Measurement of beauty hadron spectroscopy and productions at CMS

Frank Meier
University of Nebraska-Lincoln on behalf of the CMS collaboration

November 25, 2013

Introduction

- CMS has access to a rich spectrum of B-physics measurements via muon triggers and a superb tracker
- I'm going to show:
- Examples of what we achieved.
- This includes some new results, presented for the first time.

B hadron spectroscopy: $\Xi_{b}^{* 0}$

First observation of a strong b baryon decay to $\Xi_{b}^{-}+\pi^{+}$

Reconstruction uses 6 charged tracks, some with displacements due to lifetimes.

Nebiraska
Lincoln

B hadron spectroscopy: Λ_{b}^{0} lifetime

Measured in $\Lambda_{\mathrm{b}}^{0} \rightarrow \mathrm{~J} / \psi \Lambda^{0}$

$$
\begin{aligned}
& \tau=1.503 \pm 0.051 \pm 0.031 \mathrm{ps} \\
& m=5619.7 \pm 0.5 \mathrm{GeV} / \mathrm{c}^{2}
\end{aligned}
$$

Control channel: $\mathrm{B}^{0} \rightarrow \mathrm{~J} / \psi \mathrm{K}_{\mathrm{s}}$ $\tau=1.526 \pm 0.019 \mathrm{ps}$ (PDG: $1.519 \pm 0.007 \mathrm{ps})$

B hadron spectroscopy: Λ_{b}^{0} lifetime

Shows the tendency towards longer observed Λ_{b}^{0} lifetimes over time.
Note: First theories favoured a lifetime ratio $\frac{\tau\left(\Lambda_{\mathrm{b}}^{0}\right)}{\tau\left(\mathrm{B}^{0}\right)}$ of $0.9 \ldots 1.0$.

B hadron spectroscopy: Λ_{b}^{0} lifetime

Shows the tendency towards longer observed Λ_{b}^{0} lifetimes over time.
Note: First theories favoured a lifetime ratio $\frac{\tau\left(\Lambda_{\mathrm{b}}^{0}\right)}{\tau\left(\mathrm{B}^{0}\right)}$ of $0.9 \ldots 1.0$.

$B_{c} \mathrm{BR}$ ratios: $B_{c} \rightarrow \mathrm{~J} / \psi \pi^{+}$and $B_{c} \rightarrow \mathrm{~J} / \psi \pi^{+} \pi^{+} \pi^{-}$

- New result, presented here for the first time.
- Later today the public result should appear here: https://twiki.cern.ch/twiki/bin/view/CMS/ PhysicsResultsBPH12011
- We report on two branching ratios:

$$
\begin{gathered}
\frac{\sigma\left(B_{c}\right) \times \operatorname{Br}\left(B_{c} \rightarrow \mathrm{~J} / \psi \pi^{+}\right)}{\sigma\left(\mathrm{B}^{+}\right) \times \operatorname{Br}\left(\mathrm{B}^{+} \rightarrow \mathrm{J} / \psi K^{+}\right)} \\
\frac{\operatorname{Br}\left(B_{c} \rightarrow \mathrm{~J} / \psi \pi^{+} \pi^{+} \pi-\right)}{\operatorname{Br}\left(B_{c} \rightarrow \mathrm{~J} / \psi \pi^{+}\right)}
\end{gathered}
$$

- Phase space covered: $p_{T}\left(B_{c}\right)>15 \mathrm{GeV} / \mathrm{c}$ and $\left|y\left(B_{c}\right)\right|<1.6$.
- NB: Charge conjugate modes included throughout this talk.

$B_{c} \mathrm{BR}$ ratios: The particle

A few facts:

- mass: $6.2745 \pm 0.0018 \mathrm{GeV} / \mathrm{c}^{2}$
- lifetime: $0.452 \pm 0.033 p s$
- quark content: bc
- only observable at hadron machines (so far)
- observed in a broad list of decays (first observation):

$$
B_{c} \rightarrow \mathrm{~J} / \psi \mu \nu(\mathrm{CDF}), B_{c} \rightarrow \mathrm{~J} / \psi \pi(\mathrm{CDF})
$$

$$
B_{c} \rightarrow \mathrm{~J} / \psi \pi \pi \pi(\mathrm{LHCb} / \mathrm{CMS}), B_{c} \rightarrow \psi(2 S) \pi(\mathrm{LHCb})
$$

$$
B_{c} \rightarrow \mathrm{~J} / \psi D_{s}(\mathrm{LHCb}), B_{c} \rightarrow \mathrm{~J} / \psi D_{s}^{*}(\mathrm{LHCb})
$$

$$
B_{c} \rightarrow \mathrm{~B}_{\mathrm{s}} \pi(\mathrm{LHCb}) \text {, and } B_{c} \rightarrow \mathrm{~J} / \psi K K \pi(\mathrm{LHCb})
$$

Note: The last three lines were added just recently.

