

Studies of $b ightarrow (s, d)(\mu^+\mu^-, \gamma)$ transitions at LHCb

PASCOS 2013 Monday, November 25, 2013

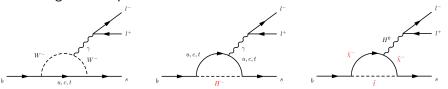
Simon Wright, University of Cambridge on behalf of the LHCb collaboration

Overview

$$\blacksquare B^0 \to K^{*0} \mu^+ \mu^-$$

- Angular analysis.
- Results using form-factor independent observables.

$$\blacksquare B^+ \to K^+ \mu^+ \mu^-$$


- Observation of a low-recoil resonance.
- Measurement of direct CP asymmetry.

$$B^+ \to K^+ \pi^- \pi^+ \gamma$$

CP and up-down asymmetries.

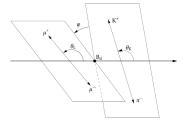
Electroweak penguins

- Study of flavour changing neutral current decays that have no tree-level Feynman diagrams.
- Hence proceed via loop and box diagrams, and New Physics can enter through the loops.

- Theoretical framework via an effective Hamiltonian:
 - Wilson coefficients (*C_i*), describing short-distance interactions
 - Operators, (\mathcal{O}_i) , describing long-distance interactions

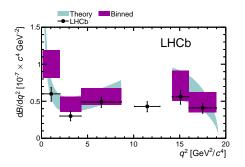
$$\mathcal{H}_{eff} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_{i=1}^{10} (C_i^{SM} + \Delta C_i^{NP}) \mathcal{O}_i$$

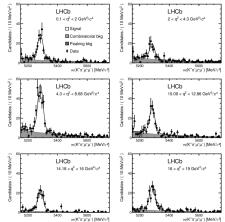
$B^0 ightarrow {\cal K}^{*0} (ightarrow {\cal K}^+ \pi^-) \mu^+ \mu^-$


Decay distribution summing over B^0 and \overline{B}^0 mesons:

$$\frac{1}{\mathrm{d}\Gamma/\mathrm{d}q^2} \frac{\mathrm{d}^4\Gamma}{\mathrm{d}\theta_I \mathrm{d}\theta_K \mathrm{d}\varphi \mathrm{d}q^2} = \frac{9}{32\pi} \left[\frac{3}{4} (1 - F_{\rm L}) \sin^2 \theta_K + F_{\rm L} \cos^2 \theta_K + \frac{1}{4} (1 - F_{\rm L}) \sin^2 \theta_K \cos 2\theta_I \right]$$
$$- F_{\rm L} \cos^2 \theta_K \cos 2\theta_I + S_3 \sin^2 \theta_K \sin^2 \theta_I \cos 2\varphi$$
$$+ S_4 \sin 2\theta_K \sin 2\theta_I \cos \varphi + S_5 \sin 2\theta_K \sin \theta_I \cos \varphi$$
$$+ S_6^5 \sin^2 \theta_K \cos \theta_I + S_7 \sin 2\theta_K \sin \theta_I \sin \varphi$$
$$+ S_8 \sin 2\theta_K \sin 2\theta_I \sin \varphi + S_9 \sin^2 \theta_K \sin^2 \theta_I \sin 2\varphi$$

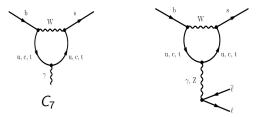
(from Altmannshofer et al JHEP 01 (2009) 019)


Observables include:


- *F*_L, the *K*^{*0} longitudinal polarisation fraction.
- $A_{\rm FB} = \frac{4}{3}S_6^s$, the $\mu^+\mu^-$ forward-backward asymmetry.
- $A_{\rm T}^2 = 2S_3/(1 F_{\rm L})$ and $A_{\rm T}^{\rm Re} = \frac{4}{3}A_{\rm FB}/(1 - F_{\rm L})$, a pair of K^{*0} transverse asymmetries.

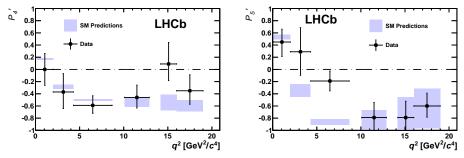

Angular analysis of $B^0 o K^{*0} \mu^+ \mu^-$ (JHEP 1308 (2013) 131)

 Differential branching fraction obtained by performing an extended unbinned maximum likelihood fit to the K⁺π⁻μ⁺μ⁻ invariant mass distribution in each of six q² bins.

