Top quark pair production cross section at LHC in ATLAS

Oliver Rosenthal

On behalf of the ATLAS collaboration

PASCOS 2013 Taipei, 20-26 November 2013

TOP QUARK PAIR CROSS SECTION MEASUREMENTS

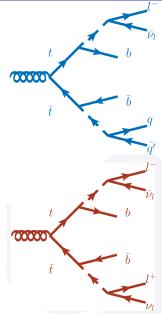
Motivation

Precise pQCD tests for top quark production; Calculations available up to NNLO+NNLL with $m_t = 172.5$ GeV: $\sigma_{t\bar{t}}(\sqrt{s} = 7 \text{ TeV}) = 177.3^{+10.1}_{-10.8} \text{ pb}, \sigma_{t\bar{t}}(\sqrt{s} = 8 \text{ TeV}) = 252.9^{+13.3}_{-14.5} \text{ pb}$

- ► Indirect sensitivity to new physics
- lacktriangle Important background for various analyses/searches such as H o bar b measurement
- ▶ Provides constraints to modeling like PDF and ISR/FSR

Six measurements from the ATLAS collaboration are presented:

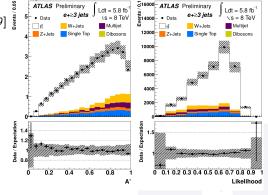
- ► Inclusive top quark cross section
 - ► Single lepton channel @ 8 TeV [ATLAS-CONF-2012-149]
 - ▶ Dilepton channel @ 8 TeV [ATLAS-CONF-2013-097]
 - τ+lepton channel @ 7 TeV [Phys.Lett.B717(2012)89-108]
 - Differential top quark cross section
 - $ightharpoonup \sigma_{t\bar{t}}(p_t(t)), \sigma_{t\bar{t}}(m_{t\bar{t}}) \ @ \ 7 \text{ TeV} \quad [ATLAS-CONF-2013-099]$
 - $\sigma_{t\bar{t}}(n_{\text{jets}})$ @ 7 TeV [ATLAS-CONF-2012-155]
 - ► Gap fraction @ 7 TeV [*Eur.Phys.J.C72(2012)2043*]


TYPICAL EVENT SELECTION

Single lepton $t\bar{t}$ selection

- Exactly one isolated, high- p_T lepton: electron with $p_T > 25 \text{ GeV}$ muon with $p_T > 20 \text{ GeV}$
- muon with p_T > 20 GeV
 At least three/four jets with p_T > 25 GeV, of which at least one jet is b-tagged
- ▶ High missing transverse energy: $E_T^{miss} > 30 \text{ GeV}$ (e+jets) or $E_T^{miss} > 20 \text{ GeV}$ (μ +jets)
- Transverse mass of leptonically decayed W boson: $m_T^W > 30 \, \text{GeV} \, (e+\text{jets}) \, \text{or} \, m_T^W + E_T^{miss} > 60 \, \text{GeV} \, (\mu+\text{jets})$

Dilepton $t\bar{t}$ selection


- Exactly two isolated, high- p_T leptons with $p_T > 20 25$ GeV and opposite electric charge
- At least two jets with $p_T > 25 \text{ GeV}$
- ightharpoonup $E_T^{ extit{miss}} >$ 60 GeV (ee, $\mu\mu$) or $H_T >$ 130 GeV (e μ)
- $ightharpoonup m_{II} > 15 \text{ GeV}$ and $|m_{II} m_{Z}| > 10 \text{ GeV}$

Inclusive top quark pair cross section measurements

SINGLE LEPTON CHANNEL, $\sqrt{s} = 8 \text{ TeV}$, $L_{\text{int}} = 5.8 \text{ fb}^{-1}$

- First ATLAS measurement of $\sigma_{t\bar{t}}$ at 8 TeV [ATLAS-CONF-2012-149]
- ► Tighter lepton selection with $p_T > 40$ GeV to further reduce multjet background
- Inclusive cross section measured using a likelihood discriminant template fit
- Discriminants: $\eta_{e,\mu}$, aplanarity A'
- Dominant uncertainties due to signal modeling (11%) and jet uncertainties (5-6%)

$$\sigma_{tar{t}} = 241 \pm 2 \, ext{(stat.)} \pm 31 \, ext{(syst.)} \pm 9 \, ext{(lumi)} \, ext{pb}$$

ightharpoonup Consistent with SM expectation $\sigma_{tar{t}}^{
m NNLO+NNLL}=252.9^{+13.3}_{-14.5}\,{
m pb}$

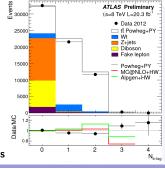
DILEPTON CHANNEL, $\sqrt{s} = 8 \text{ TeV}$, $L_{\text{int}} = 20.3 \text{ fb}^{-1}$

