Search for vector-like quark top and bottom partners

Eric Chabert (UDS/CNRS) On behalf the CMS collaboration

Same sign dilepton event with boosted jets

2013 PASC OS

19th International Symposium on Particles, Strings and Cosmology

Many extensions of physics beyond the standard model suggest the existence of **fermionic** partners of bottom/top quarks

Electroweak symmetry breaking mechanism:

Cancel loop contributions from the top quark to the Higgs boson mass

- Such particles might help to solve the fine tuning problem
- Mass should be at or below the TeV scale

Many extensions of physics beyond the standard model suggest the existence of **fermionic** partners of bottom/top quarks

Electroweak symmetry breaking mechanism:

Cancel loop contributions from the top quark to the Higgs boson mass

- Such particles might help to solve the fine tuning problem
- Mass should be at or below the TeV scale

Constraints from the discovery of the Higgs boson (?):

- 4^{th} generation: disfavored (should enhance $H \rightarrow \tau\tau$ and suppress $H \rightarrow \gamma\gamma$)
- Vector-like quarks (VLQ):
 - Ieft and right-handed chiralities transformed in the same fashion under SU(2)⊗U(1)
 - Mass independent from the Higgs boson coupling
 - No constraint from Higgs discovery
- Quarks with exotic charges 5/3, -4/3:
 - do not contribute significantly to the Higgs cross section
 - almost no constraints from Higgs discovery

Viable alternatives to solve the hierarchy problem !

Models involving vector-like quarks:

- Composite-Higgs models
- Little-Higgs models
- Top-condensate models
- Models with extra-dimensions
- Non-minimal supersymmetric extensions

Models involving vector-like quarks:

- Composite-Higgs models
- Little-Higgs models
- Top-condensate models
- Models with extra-dimensions
- Non-minimal supersymmetric extensions

vector-like quarks & FCNC:

- Unlike for chiral quarks, FCNC are not suppressed
- VLQ can decay into different final states and branching ratios are considered as free parameters in the experimental searches
 - Ex: t' \rightarrow tZ or t' \rightarrow tH
- The Higgs boson is used as a probe for new physics

Searched signals & channels

Looking for pair-produced 3rd generation partners

New particles

Leptons help for triggering and offer a clean signature

Experimental signatures

Public results

Public results @ 8 TeV ∫Ldt ≈ 19 fb⁻¹

Previous results @ 7 TeV Not discussed here

Eric Chabert (IPHC) - CMS experiment - 21/11/2013 - PASCOS

Decay chains

Eric Chabert (IPHC) - CMS experiment - 21/11/2013 - PASCOS

Decay chains

Complex and busy final states:

- Multiple b quarks
- Many bosons (V/W/H)
- New discovered Higgs boson used as a probe to BSM
- Many possible channels (0 to \geq 4 leptons)
- Branching ratios are free parameters

B-tagging:

Combined Secondary Vertex algorithm:

Likelihood Ratio using impact parameter, significance of tracks and secondary vertices

• Performances:
$$\varepsilon_{b} \approx 70\% - \varepsilon_{light} \approx 1\%$$

B-tagging:

Combined Secondary Vertex algorithm:

Likelihood Ratio using impact parameter, significance of tracks and secondary vertices

• Performances: $\varepsilon_{b} \approx 70\% - \varepsilon_{light} \approx 1\%$

Boosted regime:

With **high mass** of partners, bosons (top) produced in the decay chain tend to have a high p_{τ} and consequently their

decay products start to merge and look like one jet. Advanced techniques of jet reconstruction are used.

B-tagging:

Combined Secondary Vertex algorithm:

Likelihood Ratio using impact parameter, significance of tracks and secondary vertices

• Performances: $\varepsilon_{b} \approx 70\% - \varepsilon_{light} \approx 1\%$

Boosted regime:

With **high mass** of partners, bosons (top) produced in the decay chain tend to have a high p_{τ} and consequently their

decay products start to merge and look like one jet. Advanced techniques of jet reconstruction are used.