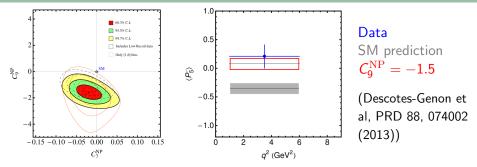

Angular analysis of $B^0 o K^{*0} \mu^+ \mu^-$ (JHEP 1308 (2013) 131)

Good agreement with theory predictions.

New observables in $B^0 ightarrow K^{*0} \mu^+ \mu^-$ (arXiv:1308.1707)


- The large theoretical uncertainties on these observables are, in part, due to large contributions the hadronic form factors.
- Combinations of F_L and S_i can have reduced form factor uncertainties.
- At large recoil (low q^2), the combination $P'_{i=4,5,6,8} = \frac{S_{i=4,5,7,8}}{\sqrt{F_L(1-F_L)}}$ is largely free of these uncertainties (arXiv:1303.5794).
- These observables are sensitive to New Physics in the Wilson coefficients *C*₇, *C*₉ and *C*₁₀:

 $C_9 =$ vector component $C_{10} =$ axial-vector component


New observables in $B^0 \to K^{*0} \mu^+ \mu^-$ (arXiv:1308.1707)

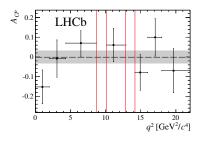
• P'_6 and P'_8 found to be close to their SM predictions, which are close to zero, over the full q^2 range.

- In the $4.30 < q^2 < 8.68 \,\text{GeV}^2/c^4$ bin for P'_5 , there is a 3.7σ discrepancy between the measurement and the prediction.
- Considering 24 independent measurements, the significance drops to 2.8σ .
- In the range $1.0 < q^2 < 6.0 \, \text{GeV}^2/c^4$, the deviation from SM is 2.5σ .

New observables in $B^0 \to K^{*0} \mu^+ \mu^-$

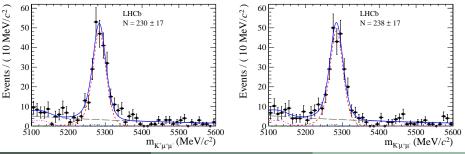
- Can potentially explain this discrepancy by a negative New Physics contribution to the Wilson coefficient C_9 .
- However, this cannot occur in models such as MSSM or partial-compositeness (Altmannshofer and Straub, arXiv:1308.1501)...
- ...but it could in models with a flavour-changing neutral gauge boson, a Z', with $m_{Z'} \sim 7 \text{ TeV}$. (Gauld et al, arXiv:1308.1959; Buras and Girrbach, arXiv:1309.2466)

 ${\cal A}_{C\!P}$ in $B^+ o K^+ \mu^+ \mu^-$ (PRL 111 (2013) 151801)

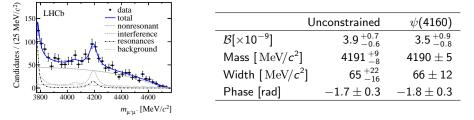

$$\mathcal{A}_{CP}(q^2) = \frac{\Gamma(B^- \to K^- \mu^+ \mu^-) - \Gamma(B^+ \to K^+ \mu^+ \mu^-)}{\Gamma(B^- \to K^- \mu^+ \mu^-) + \Gamma(B^+ \to K^+ \mu^+ \mu^-)}$$

- $\mathcal{A}_{CP} \sim 10^{-4}$ in the Standard Model, and should be similar to $\mathcal{A}_{CP}(B^0 \to K^{*0}\mu^+\mu^-) = -0.072 \pm 0.040$ (PRL 110 031801).
- Analysis performed using 2011 LHCb data set (1.0 fb^{-1}) .
- Use $B^+ \rightarrow J/\psi K^+$ as a control channel to account for production and detection asymmetries:

$$\mathcal{A}_{C\!P} = \mathcal{A}_{RAW}(B^+ \to K^+ \mu^+ \mu^-) - \mathcal{A}_{RAW}(B^+ \to J/\psi K^+) + \mathcal{A}_{C\!P}(B^+ \to J/\psi K^+).$$


- *CP* asymmetry extracted from simultaneous unbinned likelihood fit of $B^+ \rightarrow J/\psi K^+$ and $B^+ \rightarrow K^+ \mu^+ \mu^- m_{K\mu\mu}$ distributions in bins of q^2 .
- Average of results for both magnet polarities taken to reduce detector effects.