- Measurement in $e\mu$ -channel with exactly one (N_1) or two b-tagged jets (N_2) [ATLAS-CONF-2013-097]
- ► Highly pure signal selection, only 11% background events in sample with one b-tagged jet, 4% background in sample with two b-tagged jets
- ightharpoonup Simultaneous determination of $\sigma_{t\bar{t}}$ and the efficiency to reconstruct & b-tag jets

$$\begin{split} N_1 &= L \sigma_{t\bar{t}} \epsilon_{e\mu} 2 \epsilon_b (1 - C_b \epsilon_b) + N_1^{bkg} \;, \\ N_2 &= L \sigma_{t\bar{t}} \epsilon_{e\mu} \epsilon_b^2 C_b &+ N_2^{bkg} \;, \end{split}$$

with $N_{1,2}$: Number of selected events,

.: Integrated luminosity

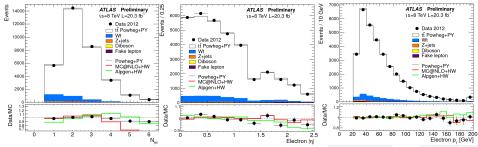

 $\sigma_{t\bar{t}}$: $t\bar{t}$ cross section

 $\epsilon_{e\mu}$: Efficiency to pass $e\mu$ preselection, ϵ_b : Combined probability for a jet from

 $t \rightarrow Wq$ to be within acceptance, reconstructed as jet and *b*-tagged,

 C_b : Correlations between two b-tagged jets,

with $N_{1,2}^{\text{bkg}}$: Number of background events

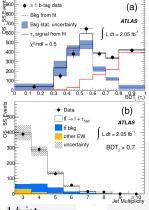


DILEPTON CHANNEL, $\sqrt{s} = 8 \text{ TeV}$, $L_{\text{int}} = 20.3 \text{ fb}^{-1}$

▶ Dominant uncertainties due to luminosity (3.1%) and beam energy measurement (1.7%); leading systematic uncertainties from signal modeling (1.5%) and electron-ID (1.4%)

$$\sigma_{tar{t}}=2$$
37.7 \pm 1.7 (stat.) \pm 7.4 (syst.) \pm 7.4 (lumi) \pm 4.0 (beam energy) pb

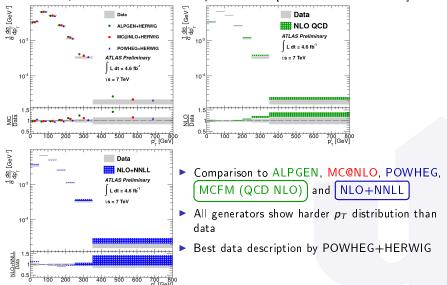
 \blacktriangleright Consistent with SM expectation $\sigma_{t\bar{t}}^{\rm NNLO+NNLL}=252.9^{+13.3}_{-14.5}~\rm pb$



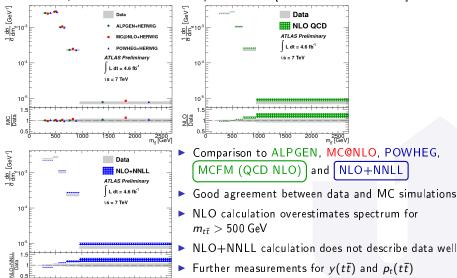
au+LEPTON CHANNEL, $\sqrt{s}=7$ TeV, $L_{ ext{int}}=2.1\, ext{fb}^{-1}$

- lacksquare Search for $t o bH^+$ decay with $H^+ o au^+
 u_ au$
- ▶ au-reconstruction: 1-3 associated tracks with $p_T>1$ GeV, 20 GeV $< E_T < 100$ GeV, $|\eta| < 2.3$
- ▶ τ -ID: Boosted decision trees (BDT) from calorimeter- & track-based variables to discriminate between τ leptons and misidentified electrons (BDT_e) or jets (BDT_j)
- Separate BDT $_j$ for au candidates with exactly one track (au_1) and ≥ 1 track (au_3)
- $ightharpoonup \chi^2$ -fits to BDT_j distributions of events with for $\geq 1 \, b$ -jet
- ► Signal templates from MC, background from events with no b-jet
- \blacktriangleright Main systematic uncertainties from *b*-tagging, τ -ID and ISR/FSR modeling

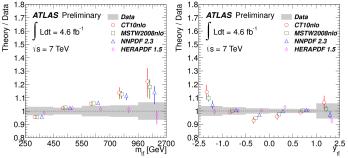
$$\sigma_{tar{t}} = 186 \pm 13$$
 (stat.) \pm 20 (syst.) \pm 7 (lumi) pb


lacktriangle Consistent with SM expectation $\sigma_{tar{t}}^{
m NNLO+NNLL}=177.3^{+10.1}_{-10.8}\,{
m pb}$

