Search for new particles in tt production

Thomas Peiffer on behalf of the CMS Collaboration

PASCOS 11/24/2013

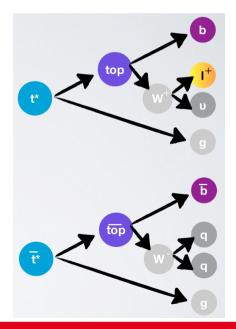
- Top quark is heaviest known elementary particle
- Only accessible in hadron collisions
- Mass of the order of the EW breaking scale
- New Physics might be connected to top quark sector

Presented here: Resonance searches in $t\bar{t}$ events:

- Search for resonant tt production (arXiv:1309.2030, accepted by PRL)
- Search for excited top quarks (CMS-PAS-B2G-12-008 and CMS-PAS-B2G-12-014, submitted arXiv and JHEP)
- Both analyses based on full 2012 dataset with 8 TeV, \sim 20 fb⁻¹.

Possible Signatures

New particles in $t\overline{t}$ production:

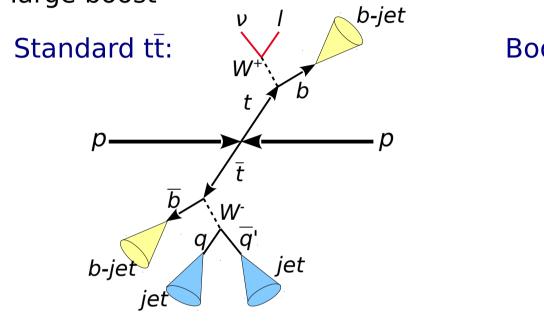

Heavy new particles could show up as resonance in top quark pair production $q_{\rm N}$

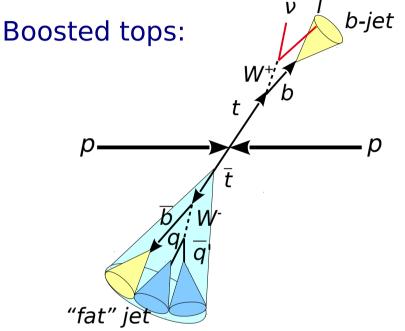
Many models predict such resonances:

topcolor Z', Kaluza Klein excitations, heavy Higgs bosons, etc.

Excited top quark:

- Spin 3/2 or 1/2 excitation t* decaying to top+gluon
- Search for pair produced $t^*\overline{t^*}$
- Expected in Randall-Sundrum models
- Sbottom pair production has same signature


Search for $t\bar{t}$ resonances



Top quarks originating from a heavy resonance decay are produced with large boost

3 analysis channels:

- Lepton+jets resolved: one top quark to b, l, v, other top quark to hadrons, all decay products resolved
- Lepton+jets boosted: decay products are allowed to overlap
- Hadronic boosted: both top quarks decay to hadrons and can build fat jets

11/24/2013

Lepton+jets

Mass threshold analysis

- 1 isolated $e(\mu)$ with $p_T>30$ (26) GeV
- 4 or more jets (with 70, 50, 50, 30 GeV), 1 or more b tags
- Missing $E_T > 20 \text{ GeV}$

Event reconstruction:

- Neutrino momentum from missing E_T
- Assign jets to quarks (in 2 or 3 jet events: not fully resolvable)
- Choose best hypothesis by χ^2 including top and W masses

 M^{-}

Cut on χ²

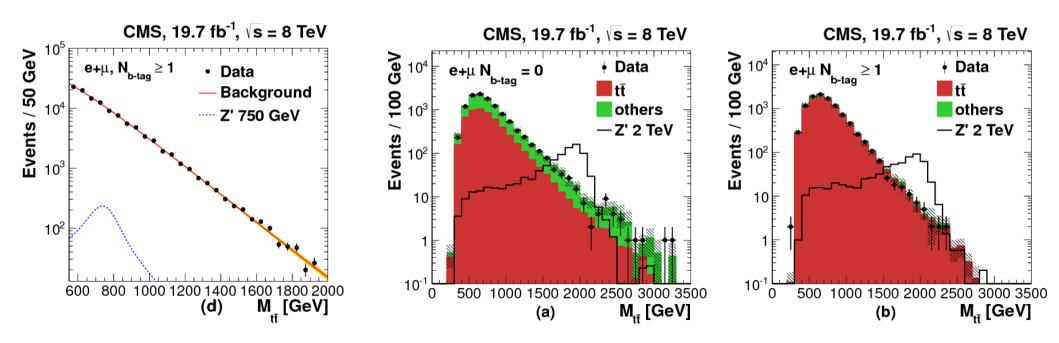
Boosted analysis

- 1 **non**-isolated $e(\mu)$ with $p_T>35$ (45) GeV
- 2 or more jets with 50 GeV, leading jet with 150 GeV
- Missing $E_T > 50 \text{ GeV}$, $H_T^{\text{lep}} > 150$. GeV
- Cuts on p_T^{rel}(l,jet), ΔR(l,jet),
 Δφ(l,jet) against fake leptons