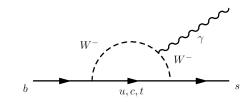
${\cal A}_{C\!P}$ in $B^+ o K^+ \mu^+ \mu^-$ (PRL 111 (2013) 151801)


- \mathcal{A}_{CP} over the full q^2 range is the average of each q^2 bin weighted by signal yield and efficiency.
- $\mathcal{A}_{CP} = 0.000 \pm 0.033 (\text{stat.}) \pm 0.005 (\text{syst.}) \pm 0.007 (J/\psi K).$
- World's best measurement by a factor of 4, and consistent with both SM and $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ measurement.

Mass fits for one polarity below:

 $B^+
ightarrow {\cal K}^+ \mu^+ \mu^-$ low-recoil resonance (PRL 111 (2013) 112003)

- Using both the 2011 and 2012 data sets (3 fb⁻¹), look at low-recoil region (high q²).
- For high q^2 , able to investigate the structure of the resonances coming from above the open charm threshold.



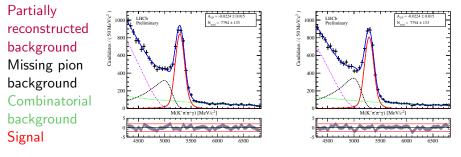
Resonance at low-recoil observed with significance $> 6\sigma$.

Consistent with $\psi(4160)$ resonance seen by the BES collaboration.

Radiative decays

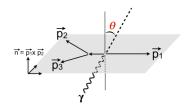
- Radiative decays are also mediated by penguin diagrams in the SM.
- However, their signature is a high-E_T photon in the final state.

- For the above $b \rightarrow s\gamma$ transition, the SM photon is predominantly left-handed, with weak amplitudes satisfying $|c_L|^2 \gg |c_R|^2$.
- Define photon polarisation λ_γ:

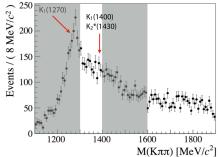

$$\lambda_{\gamma} = \frac{|c_{R}|^{2} - |c_{L}|^{2}}{|c_{R}|^{2} + |c_{L}|^{2}}$$

so that $\lambda_\gamma \simeq -1$ (+1) for B^- (B^+) decays.

However, several BSM models predict that the photon acquires a significant right-handed component.

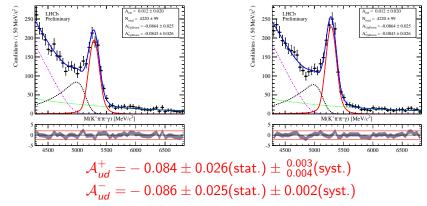

$\mathcal{A}_{C\!P}$ in $B^+ o K^+ \pi^- \pi^+ \gamma$ (LHCb-CONF-2013-009)

- Consider $B \to K_{res}(\to K^+\pi^-\pi^+)\gamma$ decays corresponding to $\mathcal{L} = 2 \, \text{fb}^{-1}$.
- \mathcal{A}_{CP} is calculated similarly to $B^+ \to K^+ \mu^+ \mu^-$, using $B^+ \to J/\psi K^+$ as a control mode again to account for production and detection asymmetries.



 $\mathcal{A}_{CP} = -0.007 \pm 0.015 (\text{stat.}) \pm 0.008 (\text{syst.})$

$B^+ ightarrow {\cal K}^+ \pi^- \pi^+ \gamma$ (LHCb-CONF-2013-009)



- Also measure the up-down asymmetry: $\mathcal{A}_{ud} = \frac{\int_{0}^{1} d\cos\theta \frac{d\Gamma}{d\cos\theta} - \int_{-1}^{0} d\cos\theta \frac{d\Gamma}{d\cos\theta}}{\int_{-1}^{1} d\cos\theta \frac{d\Gamma}{d\cos\theta}}$ $= \frac{3}{4} \lambda_{\gamma} \frac{\int ds ds_{13} ds_{23} \text{Im}[n \cdot (\mathcal{J} \times \mathcal{J} *)]}{\int ds ds_{13} ds_{23} |\mathcal{J}^{2}|}$
- So $A_{ud} \propto \lambda_{\gamma}$, and we extract the significance compared to a no polarisation hypothesis.
- Perform mass fits for A_{ud} simultaneously on separated B⁺ and B⁻ data sets.
- Choose specific region in $m_{K^+\pi^-\pi^+}$ to conduct analysis (PRD 66 (2002) 054008).

