Measurement of top quark properties with CMS

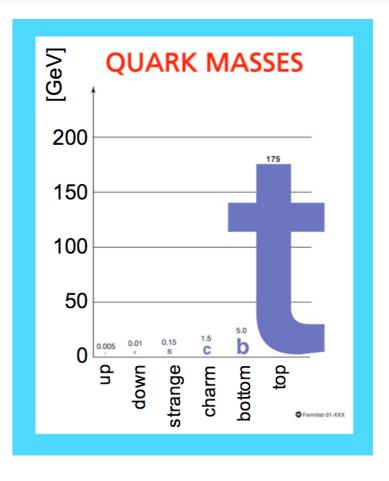
19th International Symposium on Particles, Strings and Cosmology (PASCOS 2013)

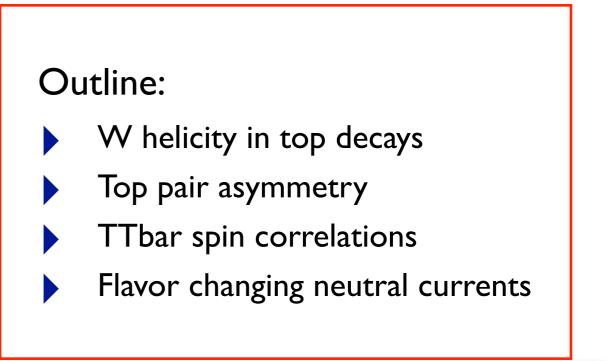
24. November 2013

Oliver Gutsche (Fermilab) for the CMS collaboration

Introduction: Study of Top Properties

Heaviest quark in the standard model

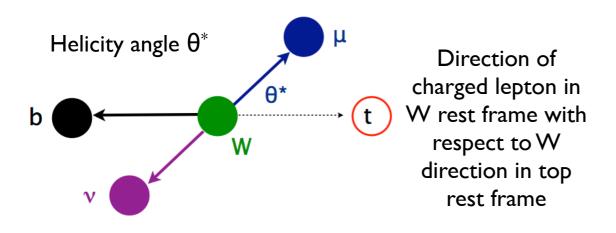

- Produced at the LHC predominantly through gluon-gluon fusion
- $\blacktriangleright \quad \text{Decays predominantly through } t \rightarrow b W$
- Consequence of being heavier than W mass: top decays before hadronization and spin decorrelation
 - Bare quark properties are accessible (mass, spin, charge, ...)
 - Spin effects are passed on to decay products.


Test Standard Model (SM) predictions

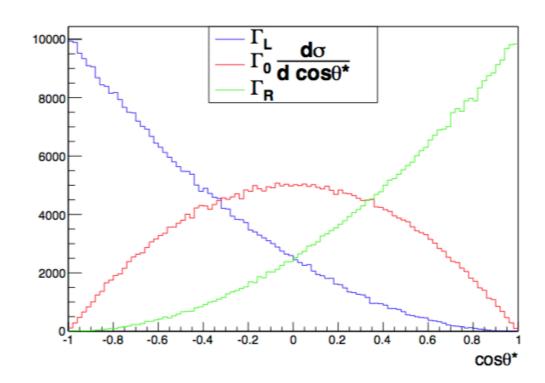
Top quark has the largest coupling to the Higgs boson

Search for new physics

- Top quarks could be produced from decay of new particles
- Top quarks could decay into new particles
- Top quarks can be backgrounds to new physics processes



W helicity in top decays: Introduction


$$\frac{1}{\Gamma}\frac{d\Gamma}{d\cos\theta^*} = \frac{3}{8}\left(1-\cos\theta^*\right)^2 \left(F_L\right) + \frac{3}{8}\left(1+\cos\theta^*\right)^2 \left(F_R\right) + \frac{3}{4}\left(\sin\theta^*\right)^2 \left(F_0\right)$$
$$F_L + F_R + F_0 = 1 \qquad F_X = \frac{\Gamma_X}{\Gamma}$$

