Searches for Low-mass Higgs and Dark-sector Bosons at *BABAR*

Kevin Flood

California Institute of Technology

PASCOS 2013

Nov 20-26 2013

Dark sector in a nutshell

Models introducing a new 'dark' force mediated by a new gauge boson with a mass around a GeV have been proposed to explain the observations of PAMELA, FERMI, AMS-02, DAMA/LIBRA, PLANCK, etc.; e.g, Arkani-Hamed *et al.*, Phys. Rev. D **79**, 015014 (2009).

⇒ The possibility of hidden MeV/GeV scale sector is poorly constrained and worth exploring.

Large annihilation cross section

Low-mass Higgs searches

⇒ BABAR has searched for a low-mass, CP-odd, nonsinglet Higgs A⁰, a generic feature of many NMSSM models, in the Upsilon decays (n=1,2,3)

$$\Upsilon(nS) \rightarrow \gamma A^0 \longrightarrow$$

$$e^{-} \qquad b \qquad \gamma \\ \uparrow (nS) \qquad a^{\gamma} \\ e^{+} \qquad \overline{b} \qquad A^{0}$$

Low-mass Higgs searches

 Babar has searched for a <u>low-mass, CP-odd, non-singlet</u> <u>Higgs A⁰</u>, a generic feature of many NMSSM models, in the Upsilon decays (n=1,2,3)

 $\Upsilon(nS) \rightarrow \gamma A^0$

Branching fraction predictions for this process range over several orders of magnitude depending on the non-singlet fraction and NMSSM parameter values.

Gunion et al, PRD 81 (2010) 075003

Low-mass Higgs searches

 Babar has searched for a <u>low-mass, CP-odd, non-singlet</u> <u>Higgs A⁰</u>, a generic feature of many NMSSM models, in the Upsilon decays (n=1,2,3)

 $\Upsilon(nS) \rightarrow \gamma A^0$

- Branching fraction predictions range over several orders of magnitude depending on the non-singlet fraction and NMSSM parameter values.
- Several different final states (depending on the A^o mass) are accessible in Upsilon decays, with branching ratios dependent on properties of the final state fermions as well as on NMSSM parameters.

PASCOS 2013

The *BABAR* Detector at PEP-II (SLAC)

40 layers, momentum measurement for charged particles and dE/dx $\sigma(p_T)/p_T= 0.13\% p_T \oplus 0.45\%$

PASCOS 2013

Efficiency ~ 97%

Data taking finished April 2008

⇒ BABAR has an on-going program, in place for several years now, to systematically search for low-mass Higgs in all kinematically accessible final states.

Older analyses	
Υ (2,3S) → γ A ⁰ ; A ⁰ → $\mu^+\mu^-$	PRL 103, 081803 (2009)
$\Upsilon(3S) \rightarrow \gamma A^{0}; A^{0} \rightarrow \tau^{+}\tau^{-}$	PRL 103, 181801 (2009)
$\Upsilon(1S) \rightarrow \gamma A^{0}; A^{0} \rightarrow invisible$	PRL 107, 021804 (2011)
$\Upsilon(2,3S) \rightarrow \gamma A^0; A^0 \rightarrow hadrons$	PRL 107, 221803 (2011)
Today's Presentation	
$Υ$ (1S) → $γ$ A ⁰ ; A ⁰ → $μ^+μ^-$	PRD 87, 031102(R) (2013)
$\Upsilon(1S) \rightarrow \gamma A^{0}; A^{0} \rightarrow \tau^{+}\tau^{-}$	PRD 88, 071102(R) (2013)
$\Upsilon(1S) \rightarrow \gamma A^0; A^0 \rightarrow gg \text{ or } s\bar{s}$	PRD 88, 031701(R) (2013)

Υ (1S) Reconstruction

 \Rightarrow Although **B**A**B**AR did not run at the $\Upsilon(1S)$, a sample of $\Upsilon(1S)$ is available through radiative di-pion decays of $\Upsilon(2S)$ and $\Upsilon(3S)$

Υ(2S) → π⁺π⁻ Υ(1S) 18 × 10⁶ Υ(1S) $\Upsilon(3S) \rightarrow \pi^+ \pi^- \Upsilon(1S)$ 5 × 10⁶ $\Upsilon(1S)$