Values mentioned were taken from the PDG tables

$B_{c} \mathrm{BR}$ ratios: Selection

- J/ ψ trigger: Mass region around $\mathrm{J} / \psi(2.9-3.3 \mathrm{GeV} / \mathrm{c})$ and displaced vertex (3 σ significance)
- Tracks $|\eta|<2.4$
- Kinematic vertex fit, constraining $\mu \mu$-invariant mass to J / ψ mass
- Tighter selection cuts applied later on to optimize $\frac{S}{\sqrt{S+B}}$.
- Mass fit uses Gaussian (signal) and Chebyshev polynomials (2 $2^{\text {nd }}$ order)

$B_{c} \mathrm{BR}$ ratios: Selection

Similar strategies for the other decay channels:

Channel
Events

$$
\begin{array}{lr}
B_{c}^{+} \rightarrow \mathrm{J} / \psi \pi^{+} \pi^{+} \pi^{-} & 92 \pm 27 \\
B_{c}^{+} \rightarrow \mathrm{J} / \psi \pi^{+} & 176 \pm 19 \\
\mathrm{~B}^{+} \rightarrow \mathrm{J} / \psi \mathrm{K}^{+} & 90398 \pm 357
\end{array}
$$

$B_{c} \mathrm{BR}$ ratios: Efficiencies

Accurate knowledge of efficiencies paramount for measuring a branching ratio. Two approaches were used:

- 1π channel: Efficiency determined in bins of p_{T}
- 3π channel: 5 -body final state phase space sampling (see following slide)

Efficiencies determined using simulated events and applied to data on a per-event basis.

$B_{c} \mathrm{BR}$ ratios: Efficiencies

In the 3π channel, a fit function was used to describe the efficiency.

- A non-resonant simulation sample has been used to study the efficiency as a function of a complete set of parameters for a 5-body final state.
- Fit function:

$$
\epsilon=\left|p_{0}+p_{1} \cdot x+p_{2} \cdot y+p_{3} \cdot z+p_{4} \cdot w+p_{5} \cdot r+p_{6} \cdot t+p_{7} \cdot s\right|
$$

- Parameters p_{i} determined using an unbinned maximum likelihood fit
- Components mean:

$$
\begin{array}{lll}
x=m^{2}\left(\mu^{+} \pi^{+}\right)_{\text {low }} & y=m^{2}\left(\pi^{+} \pi^{-}\right)_{\text {high }} & z=m^{2}\left(\mu^{+} \pi^{-}\right) \\
w=m^{2}\left(\pi^{+} \pi^{+}\right) & r=m^{2}\left(\mu^{-} \pi^{+}\right)_{\text {low }} & t=m^{2}\left(\mu^{-} \pi^{+}\right)_{\text {high }} \\
\text { and } s=m^{2}\left(\mu^{-} \pi^{-}\right) & &
\end{array}
$$

B_{c} BR ratios: $B_{c} \rightarrow \mathrm{~J} / \psi \pi^{+} \pi^{+} \pi^{-}$peculiarities

The decay $B_{c} \rightarrow \mathrm{~J} / \psi \pi^{+} \pi^{+} \pi^{-}$can go through resonances. Hints for $a_{1}^{+}(1260)$ and $\rho^{0}(770)$ are indeed visible:

- The efficiency evaluated in this way is independent of the decay dynamics

B_{c} BR ratios: Systematic uncertainties

Source	Values in \%	
	$\frac{\sigma\left(B_{c}\right) \times \operatorname{Br}\left(B_{c} \rightarrow J / \psi \pi^{+}\right)}{\sigma\left(\mathrm{B}^{+}\right) \times \operatorname{Br}\left(\mathrm{B}^{+} \rightarrow \mathrm{J} / \psi K^{+}\right)}$	$\frac{\operatorname{Br}\left(B_{c} \rightarrow \mathrm{~J} / \psi \pi^{+} \pi^{+} \pi-\right)}{\operatorname{Br}\left(B_{c} \rightarrow J / \psi \pi^{+}\right)}$
Split sample	0	7.4
Fit variant	5.6	10.7
MC finite size	2.2	4.1
Efficiency binning	4.1	1.6^{1}
Efficiency fit function	N / A	8.6
Tracking efficiency	N / A	7.8
Dimuon significance cut	N / A	+5
Total	7.3	${ }_{-18}^{+19}$
Lifetime B_{c}	${ }_{-5.2}^{+10.9}$	$\mathrm{~N} / \mathrm{A}$