Measure W helicity fractions (FR, FL, and F0) using cos(θ*) distribution in ttbar events

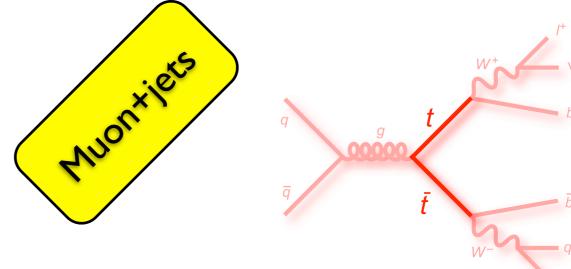
Results based on reweighting MC using likelihood techniques to find fractions F_i preferred in data

11/24/13

🖉 W helicity in top decays: CMS overview 🎛

	7 TeV	8 TeV
NNLO	$FL = 0.311 \pm 0.005,$ $FR = 0.0017 \pm 0.0001,$ $F0 = 0.687 \pm 0.005$ Phys. Rev. D 81 (2010) 111503	
Lepton+jets	FL = 0.310 ± 0.022 (stat.) ± 0.022 (syst.), FR = 0.008 ± 0.012 (stat.) ± 0.014 (syst.), F0 = 0.682 ± 0.030 (stat.) ± 0.033 (syst.) JHEP	NEW
Dilepton	$FL = 0.288 \pm 0.035(stat) \pm 0.040(sys),$ $FR = 0.014 \pm 0.027(stat) \pm 0.042(sys),$ $F0 = 0.698 \pm 0.057(stat) \pm 0.063(sys)$ CMS PAS TOP-12-015	
Single top	$FL = 0.293 \pm 0.069(stat.) \pm 0.030(syst.),$ $FR = -0.006 \pm 0.057(stat.) \pm 0.027(syst.),$ $F0 = 0.713 \pm 0.114(stat.) \pm 0.023(syst.)$ CMS PAS TOP-12-020	
Atlas+CMS combination Lepton+jets and dilepton	$FL = 0.359 \pm 0.021 \text{ (stat.)} \pm 0.028 \text{ (syst.)},$ $FR = 0.015 \pm 0.034,$ $F0 = 0.626 \pm 0.034 \text{ (stat.)} \pm 0.048 \text{ (syst.)}$ CMS PAS TOP-12-025	

The different helicity fraction measurements are in agreement with NNLO QCD


11/24/13

New: W helicity in lepton+jets

• <u>CMS PAS TOP-13-008</u> : Measurement of the W-boson helicity in top decays from TTbar production in lepton+jets events at the LHC at $\sqrt{s} = 8 \text{ TeV}$