Up-down asymmetry in $B^+ o K^+ \pi^- \pi^+ \gamma$

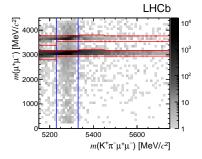
Mass fits for B^+ mesons:

- These are significances of 3.2σ and 3.4σ from the no polarisation hypothesis.
- \blacksquare When combined, we obtain the first evidence of photon polarisation in $b\to s\gamma$ with a significance of 4.6σ

 $\mathcal{A}_{ud} = -0.085 \pm 0.019 (\text{stat.}) \pm 0.003 (\text{syst.})$

- With the 2011 data set (1 fb⁻¹ at $\sqrt{s} = 7$ TeV), LHCb has produced multiple interesting results:
 - Angular analyses of $B^0 \to K^{*0} \mu^+ \mu^-$ and $B^0_s \to \phi \mu^+ \mu^-$, highlighting a potential discrepancy in the observable P'_5 .
 - World's best measurement of CP asymmetry in $B^+ \to K^+ \mu^+ \mu^-$.
 - The most accurate measurement of $\mathcal{B}(\Lambda_b \to \Lambda \mu^+ \mu^-)$.
- Using the 2 fb⁻¹ of $\sqrt{s} = 8$ TeV data taken in 2012, evidence has been found for photon polarisation in $b \rightarrow s\gamma$ transitions.
- And combining both data sets, a resonance at low-recoil has been observed in $B^+ \to K^+ \mu^+ \mu^-$ decays.
- This is just the start of the improvements and new discoveries that could arise from the full analysis of the 2012 data!

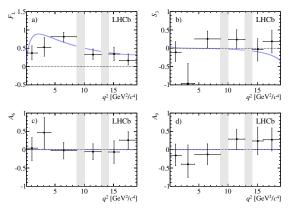
Happy St. Catharine's Day!

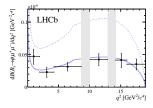


www.caths.cam.ac.uk Catherine of Alexandria

BACKUP

Angular analysis of $B^0 o K^{*0} \mu^+ \mu^-$ (JHEP 1308 (2013) 131)

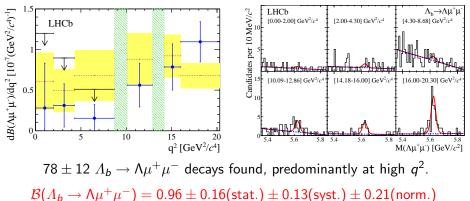

- Analysis performed in six bins of q², as well as the region 1 < q² < 6 GeV²/c⁴.
- The charmonium resonance regions corresponding to $B^0 \rightarrow J/\psi K^{*0}$ and $B^0 \rightarrow \psi(2S)K^{*0}$ are vetoed.


- The signal is selected using a boosted decision tree, and several additional vetoes are implemented to remove peaking backgrounds.
- An acceptance correction, compensating for discrepancies in the angular distributions caused by the selection, is performed using simulated Monte Carlo samples.
- The mode $B^0 \rightarrow J/\psi K^{*0}$ is used to improve the agreement between data and simulation.

$B^0_s ightarrow \phi \mu^+ \mu^-$ (JHEP 1307 (2013) 084)

Physics similar to $B^0 \to K^{*0} \mu^+ \mu^-$, but final state does not self-tag.

Perform a very similar angular analysis.



- $B_s^0 \rightarrow \phi \mu^+ \mu^-$ branching fraction lower than the Standard Model (dashed line).
- Angular observables agree with SM predictions.

$\Lambda_b ightarrow \Lambda \mu^+ \mu^-$ (PLB 725 (2013) 25)

- Analysis on baryonic modes can probe helicity structure of Hamiltonian, and also different hadronic physics than the *B* meson decays.
- Using 1 fb⁻¹, start by measuring the differential branching fraction, using the control mode $\Lambda_b \rightarrow J/\psi \Lambda$.

