Measurement of beauty hadron spectroscopy and productions at CMS

Frank Meier University of Nebraska-Lincoln on behalf of the CMS collaboration

November 25, 2013

Introduction

- CMS has access to a rich spectrum of B-physics measurements via muon triggers and a superb tracker
- I'm going to show:
 - Examples of what we achieved.
 - ▶ This includes some new results, presented for the first time.

B hadron spectroscopy: Ξ_b^{*0}

First observation of a strong b baryon decay to $\Xi_b^- + \pi^+$

Reconstruction uses 6 charged tracks, some with displacements due to lifetimes.

B hadron spectroscopy: Λ_b^0 lifetime

Measured in $\Lambda_b^0 \rightarrow J/\psi \Lambda^0$

 $au = 1.503 \pm 0.051 \pm 0.031 \,\mathrm{ps}$ $m = 5619.7 \pm 0.5 \,\mathrm{GeV/c^2}$

Control channel: $B^0 \rightarrow J/\psi K_s$ $\tau = 1.526 \pm 0.019 \text{ ps}$ (PDG: 1.519 $\pm 0.007 \text{ ps}$)

B hadron spectroscopy: Λ_b^0 lifetime

Shows the tendency towards longer observed Λ_b^0 lifetimes over time. Note: First theories favoured a lifetime ratio $\frac{\tau(\Lambda_b^0)}{\tau(B^0)}$ of 0.9...1.0.

B hadron spectroscopy: Λ_b^0 lifetime

Shows the tendency towards longer observed Λ_b^0 lifetimes over time. Note: First theories favoured a lifetime ratio $\frac{\tau(\Lambda_b^0)}{\tau(B^0)}$ of 0.9...1.0.

 B_c BR ratios: $B_c \rightarrow J/\psi \pi^+$ and $B_c \rightarrow J/\psi \pi^+ \pi^+ \pi^-$

- New result, presented here for the first time.
- Later today the public result should appear here: https://twiki.cern.ch/twiki/bin/view/CMS/ PhysicsResultsBPH12011
- We report on two branching ratios:

$$\frac{\sigma(B_c) \times \operatorname{Br}(B_c \to \mathsf{J}/\psi\pi^+)}{\sigma(\mathsf{B}^+) \times \operatorname{Br}(\mathsf{B}^+ \to \mathsf{J}/\psi \mathsf{K}^+)}$$

$$\frac{\mathsf{Br}(B_c \to \mathsf{J}/\psi\pi^+\pi^+\pi^-)}{\mathsf{Br}(B_c \to \mathsf{J}/\psi\pi^+)}$$

- ▶ Phase space covered: p_T(B_c) > 15GeV/c and |y(B_c)| < 1.6.</p>
- NB: Charge conjugate modes included throughout this talk.

B_c BR ratios: The particle

A few facts:

- mass: 6.2745 \pm 0.0018 GeV/c²
- lifetime: 0.452 ± 0.033 ps
- quark content: bc
- only observable at hadron machines (so far)
- ▶ observed in a broad list of decays (first observation): $B_c \rightarrow J/\psi\mu\nu$ (CDF), $B_c \rightarrow J/\psi\pi$ (CDF), $B_c \rightarrow J/\psi\pi\pi\pi$ (LHCb/CMS), $B_c \rightarrow \psi(2S)\pi$ (LHCb), $B_c \rightarrow J/\psi D_s$ (LHCb), $B_c \rightarrow J/\psi D_s^*$ (LHCb), $B_c \rightarrow B_s\pi$ (LHCb), and $B_c \rightarrow J/\psi KK\pi$ (LHCb) Note: The last three lines were added just recently.

Values mentioned were taken from the PDG tables

B_c BR ratios: Selection

- J/ψ trigger: Mass region around J/ψ (2.9 – 3.3 GeV/c) and displaced vertex (3 σ significance)
- Tracks $|\eta| < 2.4$
- Kinematic vertex fit, constraining μμ-invariant mass to J/ψ mass
- ► Tighter selection cuts applied later on to optimize $\frac{S}{\sqrt{S+B}}$.
- Mass fit uses Gaussian (signal) and Chebyshev polynomials (2nd order)

B_c BR ratios: Selection

Similar strategies for the other decay channels:

Lincoln

Accurate knowledge of efficiencies paramount for measuring a branching ratio. Two approaches were used:

- 1π channel: Efficiency determined in bins of p_T
- 3π channel: 5-body final state phase space sampling (see following slide)

Efficiencies determined using simulated events and applied to data on a per-event basis.

B_c BR ratios: Efficiencies

In the 3π channel, a fit function was used to describe the efficiency.