Full 2012 dataset at $\sqrt{s} = 8$ TeV: 19.6/fb

Single muon trigger

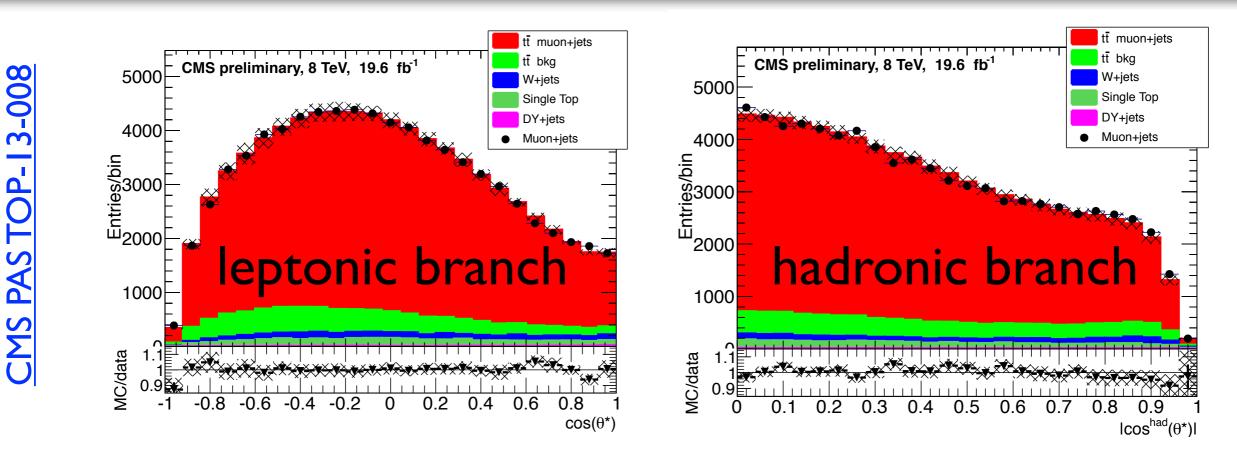
Muon+jets event selection

- At least **I** isolated muon, at least **4** jets, at least **2** jets tagged as a b jet
- Cut on transverse mass of W to reduce QCD multijet background and suppress dilepton ttbar events

TTbar system reconstruction

Groups of 4 jets, together with the lepton and $p_{T,miss}$, are tested for their compatibility with decay products of the hadronic ($\overline{t} \rightarrow W^-\overline{b} \rightarrow q\overline{q}\overline{b}$) and leptonic ($t \rightarrow W^+b \rightarrow Iv_Ib$) branches, taking into account b tagged jets

Whelicity measurement: reweighting method to maximize a binned Poisson likelihood function


Constructed using the numbers of observed $N_{data}(i)$ and expected $N_{MC}(i,F)$ events in each $cos(\theta^*)$ bin i

Dominant systematic uncertainties:

Top mass, ttbar renormalisation and factorization scales, ttbar matching scale

New: W helicity in lepton+jets

Measurement of the W helicity fractions using the helicity angle $cos(\theta^*)$ from the **leptonic branch** of semileptonic ttbar decays fitting F0 and FL simultaneously.:

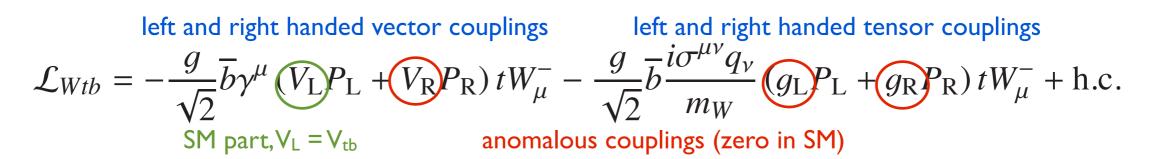
 $F0 = 0.659 \pm 0.015(stat.) \pm 0.023(syst.),$ FL = 0.350 ± 0.010(stat.) ± 0.024(syst.),

The right-handed helicity fraction is calculated from the unitarity condition, FL + F0 + FR = I

 $FR = -0.009 \pm 0.006(stat.) \pm 0.020(syst.).$

The measured fractions are consistent with the predictions from SM.

