0.1	21.3±0.08	1.45±0.05	

• Tagging Performance estimated to be:

• Tagging power = 1.45 \pm 0.05(stat only) %

Efficiency: $\varepsilon = \frac{N_{tagging}}{N_{candidate}}$, Dilution: D = |2P(B|Q) - 1|Tagging Power: $\varepsilon D^2 = \sum_{candidate} \varepsilon_i (2P_i(B|Q_i) - 1)^2$

• PASCOS 201;

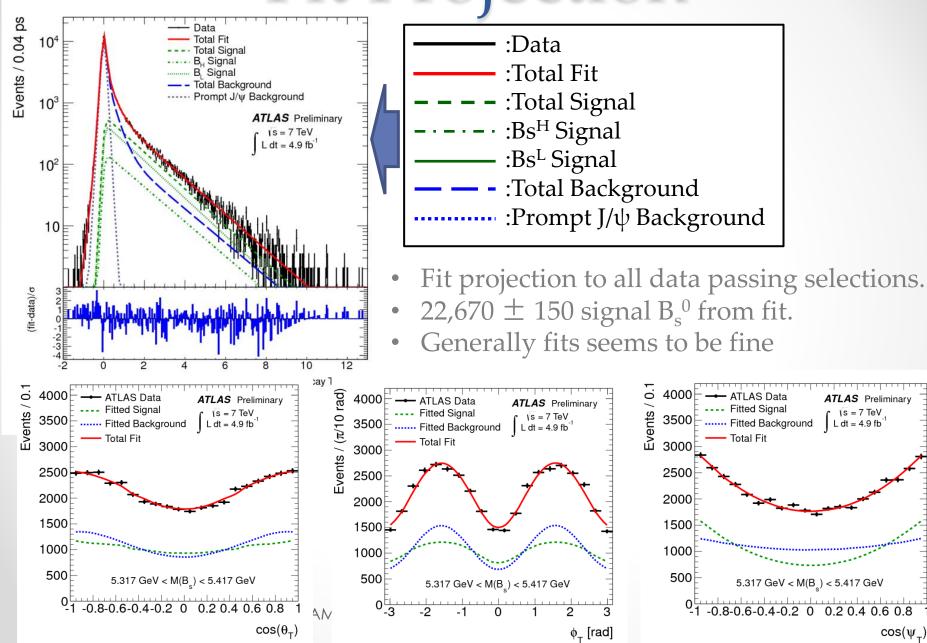
Fitting Model for $B_s^0 \rightarrow J/\psi \phi decay$ $\ln \mathscr{L} = \sum_{i=1}^{N} \{ w_i \cdot \ln(f_s \cdot \mathscr{F}_s(m_i, t_i, \Omega_i) + f_s \cdot f_{B^0} \cdot \mathscr{F}_{B^0}(m_i, t_i, \Omega_i) + (1 - f_s \cdot (1 + f_{B^0})) \mathscr{F}_{bkg}(m_i, t_i, \Omega_i) \}$

Observed Variables:

- B_s mass m_i and its uncertainty
- B_s proper decay time t_i and its uncertainty
- 3 angles b.t.w. final state particle in transversity basis $\Omega_i(\theta_{Ti'}, \varphi_{Ti'}, \psi_{Ti})$
- Bs momentum p_{Ti}
- Bs tag probability $p_{B|Qi}$
- Tagging method M_i

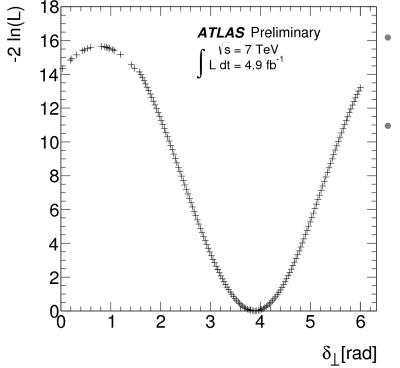
Time depend trigger efficiency

Signal Probability Density Functions

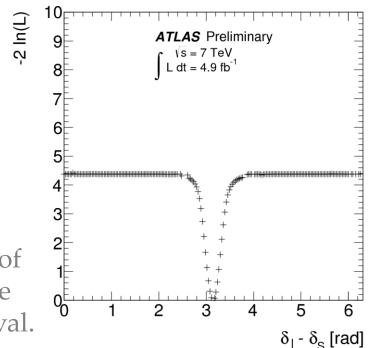

Peaking background: Reflection from $B^0 \rightarrow J/\psi K^{*0}$ and $B^0 \rightarrow J/\psi K\pi$