⇒ Di-pion tagging removes most continuum backgrounds using recoil mass

PASCOS 2013

$\Upsilon(1S) \rightarrow \gamma A^{0} (\rightarrow gg, s\overline{s})$

- Gluon-gluon decays are accessed as a sum-over-exclusive-modes through reconstruction of 26 exclusive final states.
- All hadronic systems are CP-odd, with up to 8 final-state particles of which no more than two are π^0 .
- ⇒ Decays to ss are reconstructed using only decays which contain 2 or 4 kaons.
- ⇒ The hadronic system is combined with a photon, with the mass of the combined system required to be consistent with the Y(1S) mass in order to improve the A⁰ mass resolution.

# Channel	# Channel
$1 \pi^{+}\pi^{-}\pi^{0}$	$14 K^+ K^- \pi^+ \pi^-$
$2 \pi^{+}\pi^{-}2\pi^{0}$	$15 \ K^+K^-\pi^+\pi^-\pi^0$
$3 \ 2\pi^+ 2\pi^-$	$16 \ K^{\pm}K^0_{_S}\pi^{\mp}\pi^{+}\pi^{-}$
4 $2\pi^+ 2\pi^- \pi^0$	$17 K^+K^-\eta$
$5 \pi^+\pi^-\eta$	$18 K^+ K^- 2\pi^+ 2\pi^-$
$6 2\pi^+ 2\pi^- 2\pi^0$	19 $K^{\pm}K^{0}_{s}\pi^{\mp}\pi^{+}\pi^{-}2\pi^{0}$
$7 \ 3\pi^+ 3\pi^-$	$20 \ K^+ K^- 2 \pi^+ 2 \pi^- \pi^0$
8 $2\pi^+ 2\pi^- \eta$	$21 \ K^+ K^- 2\pi^+ 2\pi^- 2\pi^0$
9 $3\pi^+3\pi^-2\pi^0$	$22 \ K^{\pm}K^{0}_{S}\pi^{\mp}2\pi^{+}2\pi^{-}\pi^{0}$
$10 \ 4\pi^+ 4\pi^-$	$23 \ K^+K^-3\pi^+3\pi^-$
11 $K^+K^-\pi^0$	$24 \ 2K^+ 2K^-$
$12 \ K^{\pm} K^{0}_{S} \pi^{\mp}$	$25 p \bar{p} \pi^0$
$13 \ K^+ K^- 2\pi^0$	$26 \ p \bar{p} \pi^+ \pi^-$

$\Upsilon(1S) \rightarrow \gamma A^{0} (\rightarrow gg, s\overline{s})$

- Plot below shows A⁰ mass spectra after applying all selection criteria and selecting one signal candidate per event.
- ⇒ The mass resolution is ~100 MeV/c² for all masses.
- ➡ Efficiences range from a few percent at low mass to ~10⁻⁴ at the highest masses.

$\Upsilon(1S) \rightarrow \gamma A^0 (\rightarrow gg, s\overline{s})$

- $\Rightarrow 90\% \text{ CL upper limits on the product} \\ \text{branching fractions} \\ \mathcal{B}(\Upsilon(1S) \rightarrow \gamma A^0) \cdot \mathcal{B}(A^0 \rightarrow gg) \\ \mathcal{B}(\Upsilon(1S) \rightarrow \gamma A^0) \cdot \mathcal{B}(A^0 \rightarrow s\overline{s}) \\ \end{cases}$
- \Rightarrow Scanned in 5 MeV/c² steps.
- ⇒ Limits exclude parts of the NMSSM parameter space for M(A⁰) < M(ττ).

PASCOS 2013

Υ (1S) \rightarrow γ A⁰ (\rightarrow ττ)

- An analysis similar to the previous one looks at final-state tau pairs reconstructed in ee, eµ, $e\pi$, µµ and µ π final states.
- \Rightarrow Search for A^o candidates using m_x^2 , the mass recoiling against the signal photon in the $\Upsilon(1S)$ frame, $m_X^2 = (P_{e^+e^-} P_{\pi\pi} P_{\gamma})^2$
- \Rightarrow Fits to the largest fluctuations in low and high A⁰ mass regions are shown below.
 - $\Rightarrow 2.7\sigma, m_{A0} = 6.36 \text{ GeV/c}^2 \Rightarrow 3.0\sigma, m_{A0} = 8.93 \text{ GeV/c}^2$
- ⇒ Fluctuations of at least 3.0 occur in 7.5% of pseudo-experiments that simulate a scan of 201 mass points with an average correlation of 94.5% between adjacent mass points.