V-tagging :

5/3

- V can be either W Z or H boson
- Cambridge Algorithm R = 0.8
- Use pruning technique
- Require 2 subjets
- Mass window: [50-120] GeV if it includes W/Z [50-150] GeV if it also includes H
- p_T(V-jet)>200 GeV

Combined Secondary Vertex algorithm:

Likelihood Ratio using impact parameter, significance of tracks and secondary vertices

• Performances: $\varepsilon_{b} \approx 70\% - \varepsilon_{light} \approx 1\%$

Boosted regime:

With **high mass** of partners, bosons (top) produced in the decay chain tend to have a high p_{τ} and consequently their

decay products start to merge and look like one jet. Advanced techniques of jet reconstruction are used.

top-tagging:

5/3

- Cambridge Algorithm R = 1.2
- Use pruning technique
- Require ≥ 3 subjets
- M_{min(pair-wise subjets)}>50 GeV
- Mass window: [150-250] GeV
- p_T(V-jet)>200 GeV

Selection:

- Trigger: Single lepton
- 1 isolated lepton (e,µ)
- \geq 4 AK5 jets (P₁>200,60,40,30 GeV)
- $\bullet \geq 1$ b-tagged jet
- E₁>20 GeV

B^{-1/3}

• Centrality = $\Sigma_{\text{jets}} P_T / \Sigma_{\text{jets}} E_T > 0.4$

Selection:

- Trigger: Single lepton
- 1 isolated lepton (e,µ)
- \geq 4 AK5 jets (P_T>200,60,40,30 GeV)
- ≥ 1 b-tagged jet
- E₁>20 GeV

B^{-1/3}

• Centrality = $\sum_{jets} P_T / \sum_{jets} E_T > 0.4$

Data-driven components:

Trigger/lepton efficiency

V-tagging efficiency

Selection:

- Trigger: Single lepton
- 1 isolated lepton (e,µ)
- \geq 4 AK5 jets (P_T>200,60,40,30 GeV)
- ≥ 1 b-tagged jet
- E_T>20 GeV

B-1/3

• Centrality = $\sum_{jets} P_T / \sum_{jets} E_T > 0.4$

Search signal regions:

- Channels: e & µ channels Categorization:
 - 0, 1 , \geq 2 V-tagged jets V-tagging: mass consistent with W/Z or H 50<m_{V-jet}<150

Discriminating variable:

 $S_{T} = \Sigma_{I,jets,MET} P_{T}$ Fit: simultaneous likelihood fit of S_{T} distributions Treatment of systematics (normalisation & shape)

 S_{T} distributions for 0, 1 and \geq 2 V-tag categories are fit simultaneously in both e and μ channels to test for presence of signal.

VLQ B^{1/3} : opposite sign dilepton

B pair production, $B \rightarrow bZ$ with $Z \rightarrow I^+I^-$, $B \rightarrow tW$ decays are allowed. BR($B \rightarrow bH$)=0

Selection:

- Trigger: dilepton
- 2 Opposite Sign isolated lepton (e or μ)
- 60<M(II)<120 GeV
- P_T(II)>150 GeV
- \geq 1 b-tagged jet (P_T>80 GeV)

VLQ B^{1/3} : opposite sign dilepton

B pair production, $B \rightarrow bZ$ with $Z \rightarrow I^+I^-$, $B \rightarrow tW$ decays are allowed. BR($B \rightarrow bH$)=0

Selection:

- Trigger: dilepton
- 2 Opposite Sign isolated lepton (e or μ)
- 60<M(II)<120 GeV</p>
- P_T(II)>150 GeV
- \geq 1 b-tagged jet (P₁>80 GeV)

Search signal regions:

Channels: e⁺e⁻ & µ⁺µ⁻ channels Discriminating variable:

Mass(IIb): peak to the mass of B for signal

Fit: likelihood fit of Mass(IIb) distributions

Treatment of systematics (normalisation & shape)

Mass(IIb) distributions

Modelisation of the distributions with data-driven method:

Eric Chabert (IPHC) - CMS experiment - 21/11/2013 - PASCOS

VLQ B^{1/3} : opposite sign dilepton

The limits are calculated using a combined fit of the signal and background shapes to the mass distribution of B candidates obtained in data.

Assumption: $BR(B \rightarrow bZ) + BR(B \rightarrow tW) = 100\%$.