PASCOS 2013

W/

Lepton+jets results

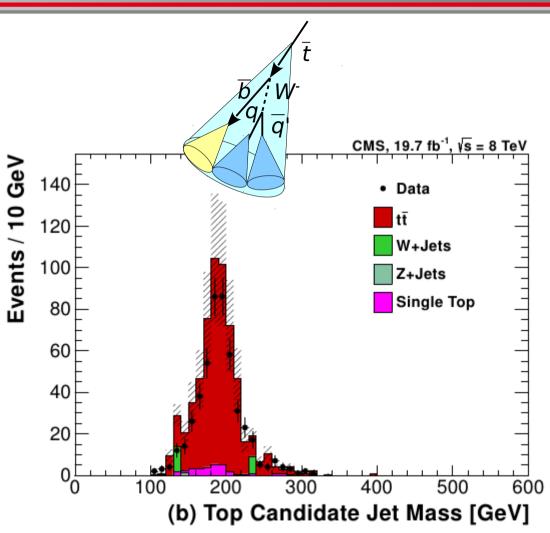

Mass threshold analysis:

Signal parametrized with Breit-Wigner shape

Background modeled with smoothly falling probability density function

Boosted analysis:

Signal and background templates from MC simulation

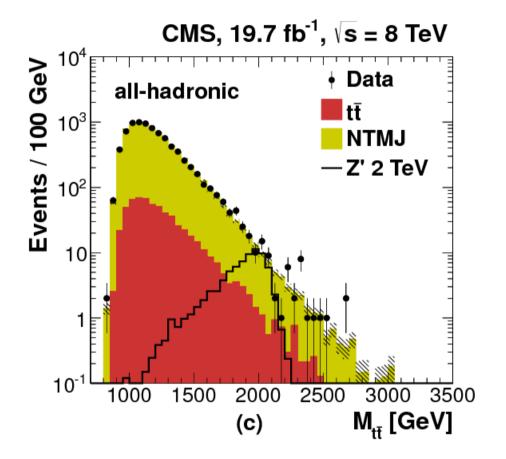

Hadronic channel

- No leptons: huge QCD multi-jet background
- → apply **top tagging**:
 - Reverse jet clustering steps
 → sub-jets
 - Cuts on jet and sub-jet masses to match top and W masses
 - Validate tagging on I+jets top events

Selection:

- trigger with $H_T > 750 \text{ GeV}$
- Two Cambridge-Aachen jets with R=0.8 and p_T >400 GeV
- Both jets top tagged

11/24/2013

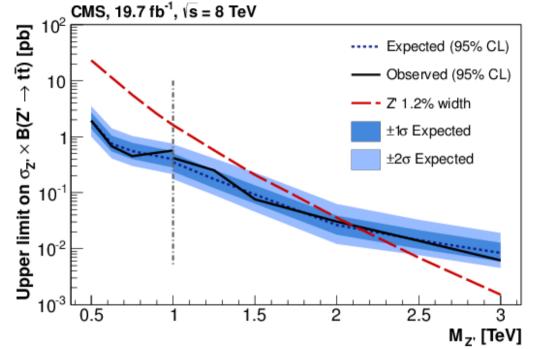


- Non-top multi jet (NTMJ) background modelled from data sideband
- Top background and signal from simulation

No excess observed in all channels

 \rightarrow set limits on resonance models

Combined Limits



Low mass analysis:

Limits from pdf fit

High mass region:

- Template fit to m_{tr} distribution
- Combine I+jets and hadronic channels

Limits:

Narrow Topcolor Z':

- m>2.1 (2.1 expected) TeV
- Topcolor Z' with 10% width: m > 2.7 (2.6) TeV
- RS Kaluza-Klein gluon:
- $S = \sigma(SM + BSM) / \sigma(SM)$

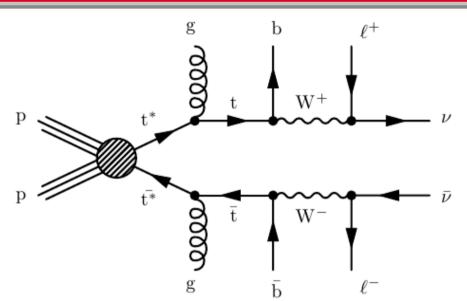
m>2.5 (2.4) TeV

Search for excited top quarks

Analysis Overview

Signature:

- tt signature + 2 additional jets:
- Main background:

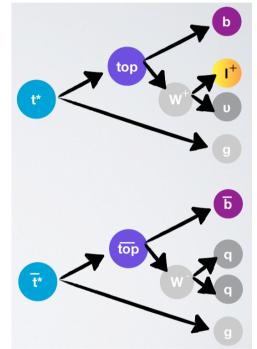

SM $\ensuremath{t\bar{t}}$ production with additional radiation

Event selection lepton+jets:

- Exactly one isolated electron (muon) with $p_T > 30$ (26) GeV
- At least 6 jets with $p_T > 30$ GeV, leading 3 jets with p_T up to 55 GeV
- At least one b tag

Event selection di-lepton:

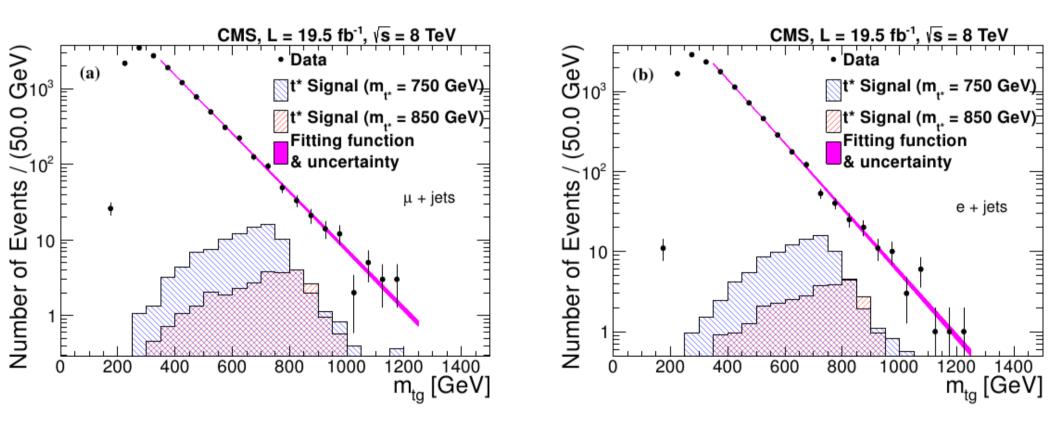
- At least two isolated electrons or muons with $p_{\scriptscriptstyle T}{>}20~GeV$
- Two b tagged and two non-b tagged jets with $p_T > 30 \text{ GeV}$



Mass Reconstruction

Reconstruct t* mass from kinematic fit:

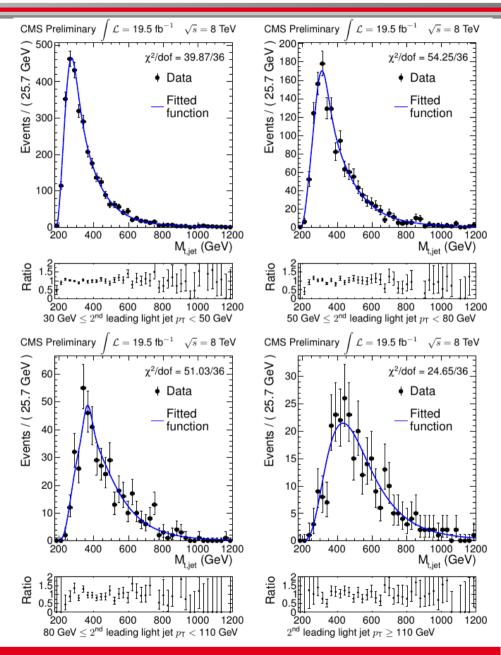
- Neutrino(s) reconstructed from missing transverse energy
- Assign jets to final state partons
- Smear jets within resolution
- Consider all jet/lepton assignments/neutrino solutions
- Constrain masses:
 - $m(lv) = m(q\overline{q}) = m_w = 80.4 \text{ GeV}$
 - $m(lvb) = m(q\bar{q}b) = m_t = 173.5 \text{ GeV}$
 - $m(lvbg) = m(q\overline{q}bg) = m_{t^*}$ with free parameter m_{t^*}



Results: L+Jets

- Parametrize $M_{t,jet}$ shape of background with falling function
- Perform likelihood fit to extract t* cross section/limits
- No excess seen in data

Results: Di-Lepton


Parametrize $M_{\rm t,jet}$ shape with fit function in bins of 2^{nd} jet $p_{\rm T}$

Perform 3D likelihood fit of:

- M_{t,jet}
- p_{T} of leading jet
- p_T of 2nd leading jet

Also no significant excess seen

 \rightarrow set limits on t* signal

11/24/2013

Limits

• Lepton+jets: spin 3/2: exclude $m_{t*} < 803$ GeV (739 GeV expected)

spin 1/2: excl. 465 < m_{t^*} < 512 GeV (m_{t^*} < 521 GeV)

• **Di-lepton:** spin 3/2: exclude $m_{t^*} < 703 \text{ GeV}$ (763 GeV) Sbottom: $m_{b} < 326 \text{ GeV}$ (298 GeV)

- Top quark sector candidate for new physics searches
- Rich program ongoing at CMS in beyond-2nd-generation group
- Presented two exemplary analyses on resonances in $t\bar{t}$ production
- No hint for new physics in top quark pair production at CMS, yet