Combinatorial background

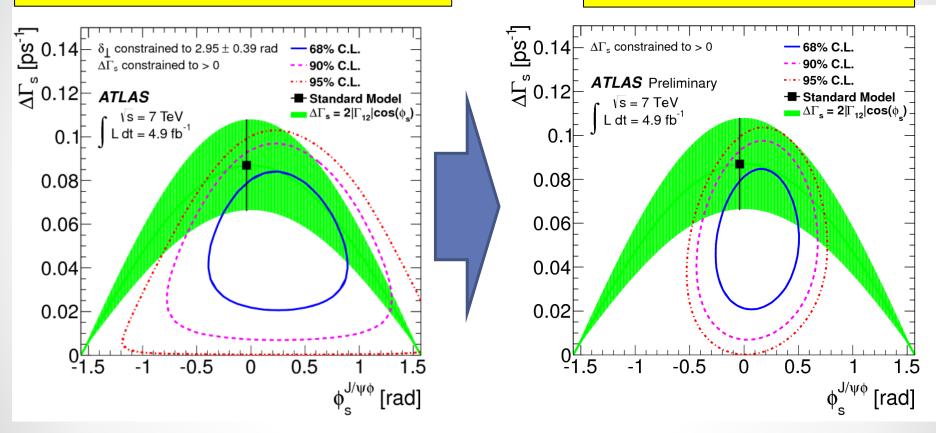
Determine 9 physics variables to describe Bs $\rightarrow J/\psi \phi$ and S-wave component: $\Delta\Gamma, \phi_s, \Gamma_s,$ $|A_0(0)|^2, |A_{||}(0)|^2, |A_S(0)|^2,$ $\delta_{||}, \delta_{\perp}, \delta_S$


•13

Fit Projection


 $\cos(\psi_{\perp})$

1-D Likelihood Scan Check


For δ_{\perp} - δ_s , the likelihood scan show a minimum close to π , however it is insensitive over the rest of the scan at Level of 2.1 σ . So we didn't decide the center value and just give as 1σ confidence interval.

- To study uncertainties of individual parameters, behavior of 1D likelihood scans have been checked.
- Most quantities (include δ_{\perp}) have fine local minimum.

Results with flavour tagging

Without flavour tagging, as already shown [JHEP 12 (2012) 072] With Flavour Tagging, ATLAS-CONF-2013-039

- The sensitivity on ϕ_s is much improved by flavour tagging (40 %).
- The sensitivity on $\pmb{\delta}_\perp$ is improved and it enable to remove constraint for δ_\perp
- Consistent with SM prediction.

Results with flavour tagging

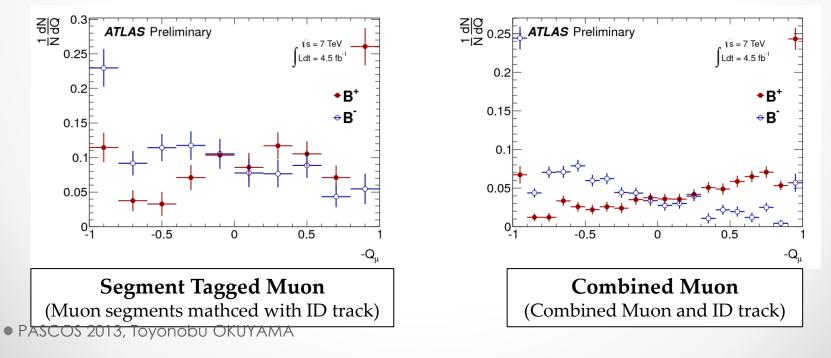
Parameter	Value	Statistical	Systematic	
		uncertainty	uncertainty	ATLAS-CONF-2013-039
$\phi_s(rad)$	0.12	0.25	0.11	
$\Delta\Gamma_s(\mathrm{ps}^{-1})$	0.053	0.021	0.009	
$\Gamma_s(ps^{-1})$	0.677	0.007	0.003	
$ A_{\parallel}(0) ^2$	0.220	0.008	0.009	CP-odd amplitude:
$ A_0(0) ^2$	0.529	0.006	0.011	$ A_{\perp} ^{2} = 1 - A_{\parallel} ^{2} - A_{0} ^{2} - A_{s} ^{2} \neq 0$
$ A_S ^2$	0.024	0.014	0.028	
δ_{\perp}	3.89	0.46	0.13	
δ_{\parallel}	[3.04-3.23]		0.09	
$\delta_{\perp} - \delta_{S}$	[3.02-3.25]		0.04	