Selection:

- Trigger: dilepton
- \ge 3 isolated leptons (e,µ or τ)
- M(II)>12 GeV: quarkonia veto
- Reject lepton from conversion: |M(III)-MZ|<15 GeV
- \geq 1 b-tagged jet (P_T>80 GeV)

Selection:

- Trigger: dilepton
- \ge 3 isolated leptons (e,µ or T)
- M(II)>12 GeV: quarkonia veto
- Reject lepton from conversion: |M(III)-MZ|<15 GeV
- \geq 1 b-tagged jet (P_T>80 GeV)

Data-driven components:

Reductible background

Background with non-prompt leptons Ttbar background (dilepton CR) Asymmetric internal photon conversion

Irreductible background

Modeling of MET (WZ and rare process)

Selection:

- Trigger: dilepton
- \ge 3 isolated leptons (e,µ or T)
- M(II)>12 GeV: quarkonia veto
- Reject lepton from conversion: |M(III)-MZ|<15 GeV
- \geq 1 b-tagged jet (P_T>80 GeV)

Data-driven components:

Reductible background

Background with non-prompt leptons Ttbar background (dilepton CR) Asymmetric internal photon conversion

Irreductible background

Modeling of MET (WZ and rare process)

Search signal regions:

Categorization:

Number of leptons (3 or 4), taus (0,1), b-jets (1,≥1) N^{ossf} (0,1,2), Z On/off shell => Many independent signal regions ! Discriminating variable:

S_T: 6 bins

Fit: likelihood fit of S_T distributions
 Treatment of systematics (normalisation & shape)

S_{τ} distributions for all categories are fitted to test for presence of signal.

A scan was done with BR to tW, bZ, bH varying with step of 0.1:

Selection:

- Trigger: single lepton
- 1 isolated lepton (e or μ)
- \geq 3 jets (120,90,50 GeV)
- 1 W-jets or a 4th jet p_T >35 GeV)
- \geq 1 b-tagged jet

T2/3

Selection:

- Trigger: single lepton
 - 1 isolated lepton (e or μ)
- ≥ 3 jets (120,90,50 GeV)
- 1 W-jets or a 4^{th} jet $p_T > 35 \text{ GeV}$)
- $\bullet \geq 1$ b-tagged jet

T2/3

MET > 20 GeV

Data driven components:

- W+light-jets background
- W+heavy-flavor-jets background

2/3

- Trigger: single lepton
- 1 isolated lepton (e or µ)
- ≥ 3 jets (120,90,50 GeV)
- 1 W-jets or a 4^{th} jet $p_T > 35$ GeV)
- $\bullet \geq 1$ b-tagged jet
- MET > 20 GeV

Data driven components:

- W+light-jets background
- W+heavy-flavor-jets background

Search signal regions:

Channels: e & µ channels

Discriminating variable: **BDT discriminant** Input variables:

- Nof jets, Nof b-jets, Nof w-jets, Nof top-jets
- P lepton, P 3rd jet, P 4th jet, P w-jet
- ♦ H_T, MET
- Fit: likelihood fit of BDT distributions

Treatment of systematics (normalisation & shape)

Same distribution with 0 b-jet showed a good data/MC agreement

Selection:

- Trigger: dilepton
- ≥ 2 isolated lepton (e or μ)
- M(II)>20 GeV: quarkonia veto
- \geq 1 b-tagged jet
- MET > 30 GeV

T2/3

Eric Chabert (IPHC) - CMS experiment - 21/11/2013 - PASCOS

Eric Chabert (IPHC) - CMS experiment - 21/11/2013 - PASCOS

VLQ T^{2/3} : all channels

The limits are calculated with a likelihood fit

- based on the number expected and observed for the multilepton channels
- based on the BDT discribution for the lepton+jets channels

A scan was done with BR to tW, bZ, bH varying with step of 0.1:

- 5/3
- \star Top-tagged jet = 3 constituents

* jet = 1 constituent

Trigger: double lepton

Z-veto: 76-106 GeV • Nof constituents ≥ 5

2 isolated lepton SS (e or μ)

M(II) > 20 GeV : quarkonia veto

 \star W-tagged jet = 2 constituents

Selection:

 $T_{5/3}$

- -5/3

Selection:

- Trigger: double lepton
- 2 isolated lepton SS (e or μ)
- M(II) > 20 GeV : quarkonia veto
- Z-veto: 76-106 GeV
- Nof constituents ≥ 5
 - \star jet = 1 constituent
 - \star W-tagged jet = 2 constituents
 - \star Top-tagged jet = 3 constituents
- H₇>900 GeV