Υ (1S) → γ A⁰ (→ ττ)

- ⇒ 90% CL upper limits are shown below for this analysis alone and also in combination with the earlier *BABAR* analysis of $\Upsilon(3S) \rightarrow \gamma A^{0}(\rightarrow \tau \tau)$ decays.
- ⇒ Combined upper limits rule out much of the parameter space preferred by NMSSM $g_b = tan\beta cos\theta_A > 1.$

Υ (1S) \rightarrow γ A⁰ (\rightarrow μμ)

- ⇒ Similarly to the previous analyses, we look at A^o decaying into final-state mu-pairs.
- ⇒ Search for A^o candidates using reduced mass,

$$m_{
m red} = \sqrt{m_{\mu^+\mu^-}^2 - 4m_{\mu}^2}$$

- ⇒ Plot below shows a 1d unbinned maximum likelihood fit of the mass range around the largest observed fluctuation, m_{A0} = 7.85 GeV/c².
- ⇒ The probability, including a trials factor, of finding a peak with at least this local significance is 18%.

- ⇒ 90% CL upper limits for:
 - \Rightarrow (top) Υ(1S) → γ A⁰ (→ μμ) branching fraction
 - ⇒ (bottom) the effective Yukawa coupling $f_{\gamma}^2 x$ BF(A⁰→µµ) for the combination of this result with the previous *B*_A*B***_A***R***</sub> results** from Y(2S) and Y(3S) to the same final state as here.

PASCOS 2013

Kevin Flood

- ⇒ New dark sector with a U(1)_D gauge group (or something more complicated...)
- ⇒ New gauge boson: dark photon A' with O(GeV) mass

- ⇒ New dark sector with a U(1)_D gauge group (or something more complicated...)
- ⇒ New gauge boson: dark photon A' with O(GeV) mass
- ⇒ Interaction with the SM is via kinetic mixing

 $\epsilon F^{\mu\nu} B_{\mu\nu}$

with a mixing strength ϵ .

$$\Delta L_{\text{mix}} = \epsilon \; F^{\mu\nu} \, B_{\mu\nu}$$

- A New dark sector with a U(1)_D gauge group (or something more complicated...)
- ⇒ New gauge boson: dark photon A' with O(GeV) mass
- ⇒ Interaction with the SM is via kinetic mixing

with a mixing strength ϵ .

⇒ The dark photon acquires a charge εe , and the **coupling of the dark photon to SM fermions** is characterized by $\alpha' = \alpha \varepsilon^2$.

- A New dark sector with a U(1)_D gauge group (or something more complicated...)
- ⇒ New gauge boson: dark photon A' with O(GeV) mass
- ⇒ Interaction with the SM is via kinetic mixing

 $\epsilon F^{\mu\nu} B_{\mu\nu}$

with a mixing strength ε .

- ⇒ The dark photon acquires a charge εe , and the **coupling of the dark photon to SM fermions** is characterized by $\alpha' = \alpha \varepsilon^2$.
- Dark boson mass is generated via the Higgs mechanism, adding a dark Higgs boson (h') to the theory. A minimal scenario has a single dark photon and a single dark Higgs boson, possibly at the GeV scale.
- rightarrow The Higgsstrahlung process is suppressed only by ε² and is expected to have small backgrounds.