💕 W helicity in top decays: CMS overview 🎇

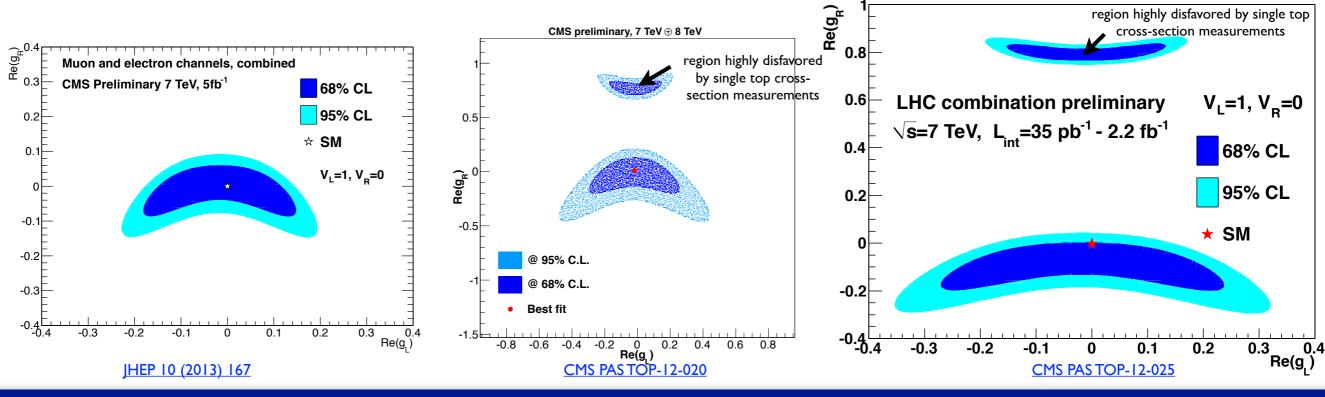

	7 TeV	8 TeV
NNLO	$FL = 0.311 \pm 0.005,$ $FR = 0.0017 \pm 0.0001,$ $F0 = 0.687 \pm 0.005$ Phys. Rev. D 81 (2010) 111503	
Lepton+jets	$FL = 0.310 \pm 0.022 \text{ (stat.)} \pm 0.022 \text{ (syst.)},$ $FR = 0.008 \pm 0.012 \text{ (stat.)} \pm 0.014 \text{ (syst.)},$ $F0 = 0.682 \pm 0.030 \text{ (stat.)} \pm 0.033 \text{ (syst.)}$ JHEP 10 (2013) 167	$FL = 0.350 \pm 0.010 \text{ (stat.)} \pm 0.024 \text{ (syst.)},$ $FR = -0.009 \pm 0.006 \text{ (stat.)} \pm 0.020 \text{ (syst.)},$ $F0 = 0.659 \pm 0.015 \text{ (stat.)} \pm 0.023 \text{ (syst.)}$ CMS PAS TOP-13-008
Dilepton	$FL = 0.288 \pm 0.035(stat) \pm 0.040(sys),$ $FR = 0.014 \pm 0.027(stat) \pm 0.042(sys),$ $F0 = 0.698 \pm 0.057(stat) \pm 0.063(sys)$ CMS PAS TOP-12-015	
Single top	$FL = 0.293 \pm 0.069(stat.) \pm 0.030(syst.),$ $FR = -0.006 \pm 0.057(stat.) \pm 0.027(syst.),$ $F0 = 0.713 \pm 0.114(stat.) \pm 0.023(syst.)$ CMS PASTOP-12-020	
Atlas+CMS combination Lepton+jets and dilepton	$FL = 0.359 \pm 0.021 \text{ (stat.)} \pm 0.028 \text{ (syst.)},$ $FR = 0.015 \pm 0.034,$ $F0 = 0.626 \pm 0.034 \text{ (stat.)} \pm 0.048 \text{ (syst.)}$ CMS PAS TOP-12-025	

The different helicity fraction measurements are in agreement with NNLO QCD

||/24/|3

Limits on anomalous couplings

- The combined helicity fractions are in agreement with NNLO QCD predictions and can be used to set limits on new physics contributing to the tWb vertex.
- Start with most general tWb vertex:

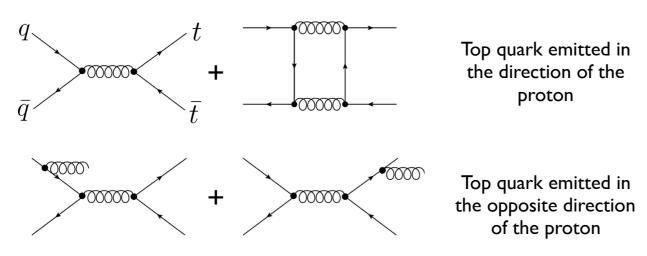


Assuming $V_L = I$ and $V_R = 0$, set limits on real parts of g_L and g_R

7 TeV lepton+jets

7 TeV single top

7 TeV lepton+jets and dilepton Atlas+CMS combination

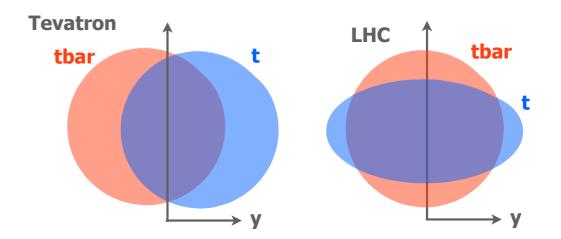

11/24/13

Top pair asymmetry

<u>Tevatron</u>

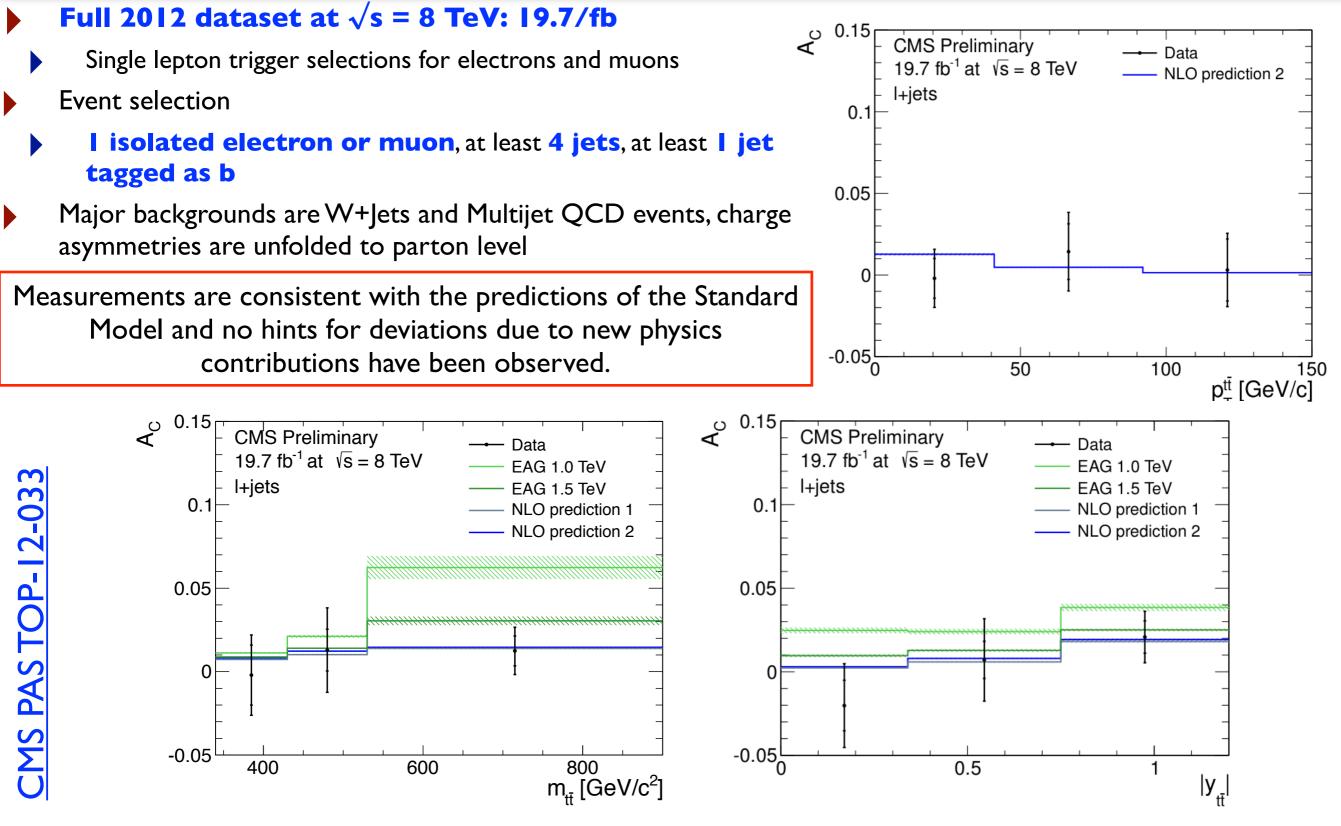
- Interference causes the (anti)top direction to be correlated to the initial state (anti)quark
 - Forward-Backward asymmetry:

$$A_{\rm FB} = \frac{N(\Delta y > 0) - N(\Delta y < 0)}{N(\Delta y > 0) + N(\Delta y < 0)}$$


$$\Delta y = y_t - y_{\bar{t}}$$

Deviation (>2σ) from SM in inclusive measurement

- Considerable increase of asymmetry with m(ttbar)
 - Phys. Rev. D 87, 092002 (2013)

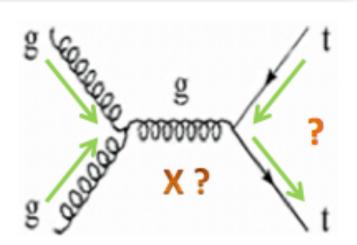

- Tevatron A_{FB} variable not useful at LHC
 - Initial state is forward-backward symmetric (pp)
 - Quark (mainly valence quark) and anti-quark (sea quark) parton distributions inside the protons are not symmetric
 - Quarks carry more momentum than the antiquarks → rapidity distribution of tops broader than of anti-tops when a charge asymmetry is present.

i.e. $|y_t| > |y_{tbar}|$

Charge asymmetry: $A_{C} = \frac{N(|y_{t}| > |y_{\bar{t}}|) - N(|y_{t}| < |y_{\bar{t}}|)}{N(|y_{t}| > |y_{\bar{t}}|) + N(|y_{t}| < |y_{\bar{t}}|)}$

New: Top pair charge asymmetry in lepton+jets

EAG: Model featuring an effective axial-vector coupling of the gluon: Phys. Rev. D 85 (2012) 074021



	NLO	Lepton+jets	Dileptons
7 TeV	0.0115 ± 0.0006	0.004 ± 0.010 (stat.) ± 0.011 (syst.)	0.010 ± 0.015 (stat.) ± 0.006 (syst.)
	<u>Phys. Rev. Lett. 81 (1998) 49</u>	[5/fb] Phys. Lett. B717 (2012) 129	[5/fb] <u>CMS PAS TOP-12-010</u>
8 TeV	0.0111 ± 0.0004	0.005 \pm 0.007 (stat.) \pm 0.006 (syst.)	
	<u>Phys. Rev. D 86 (2012) 034026</u>	[19.7/fb] <u>CMS PAS TOP-12-033</u>	

Measurements are consistent with the predictions of the Standard Model

Top spin correlations and polarization in dileptons

- We measure the top polarization and TTbar spin correlations and compare to SM predictions
 - New physics could alter polarization and spin correlation <u>Phys. Rev. D 84, 074034 (2011)</u>

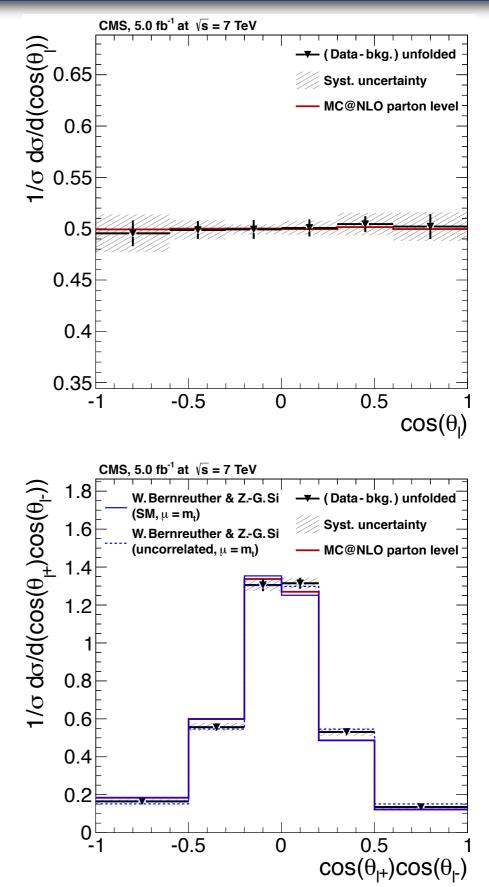
Top polarization:

$$P = 2 * A \qquad A_P = \frac{N(\cos(\theta_\ell) > 0) - N(\cos(\theta_\ell) < 0)}{N(\cos(\theta_\ell) > 0) + N(\cos(\theta_\ell) < 0)}$$

A_P: measured in the helicity basis (angle θ_1 of lepton measured in parent top's rest frame, relative to direction of the top in the ttbar center of mass frame)

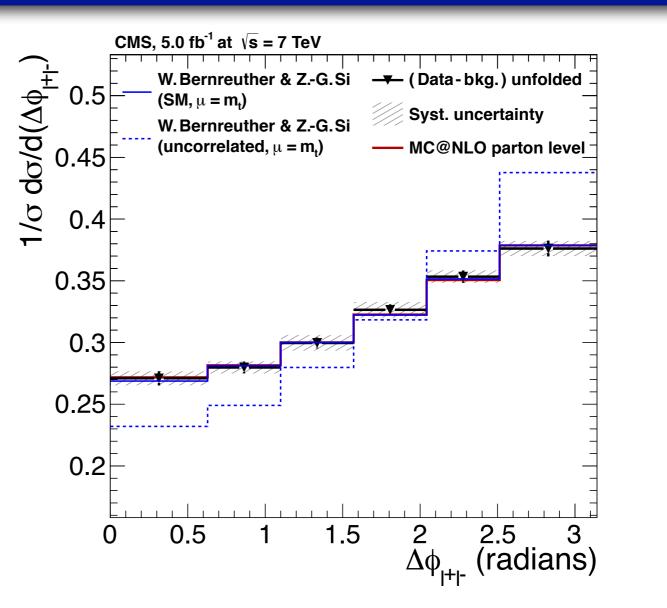
TTbar spin correlation:

$$A_{\Delta\phi} = \frac{N(\Delta\phi_{\ell^+\ell^-} > \pi/2) - N(\Delta\phi_{\ell^+\ell^-} < \pi/2)}{N(\Delta\phi_{\ell^+\ell^-} > \pi/2) + N(\Delta\phi_{\ell^+\ell^-} < \pi/2)}$$


A $\Delta \phi$: excellent discrimination at the LHC between correlated and anti-correlated top and the the spins

$$A_{c_1c_2} = \frac{N(c_1 \cdot c_2 > 0) - N(c_1 \cdot c_2 < 0)}{N(c_1 \cdot c_2 > 0) + N(c_1 \cdot c_2 < 0)}$$

A_{c1c2}: where c1 = cos(θ_{1+}) and c2 = cos(θ_{1-}), provides a direct measure of the spin correlation coefficient C_{hel} using the helicity angles of the two leptons in each event: C_{hel} = -4A_{c1c2}


Top spin correlations and polarization in dileptons

- Full 2011 dataset at $\sqrt{s} = 7$ TeV: 5/fb
 - Dilepton trigger selections for electrons and muons
 - Top dilepton selection
 - 2 opposite sign isolated leptons and at least 2 jets , at least 1 jet tagged as a b
- MET cut in ee and µµ channels to suppress Drell-Yan background
- **Top kinematics reconstructed** using analytical matrix weighting technique (**AMWT**)
- An "**unfolding**" procedure is employed to correct acceptance and resolution effects based on the singular value decomposition (SVD) method
 - Main systematic uncertainty is coming from top p_T reweighting
 - CMS studies have shown the top quark p_T distribution in data to be softer than in the NLO simulation, this is corrected by reweighting the MC
 - For details, please refer to S. Costantini talk about "Top quark pair cross section measurements with CMS" in the Parallel Sessions 24B2: BSM/Top I