- A non-resonant simulation sample has been used to study the efficiency as a function of a complete set of parameters for a 5-body final state.
- Fit function:

$$\epsilon = |p_0 + p_1 \cdot x + p_2 \cdot y + p_3 \cdot z + p_4 \cdot w + p_5 \cdot r + p_6 \cdot t + p_7 \cdot s|$$

 Parameters p_i determined using an unbinned maximum likelihood fit

• Components mean:

$$x = m^2(\mu^+\pi^+)_{low}$$
 $y = m^2(\pi^+\pi^-)_{high}$ $z = m^2(\mu^+\pi^-)$
 $w = m^2(\pi^+\pi^+)$ $r = m^2(\mu^-\pi^+)_{low}$ $t = m^2(\mu^-\pi^+)_{high}$
and $s = m^2(\mu^-\pi^-)$

Lincoln

 B_c BR ratios: $B_c \rightarrow J/\psi \pi^+ \pi^+ \pi^-$ peculiarities

The decay $B_c \rightarrow J/\psi \pi^+ \pi^+ \pi^-$ can go through resonances. Hints for $a_1^+(1260)$ and $\rho^0(770)$ are indeed visible:

 The efficiency evaluated in this way is independent of the decay dynamics

B_c BR ratios: Systematic uncertainties

Source	Values in %	
	$\frac{\sigma(B_{c}) \times \operatorname{Br}(B_{c} \to J/\psi\pi^{+})}{\sigma(B^{+}) \times \operatorname{Br}(B^{+} \to J/\psi\mathcal{K}^{+})}$	$\frac{\mathrm{Br}(B_c \to \mathrm{J}/\psi \pi^+ \pi^+ \pi^-)}{\mathrm{Br}(B_c \to \mathrm{J}/\psi \pi^+)}$
Split sample	0	7.4
Fit variant	5.6	10.7
MC finite size	2.2	4.1
Efficiency binning	4.1	1.6^{1}
Efficiency fit function	N/A	8.6
Tracking efficiency	N/A	7.8
Dimuon significance cut	N/A	+5
Total	7.3	+19 -18
Lifetime <i>B_c</i>	$^{+10.9}_{-5.2}$	N/A

¹Affects 1π channel only

B_c BR ratios: Results

►
$$B_c \rightarrow J/\psi \pi^+$$
:

$$\frac{\sigma(B_c) \times Br(B_c \rightarrow J/\psi \pi^+)}{\sigma(B^+) \times Br(B^+ \rightarrow J/\psi K^+)} = (0.48 \pm 0.05(\text{stat.}) \pm 0.04(\text{syst.})^{+0.05}_{-0.03}(\tau_{B_c})) \times 10^{-2}$$

This result is complementary to LHCb: (0.68 \pm 0.10(stat.) \pm 0.03(syst.) \pm 0.05(lifetime)) \times 10^{-2} †

►
$$B_c \rightarrow J/\psi \pi^+ \pi^+ \pi^-$$
:
 $\frac{Br(B_c \rightarrow J/\psi \pi^+ \pi^+ \pi^-)}{Br(B_c \rightarrow J/\psi \pi^+)} = 2.43 \pm 0.76(\text{stat.})^{+0.46}_{-0.44}(syst.)$

In good agreement to LHCb (2.41 \pm 0.30 \pm 0.33 $^{\ddagger})$

► CMS covers $p_T(B_c) > 15 \text{GeV/c}$ and $|y(B_c)| < 1.6$, LHCb $p_T(B_c) > 4 \text{GeV/c}$ and $2.5 < |\eta(B_c)| < 5$ [†]LHCb-PAPER-2012-028 [‡]LHCb-PAPER-2011-044

Conclusions

- Despite not having been explicitly built for B physics, CMS has nice results. Just highlighted some.
- Discovered a new baryon: $\Xi_b^- + \pi^+$.
- $\Lambda_{\rm b}^0$ lifetime, lifetime puzzle seems to be settled.
- And we have a nice new result on B_c branching ratios.

Thank you for your attention

and thanks to all who contributed: LHC, CMS, B physics group

NB: Website featuring public CMS B-physics results: https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsBPH

BACKUP

Backup slides

This is CMS. You already know it, I guess.

Backup slides

The two experiments coverage in pseudorapidity adds up.

The first measurements were low, but the error bars were large.

More measurements appeared and PDG started to calculate a *best value*. It seemed that theory was wrong...

... which was supported by more measurements. Theorists started to investigate and added higher order corrections. Not much success, i.e. the predicted ratio $\tau(\Lambda_b^0)/\tau(B^0)$ stayed in a range [0.9,1.0]. (There were few aggressive exceptions, though.)

More recent measurements changed the picture.

And it looks like it converges.

This measurement fits in the picture.