- Γ s , $\Delta\Gamma$ s results are consistent with SM prediction.
- $|A_s|^2$ is consistent to 0.
- The results are consistent to the SM prediction.
 - $\circ~$ Also consistent with other experiments.
- Statistically limited in most measured quantities
 - Analysis using data collected in 2012 (8TeV, 20 fb⁻¹) ongoing

Summary

- Decay parameters describing the $B_s^0 \rightarrow J/\psi \phi$ are measured from data sample of 4.9 fb⁻¹ pp collisions, collected with ATLAS detector in 2011.
- By tagging initial state B flavour, sensitivity on weak phase ϕ_s was much increased.
 - $\circ~$ Sensitivity on δ_{\perp} was also increased and could remove the constraint for it.
- The results are consistent with prediction from the SM.
 No sign for physics beyond the Standard Model
 Also consistent with other experiments.
- Statistically limited in most measured quantities.
 Analysis including 2012 data (20 fb⁻¹, √s = 8TeV) ongoing

BackUp

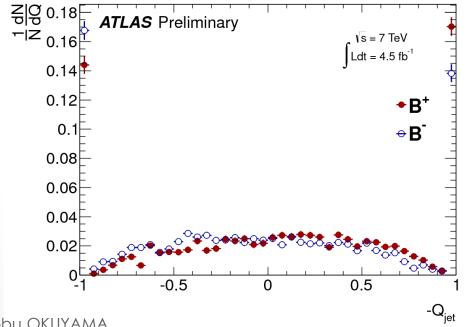

• PASCOS 2013, Toyonobu OKUYAMA

Muon tagging

- Additional muon $p_T(\mu) > 2.5 \text{ GeV}$
- Originating near the signal primary vertex : $|\Delta z| < 5 \text{ mm}$
- If multiple muons, select the one with highest p_T
- Use muon and tracks within $\Delta R < 0.5$ around the muon to calculate momentum-weighted value: **muon-cone charge**

$$Q_{\mu} = \frac{\sum_{i}^{N \text{ tracks}} q^{i} \cdot (p_{T}^{i})^{\kappa}}{\sum_{i}^{N \text{ tracks}} (p_{T}^{i})^{\kappa}}$$

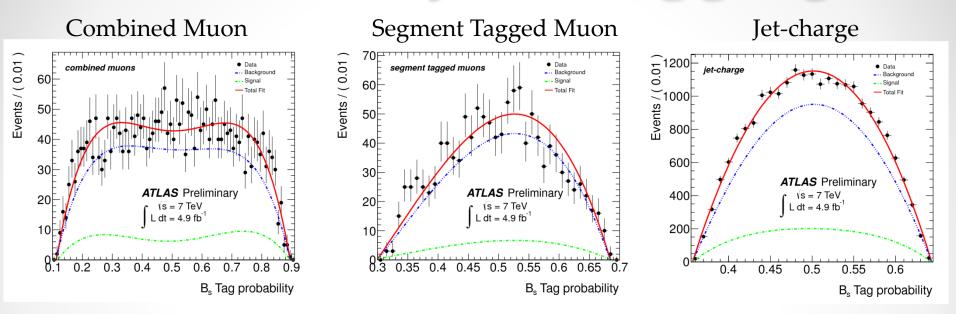
 $\kappa = 1.1$, was tuned to optimise the tagging power.