Backgrounds

SS prompt leptons (VV,VVV,ttV,ttVV): taken from theory OS prompt leptons: charge misreconstruction estimation from data

Background with non-prompt leptons:

data driven method based on fake rate estimation

ممعوري

- 5/3
- \star jet = 1 constituent \star W-tagged jet = 2 constituents

2 isolated lepton SS (e or μ)

M(II) > 20 GeV : quarkonia veto

Trigger: double lepton

Z-veto: 76-106 GeV

• Nof constituents ≥ 5

 \star Top-tagged jet = 3 constituents

Selection:

H₇>900 GeV

Backgrounds

SS prompt leptons (VV,VVV,ttV,ttVV): taken from theory OS prompt leptons:

charge misreconstruction estimation from data Background with non-prompt leptons:

data driven method based on fake rate estimation

Search signal regions:

Channels: ee - $e\mu$ - $\mu\mu$ channels

Counting experiment after selection

Eric Chabert (IPHC) - CMS experiment - 21/11/2013 - PASCOS

Conclusion

- CMS analysis with 8 TeV data cover well the searches of fermionic bottom/top quark partners
- Such partners appear in many BSM models helping to solve the hierarchy problem without almost no constraint from the Higgs boson discovery
- FCNC are considered as possible decay of those heavy quarks
- Higgs boson is even used to probe new physics (final state)

Conclusion

- CMS analysis with 8 TeV data cover well the searches of fermionic bottom/top quark partners
- Such partners appear in many BSM models helping to solve the hierarchy problem without almost no constraint from the Higgs boson discovery
- FCNC are considered as possible decay of those heavy quarks
- Higgs boson is even used to probe new physics (final state)
- Some analysis used W-tagging and top-tagging tools as they are sensitive to boosted regime: gain in sensitivity
- All the analysis use data-driven methods to estimate the key components (bkg, shape modeling) of their strategy
- Baesian limits are derived using likelihood fit where nuisance parameters were introduced to model normalization and shape uncertainties

 1
 1
 2
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1

Conclusion

- CMS analysis with 8 TeV data cover well the searches of fermionic bottom/top quark partners
- Such partners appear in many BSM models helping to solve the hierarchy problem without almost no constraint from the Higgs boson discovery
- FCNC are considered as possible decay of those heavy quarks
- Higgs boson is even used to probe new physics (final state)
- Some analysis used W-tagging and top-tagging tools as they are sensitive to boosted regime: gain in sensitivity
- All the analysis use data-driven methods to estimate the key components (bkg, shape modeling) of their strategy
- Baesian limits are derived using likelihood fit where nuisance parameters were introduced to model normalization and shape uncertainties
- No excess has yet been found
- Limits have been set with a order of 500-800 GeV depending on the partners and its BR
- The TeV scale has not been reached ... so stay tuned !

 1/12
 2/12
 1/12
 1/12
 1/12
 1/12
 1/12
 1/12
 1/12
 1/12
 1/12
 1/12
 1/12
 1/12
 1/12
 1/12
 1/12
 1/12
 1/12
 1/12
 1/12
 1/12
 1/12
 1/12
 1/12
 1/12
 1/12
 1/12
 1/12
 1/12
 1/12
 1/12
 1/12
 1/12
 1/12
 1/12
 1/12
 1/12
 1/12
 1/12
 1/12
 1/12
 1/12
 1/12
 1/12
 1/12
 1/12
 1/12
 1/12
 1/12
 1/12
 1/12
 1/12
 1/12
 1/12
 1/12
 1/12
 1/12
 1/12
 1/12
 1/12
 1/12
 1/12
 1/12
 1/12
 1/12
 1/12
 1/12
 1/12
 1/12
 1/12
 1/12
 1/12
 1/12
 1/12
 1/12
 1/12
 1/12
 1/12
 1/12
 1/12
 1/12
 1/12
 1/12
 1/12
 1/12
 1/12
 1/12
 1/12
 1/12
 1/12
 1/12
 1/12
 1/12
 1/12
 1/12
 1/12
 1/12
 1/12
 1/12
 1/12