Differential top quark pair cross section measurements

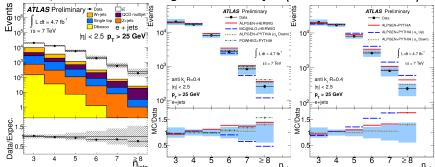

$\overline{\sigma_{tar{t}}(p_t(t))},\; \sqrt{s}=7\; extsf{TeV},\; L_{ extsf{int}}=4.6\; extsf{fb}^{-1}$

Comparison to SM simulations/calculations [ATLAS-CONF-2013-099]


$(\sigma_{tar{t}}(m_{tar{t}}),\;\sqrt{s}=7\; extsf{TeV},\;L_{ extsf{int}}=4.6\; extsf{fb}^{-1})$

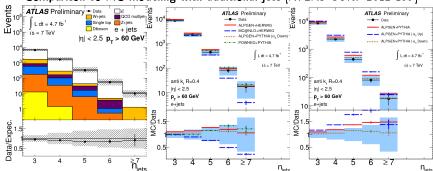
Comparison to SM simulations/calculations [ATLAS-CONF-2013-099]

$\sigma_{t\bar{t}}(m_{t\bar{t}}), \sigma_{t\bar{t}}(y(t\bar{t})), \ \sqrt{s} = 7 \text{ TeV}, \ L_{\text{int}} = 4.6 \text{ fb}^{-1}$

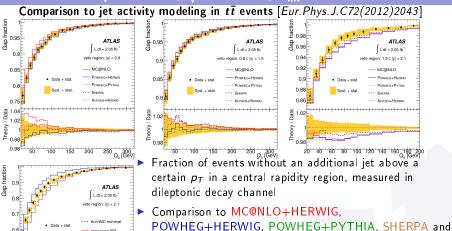

Comparison to NLO calculation with different PDFs [ATLAS-CONF-2013-099]

- Comparison to CT10, MSTW2008, NNPDF and HERAPDF
- ▶ Best data description by HERAPDF, agrees with data within uncertainties
- ▶ Other PDFs: Increasing deviations from data for larger $m_{t\bar{t}}$, tension for |y| < 0.5 and y < -1.0
- ▶ Further measurements for $p_t(t)$ and $p_t(t\bar{t})$
- Besides PDF uncertainties, other modeling uncertainties need to be considered like the variation of the factorization and renormalization scale

$|\sigma_{tar{t}}(n_{\mathsf{iets}}),\;\sqrt{s}=7\;\mathsf{TeV},\;L_{\mathsf{int}}=4.7\;\mathsf{fb}^{-1}$


Comparison to MC modeling with additional jets [ATLAS-CONF-2012-155]

- ► Measurements for different jet-p_T thresholds (25, 40, 60, 80 GeV) within a fiducial volume that is closely matched to the detector acceptance
- Comparison to ALPGEN+HERWIG, MC@NLO+HERWIG, ALPGEN+PYTHIA and POWHEG+PYTHIA
- MC@NLO+HERWIG predicts too few jets in high multiplicity bins
- Other generators show similar distribution shapes
- lacktriangle Measurement sensitive to scale settings of $lpha_s$
- ▶ ALPGEN+PYTHIA with α_s down (ktfac=2) shows best data description


$|\sigma_{tar{t}}(n_{ exttt{iets}}),\;\sqrt{s}=7 ext{ TeV},\;L_{ exttt{int}}=4.7 ext{ fb}^{-1}$

Comparison to MC modeling with additional jets [ATLAS-CONF-2012-155]

- Measurements for different jet- p_T thresholds (25, 40, 60, 80 GeV) within a fiducial volume that is closely matched to the detector acceptance
- Comparison to ALPGEN+HERWIG, MC@NLO+HERWIG, ALPGEN+PYTHIA and POWHEG+PYTHIA
- MC@NLO+HERWIG predicts too few jets in high multiplicity bins
- Other generators show similar distribution shapes
- lacktriangle Measurement sensitive to scale settings of $lpha_s$
- ▶ ALPGEN+PYTHIA with α_s down (ktfac=2) shows best data description

Gap fraction, $\sqrt{s} = 7$ TeV, $L_{int} = 2.1$ fb⁻¹

- MC@NLO predicts too little jet activity in very central region, all MC generators simulate too much forward jet activity
- Contraint on ISR/FSR emission

Syst. + stat

Decreased ISB

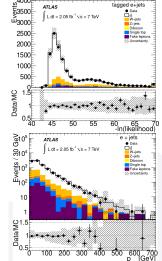
ALPGEN+HERWIG

CONCLUSION

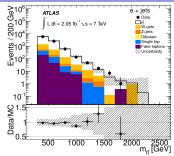
- Broad range of inclusive and differential top quark pair production cross section measurements with ATLAS
- All decay channels covered @ 7 TeV
- First cross section measurements @ 8 TeV in single lepton and dileptonic channel
- ▶ 5% precision achieved @ 8 TeV in dileptonic channel
- ► All inclusive cross section results in agreement with SM expectation
- Differential cross section measurements largely consistent with SM expectation
- Essential results to gain sensivity to SM modeling differences