Jet-charge tagging

- In absence of muon, use b-tagged jet
- Jet was reconstructed by Anti-Kt algorithm with con size: dR=0.6
- Use tracks within $\Delta R < 1.0$ from center of the jet to calculate momentum-weighted value: **jet-charge**

$$Q_{\text{jet}} = \frac{\sum_{i}^{N \text{ tracks}} q^{i} \cdot (p_{T}^{i})^{\kappa}}{\sum_{i}^{N \text{ tracks}} (p_{T}^{i})^{\kappa}}$$


 $\kappa = 1.1$, was tuned to optimise the tagging power.

Systematic Uncertainty

	φ _s	$\Delta \Gamma_s$	Γ_s	$ A_{\parallel}(0) ^2$	$ A_0(0) ^2$	$ A_{S}(0) ^{2}$	δ_{\perp}	δ_{\parallel}	$\delta_{\perp} - \delta_S$
	(rad)	(ps ⁻¹)	(ps ⁻¹)				(rad)	(rad)	(rad)
		2							
ID alignment	$< 10^{-2}$	$< 10^{-3}$	$< 10^{-3}$	$< 10^{-3}$	$< 10^{-3}$	-	$< 10^{-2}$	$< 10^{-2}$	-
Trigger efficiency	$< 10^{-2}$	$< 10^{-3}$	0.002	$< 10^{-3}$	$< 10^{-3}$	$< 10^{-3}$	$< 10^{-2}$	$< 10^{-2}$	$< 10^{-2}$
B_d^0 contribution	0.03	0.001	$< 10^{-3}$	$< 10^{-3}$	0.005	0.001	0.02	$< 10^{-2}$	$< 10^{-2}$
Tagging	0.10	0.001	$< 10^{-3}$	$< 10^{-3}$	$< 10^{-3}$	0.002	0.05	$< 10^{-2}$	$< 10^{-2}$
Mode1s:									
default fit	$< 10^{-2}$	0.002	$< 10^{-3}$	0.003	0.002	0.006	0.07	0.01	0.01
signal mass	$< 10^{-2}$	0.001	$< 10^{-3}$	$< 10^{-3}$	0.001	$< 10^{-3}$	0.03	0.04	0.01
background mass	$< 10^{-2}$	0.001	0.001	$< 10^{-3}$	$< 10^{-3}$	0.002	0.06	0.02	0.02
resolution	0.02	$< 10^{-3}$	0.001	0.001	$< 10^{-3}$	0.002	0.04	0.02	0.01
background time	0.01	0.001	$< 10^{-3}$	0.001	$< 10^{-3}$	0.002	0.01	0.02	0.02
background angles	0.02	0.008	0.002	0.008	0.009	0.027	0.06	0.07	0.03
Total	0.11	0.009	0.003	0.009	0.011	0.028	0.13	0.09	0.04

Probability for tagging

Comparison with other experiment

	φ _s	Stat.	Syst.			⊿Γ _s [ps⁻¹]	Stat.	Syst.
ATLAS	0.12	0.25	0.11		ATLAS	0.053	0.021	0.009
CDF	- 0.60 - 0.12				CDF	0.068	0.026	0.009
CMS					CMS	0.048	0.024	0.003
D0	-0.56 +0.36 / -0.32				D0	0.179	+ 0.060	/ - 0.059
LHCb	0.01	0.07	0.01		LHCb	0.106	0.011	0.007
	δ _⊥ [rad]	Stat.	Syst.			Γ _s s [ps⁻¹]	Stat.	Syst.
ATLAS	3.89	0.46	0.13		ATLAS	0.677	0.007	0.003
CDF	2.79	0.53	0.15		CDF	0.654	0.008	0.004
CMS	-				CMS	0.653	0.008	0.003
D0	cos(δ ₁ δ _s)=-0.2 +0.26 / -0.27				D0	0.693	+ 0.016	/ - 0.020

0.08

LHCb

	A ₀ ²	Stat.	Syst.
ATLAS	0.529	0.006	0.011
CDF	0.512	0.012	0.018
CMS	0.528	0.010	0.015
D0	0.565	0.0)17
LHCb	0.521	0.006	0.010

3.07

0.22

LHCb

	A ∦ ²	Stat.	Syst.		
ATLAS	0.220	0.008	0.009		
CDF	0.229	0.010	0.018		
CMS	0.221	<0.016	<0.021		
D0	0.249	0.249 + 0.021 / - 0.020			
LHCb		-			

0.663

0.005

0.006