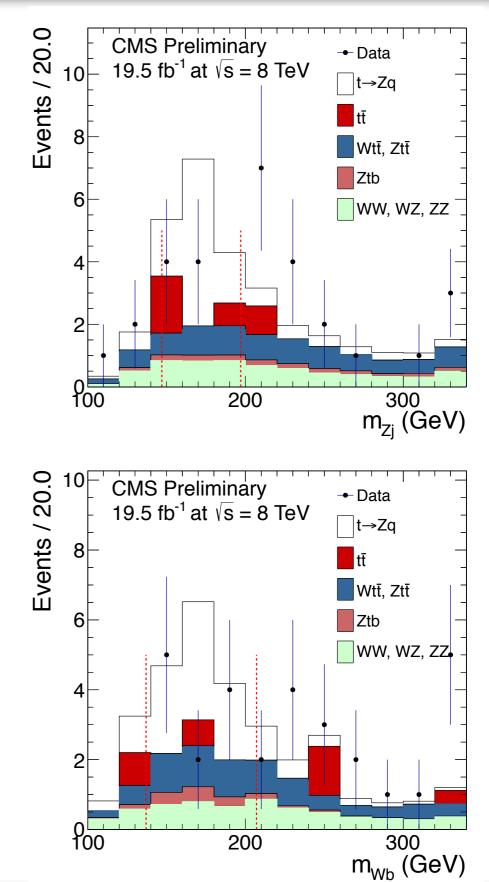
Top spin correlations and polarization in dileptons

- In good agreement with the standard model predictions for all three measured variables
- A_{Δφ} result indicates the presence of ttbar spin correlations, and strongly disfavors the uncorrelated case.

Asymmetry	Data (unfolded)	MC@NLO	NLO (SM, correlated)	NLO (uncorrelated)
$A_{\Delta\phi}$	$0.113 \pm 0.010 \pm 0.007 \pm 0.012$	0.110 ± 0.001	$0.115^{+0.014}_{-0.016}$	$0.210\substack{+0.013\\-0.008}$
$A_{c_1c_2}$	$-0.021 \pm 0.023 \pm 0.027 \pm 0.010$	-0.078 ± 0.001	-0.078 ± 0.006	0
A_P	$0.005 \pm 0.013 \pm 0.020 \pm 0.008$	0.000 ± 0.001	N/A	N/A
	t top pτ	reweighting		

CMS PAS TOP-13-003

FCNC in top decays


Search for flavor changing neutral currents: $t \rightarrow Zq$ suppressed in SM but can be enhanced in new physics models

Full 2012 dataset at $\sqrt{s} = 8$ TeV: 19.5/fb

- Single lepton trigger
- Event selection
- 3 isolated leptons (e or μ), of which two opposite-sign and consistent with a Z, at least 2 jets, exactly 1 b tagged jet
- Backgrounds are estimated from data using b tagging information:

Total background	$3.14 \pm 4.97 \pm 1.17$	
Observed events	1	
Expected limit	$\mathcal{B}(t \rightarrow Zq) < 0.10\%$	
Observed limit	$\mathcal{B}(t \rightarrow Zq) < 0.07\%$	

- No excess of events over the SM background is observed and a B(t \rightarrow Zq) branching fraction larger than 0.07% is excluded at the 95% confidence level
 - 3 times better than 7 TeV result
 - For comparison:
 - Model with Q=2/3 quark singlets (QS) predicts a BR of ~10E-4
 - MSSM predicts ~10E-6
 - Acta Phys. Pol. B35 (2004) 2527-2811

- The LHC is a top factory and allows precision measurements of many top properties
 - Allows to test SM predictions and search for new physics
- CMS latest results of top property measurements have been presented for
 - W helicity in top decays, Top pair asymmetry, TTbar spin correlations, Flavor changing neutral currents
- All presented results are in good agreement with SM predictions, no hints for deviations due to new physics contributions have been observed