 $\alpha_{\rm D} = g_{\rm D}^2 / 4\pi$ g_D is the dark sector gauge coupling

Dark bosons from Higgstrahlung process

Partially reconstructed

$$\begin{array}{c} e^+e^- \rightarrow h^\prime \; A_1^{\phantom \prime} \; , \; h^\prime \rightarrow A_2^{\phantom \prime} \; A_3^{\phantom \prime} \\ \text{with } \; A^\prime_{1,2} \rightarrow e^+e^- , \; \mu^+\mu^- , \; A^\prime_3 \rightarrow X \end{array}$$

Fully reconstructed signal

Fully reconstructed

 $e^+e^- \rightarrow h' A', h' \rightarrow A' A'$

with A' \rightarrow e⁺e⁻, $\mu^+\mu^-$, $\pi^+\pi^-$

⇒ Three dark photons fully reconstructed

Modes included

 $\Rightarrow e^{+}e^{-} \rightarrow (|^{+}|^{-}) (|^{+}|^{-}) (|^{+}|^{-}) |_{=}e,\mu$ $\Rightarrow e^{+}e^{-} \rightarrow (|^{+}|^{-}) (|^{+}|^{-}) (\pi^{+}\pi^{-})$ $\Rightarrow e^{+}e^{-} \rightarrow (|^{+}|^{-}) (\pi^{+}\pi^{-}) (\pi^{+}\pi^{-})$

Selection

- \Rightarrow 6 tracks with an invariant mass m_{tot} > 0.95 \sqrt{s}
- ⇒ apply lepton particle identification
- \Rightarrow cosine helicity angle of A' \rightarrow e⁺e⁻ candidates < 0.9
- ⇒ three dark photon candidates have similar mass

Partially reconstructed signal

- ⇒ In the high mass region ($m_A > 1.2 \text{ GeV}$), the decay of the dark photon is dominated by A' → qq
- \Rightarrow Reconstruct 2 A' decaying to leptons and 1 A' to $q\overline{q}$
- \Rightarrow Reconstruct four-momentum P₃ = P_{ee} P₁ P₂

Modes included

 \rightleftharpoons e^+e^- \rightarrow (I^+I^-) ($\mu^+\mu^-)$ + X $\,$ where X is not I^+I^- / $\pi^+\pi^-$

Selection

- \Rightarrow apply particle identification for A' \rightarrow I⁺I⁻ decays
- \Rightarrow cosine helicity angle of A' \rightarrow e⁺e⁻ candidates < 0.9
- ⇒ three dark photon candidates have similar mass

- $\Rightarrow Six events are selected from the full$ BABAR dataset (517 fb⁻¹)
- \Rightarrow Three entries for each event, corresponding to the three possible assignments of the h \rightarrow A'A' decay
- Estimate background from
 - wrong-sign combinations, e.g.

 $e^+e^- \rightarrow (e^+e^+) (e^-e^-) (\mu^+\mu^-)$

- sidebands from final sample
- rate for 6 leptons ~ 100x rate for 4π +2l above 1.5 GeV

No events with 6 leptons, consistent with the pure background hypothesis

Kevin Flood

Limit on the cross section e*e \rightarrow h' A', h' \rightarrow A' A' in the regime m_{H} > 2 m_{A}

- Scan the m_h vs m_A plane, Bayesian limit with uniform prior in cross-section
- ⇒ Cross section limits from 10 to ~100 ab

Extract limits ^ on the product $\alpha_D \epsilon^2$

⇒ Limits on couplings down to a few x 10⁻¹⁰

 $\alpha_{\rm D} = g_{\rm D}^2 / 4\pi$ g_D is the dark sector gauge coupling

1. B. Batell, M. Pospelov and A. Ritz, Phys.Rev.D79:115008,2009.

PASCOS 2013

Kevin Flood

Dark bosons from Higgstrahlung process

90% CL upper limit on $\alpha_D \epsilon^2$ vs m_{A'}

Summary

- The clean environment of low-energy e+e- colliders allows sensitive searches for an MeV/GeV scale dark sector.
- **B**A**B**A**R** results from searches for a low-mass, CPodd non-singlet Higgs and dark bosons exclude significant parts of NMSSM parameter space which are not covered by other experiments.
- Several A⁰ searches in additional final states are in progress:
 - $\Upsilon(1S) \rightarrow \gamma A^0 (\rightarrow \gamma \gamma)$
 - $\Upsilon(1S) \rightarrow \gamma A^0 (\rightarrow cc)$
 - $\Upsilon(3S) \rightarrow \gamma A^0 (\rightarrow \text{invisible})$