[^0]Lincoln

$B_{c} \mathrm{BR}$ ratios: Results

- $B_{c} \rightarrow \mathrm{~J} / \psi \pi^{+}$:

$$
\begin{aligned}
& \frac{\sigma\left(B_{c}\right) \times \operatorname{Br}\left(B_{c} \rightarrow \mathrm{~J} / \psi \pi^{+}\right)}{\sigma\left(\mathrm{B}^{+}\right) \times \operatorname{Br}\left(\mathrm{B}^{+} \rightarrow \mathrm{J} / \psi K^{+}\right)}= \\
& \quad\left(0.48 \pm 0.05(\text { stat. }) \pm 0.04(\text { syst. })_{-0.03}^{+0.05}\left(\tau_{B_{c}}\right)\right) \times 10^{-2}
\end{aligned}
$$

This result is complementary to LHCb:
$(0.68 \pm 0.10($ stat. $) \pm 0.03($ syst. $) \pm 0.05($ lifetime $)) \times 10^{-2} \dagger$

- $B_{c} \rightarrow \mathrm{~J} / \psi \pi^{+} \pi^{+} \pi^{-}$:

$$
\frac{\operatorname{Br}\left(B_{c} \rightarrow \mathrm{~J} / \psi \pi^{+} \pi^{+} \pi-\right)}{\operatorname{Br}\left(B_{c} \rightarrow \mathrm{~J} / \psi \pi^{+}\right)}=2.43 \pm 0.76(\text { stat. })_{-0.44}^{+0.46}(\text { syst. })
$$

In good agreement to LHCb $\left(2.41 \pm 0.30 \pm 0.33^{\ddagger}\right)$

- CMS covers $p_{T}\left(B_{c}\right)>15 \mathrm{GeV} / \mathrm{c}$ and $\left|y\left(B_{c}\right)\right|<1.6$, LHCb $p_{T}\left(B_{c}\right)>4 \mathrm{GeV} / \mathrm{c}$ and $2.5<\left|\eta\left(B_{c}\right)\right|<5$
${ }^{\dagger}$ LHCb-PAPER-2012-028
₹LHCb-PAPER-2011-044

Nebraska
Lincoln

Conclusions

- Despite not having been explicitly built for B physics, CMS has nice results. Just highlighted some.
- Discovered a new baryon: $\bar{\Xi}_{b}^{-}+\pi^{+}$.
- Λ_{b}^{0} lifetime, lifetime puzzle seems to be settled.
- And we have a nice new result on B_{c} branching ratios.

Thank you for your attention and thanks to all who contributed: LHC, CMS, B physics group

NB: Website featuring public CMS B-physics results:
https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsBPH

BACKUP

Nebbaska

Backup slides

This is CMS. You already know it, I guess.

Nebiaska
Lincoln

Backup slides

And this is LHCb, superimposed approximately to scale.

The two experiments coverage in pseudorapidity adds up.
Nebiaska
Lincoln

Evolution of $\tau\left(\Lambda_{b}^{0}\right)$ measurements

The first measurements were low, but the error bars were large.

Evolution of $\tau\left(\Lambda_{\mathrm{b}}^{0}\right)$ measurements

More measurements appeared and PDG started to calculate a best value. It seemed that theory was wrong. . .

Evolution of $\tau\left(\Lambda_{b}^{0}\right)$ measurements

... which was supported by more measurements. Theorists started to investigate and added higher order corrections. Not much success, i.e. the predicted ratio $\tau\left(\Lambda_{\mathrm{b}}^{0}\right) / \tau\left(\mathrm{B}^{0}\right)$ stayed in a range [0.9,1.0]. (There were few aggressive exceptions, though.)

Evolution of $\tau\left(\Lambda_{b}^{0}\right)$ measurements

More recent measurements changed the picture.

Evolution of $\tau\left(\Lambda_{b}^{0}\right)$ measurements

And it looks like it converges.

Evolution of $\tau\left(\Lambda_{\mathrm{b}}^{0}\right)$ measurements

This measurement fits in the picture.

[^0]: ${ }^{1}$ Affects 1π channel only