Backup

INTRODUCTION TO DIFFERENTIAL MEASUREMENTS 1

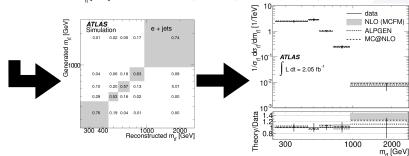

Analysis strategy:

- 1. Event selection
- 2. $t\bar{t}$ kinematic reconstruction
- 3. Bin-wise cross section measurement
- \Rightarrow Differential $t\bar{t}$ cross section

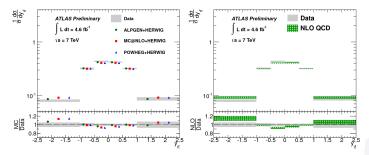

$t\bar{t}$ kinematic reconstruction

- Maximum likelihood fit to measured objects
- Inputs:
 - ▶ Energies and directions of selected jets
 - Energy and direction of selected lepton
 - Missing transverse energy
 - b-tagging information

$$\begin{split} L &= \left(\prod_{i=1}^{4} W\left(\tilde{E}_{i}, E_{i}\right)\right) \cdot \left(\prod_{i=1}^{4} W\left(\tilde{\Omega}_{i}, \Omega_{i}\right)\right) \cdot W\left(\tilde{E}_{l}, E_{l}\right) \cdot W\left(\tilde{E}_{T} | p_{y}^{\nu}\right) \cdot \\ BW\left(m_{jj} | M_{W}\right) \cdot BW\left(m_{l\nu} | M_{W}\right) \cdot BW\left(m_{jjj} | M_{t}\right) \cdot BW\left(m_{l\nu j} | M_{t}\right) \end{split}$$

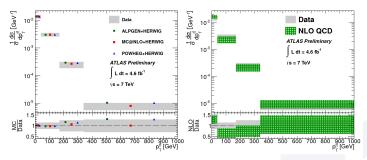

INTRODUCTION TO DIFFERENTIAL MEASUREMENTS 2

Bin-wise cross section measurement


- Unfolding of signal distributions after background subtraction
- Correction for detector effects and acceptance with migration matrix M_{ji} derived from simulated events

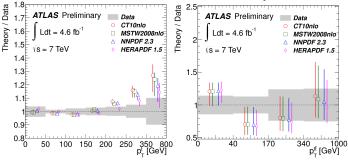
$$\frac{\mathsf{d}\sigma}{\mathsf{d}X_j} = \frac{1}{\Delta X_j} \cdot \frac{\sum_i M_{ji}^{-1} [D_i - B_i]}{\mathsf{BR} \cdot \mathcal{L} \cdot \epsilon_j}$$

$\sigma_{tar{t}}(y(tar{t})),\ \sqrt{s}=7\ {\sf TeV},\ L_{\sf int}=4.6\ {\sf fb}^{-1}$


Comparison to SM simulations/calculations [ATLAS-CONF-2013-099]

- Comparison to ALPGEN, MC@NLO, POWHEG and MCFM (QCD NLO)
- Best data description by ALPGEN
- ▶ Similar behavior by MC@NLO, POWHEG and QCD NLO, overestimating data for y < -1 and underestimating data for |y| < 0.5
- Comparison to NLO calculation with different PDFs: Best description by HERAPDF

$$\sigma_{tar{t}}(p_t(tar{t})),\;\sqrt{s}=7\, ext{TeV},\;L_{ ext{int}}=4.6\, ext{fb}^{-1}$$


Comparison to SM simulations/calculations [ATLAS-CONF-2013-099]

- Comparison to ALPGEN, MC@NLO, POWHEG and MCFM (QCD NLO)
- Comparison to NLO calculation with different PDFs
- Still large uncertainties in data and theory predictions

$\sigma_{t\bar{t}}(p_t(t)), \sigma_{t\bar{t}}(p_t(t\bar{t})), \ \sqrt{s} = 7 \text{ TeV}, \ L_{\text{int}} = 4.6 \text{ fb}^{-1}$

Comparison to NLO calculation with different PDFs [ATLAS-CONF-2013-099]

- Comparison to CT10, MSTW2008, NNPDF and HERAPDF
- ▶ PDF dependence of $p_T(t)$ above 200 GeV with best data description by HERAPDF
- lacktriangle Still large uncertainties in data and theory predictions for $p_t(tar{t})$
- Besides PDF uncertainties, other modeling uncertainties need to be considered like the variation of the factorization and renormalization scale