4D String Models, LARGE Volume Scenario and Cosmology

F. Quevedo, ICTP/Cambridge PASCOS 2013, Taipei November 2013.

Collaborations with: L. Aparicio, C.P. Burgess, M. Cicoli, J.P. Conlon, S. de Alwis, A. Font, R. Gupta, E. Hatefi, D. Klevers, S. Krippendorf, A. Maharana, C. Mayrhofer, S.Theisen, R. Valandro

String Phenomenology:

Strategic (long term) Plan: String theory scenario that satisfies all particle physics and cosmological observations and hopefully lead to measurable predictions

Challenges for String Models

- Gauge and matter structure of SM
- Hierarchy of scales + masses (including neutrinos)
- Flavor CKM, PMNS mixing, CP no FCNC
- Hierarchy of gauge couplings (unification?)
- 'Stable' proton + baryogenesis
- Inflation or alternative for CMB fluctuations
- Dark matter (+ avoid overclosing)
- Dark radiation (N_{eff}≥3.04)
- Dark energy

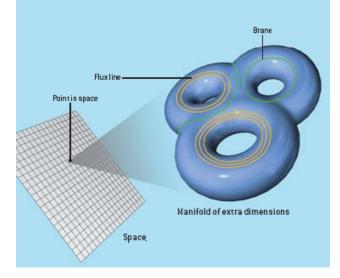
N.B. If ONE of them does not work, rule out the model!!!

Progress in several ways

'Generic' model independent results

Explicit constructions of (classes) of models

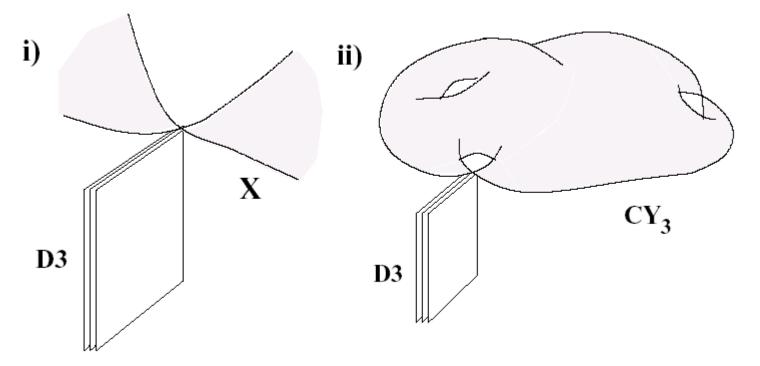
• Extract scenarios that can lead to eventually 'testable' predictions.


'Generic' String Predictions

- Gravity + dilaton+antisymetric tensors+ gauge fields + matter
- **SUSY** (32,16, ... supercharges, but breaking scale not fixed)
- Extra dimensions (6 or 7) (flat, small, large, warped?)
- No continuous spin representations in perturbative string theory (!)

A. Font, S. Theisen, FQ 1302.4771

Generic 4D String Predictions


- Moduli (s=0 'massless' fields)
- Antisymmetric tensors
 Branes (brane-world)
 Axions (not necessarily QCD axion)
 Quantised fluxes!

- Low dimensional Group representations: (bifundamentals, symmetric, antisymmetric, adjoints)
- If 4D N=1 TeV SDEY: Cosmological Moduli Problem!? (unless M_{moduli}>10 TeV)

String Model Building:

- Global Models (e.g. Heterotic)
- Local Brane Models (e.g. IIB)

Bottom-up Approach

Aldazabal, Ibanez, FQ, Uranga 2000

Local (brane) Properties

- Gauge group
- Chiral spectrum
- Yukawa couplings
- Gauge couplings
- Proton stability
- Flavour symmetries

Global (bulk) Properties

- Moduli Stabilisation
- Cosmological constant
- SUSY Breaking
- Scales (unification, axions,...)
- Inflation, Reheating
- Cosmological moduli
 problem

MODULI STABILISATION

4-cycle size: *t* (Kahler moduli)

3-cycle size: U (Complex structure moduli) + Dilaton S

LARGE Volume Scenario

IIB Moduli Stabilisation

....GKP, KKLT,

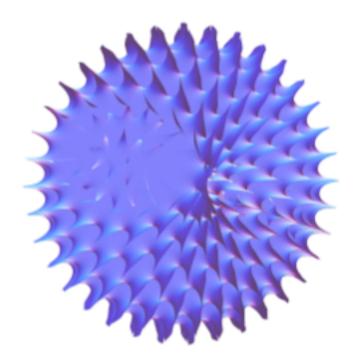
GKP

Type IIB String on Calabi-Yau orientifold

Turn on Fluxes

 $\int_{a} F_{3} = n_{a} \qquad \int_{b} H_{3} = m_{b}$ Size of cycle $a = U_{a}$ Superpotential $W = \int G_3 \wedge \Omega$, $G_3 = F_3 - iSH_3$

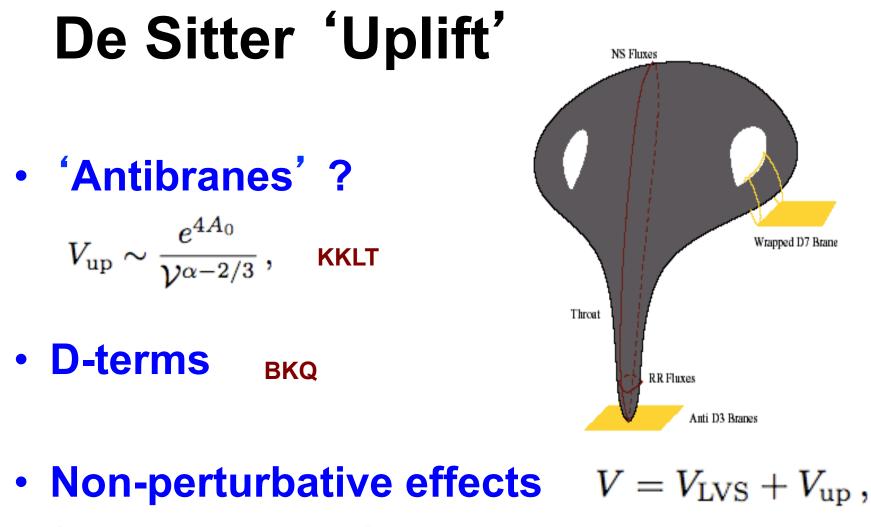
$${f Scalar \ Potential:} \quad V_F = e^K \left(K^{Iar{J}} D_I W D \overline{W}_{ar{J}} - 3|W|^2
ight),$$


 $V = e^{K} |D_aW|^2$

Minimum D_aW = 0 Fixes U_a and S T moduli unfixed: No-Scale models

Kahler moduli?

Simple example: P⁴₁₁₁₆₉



Exponentially Large Volumes

BBCQ, CQS (2005)

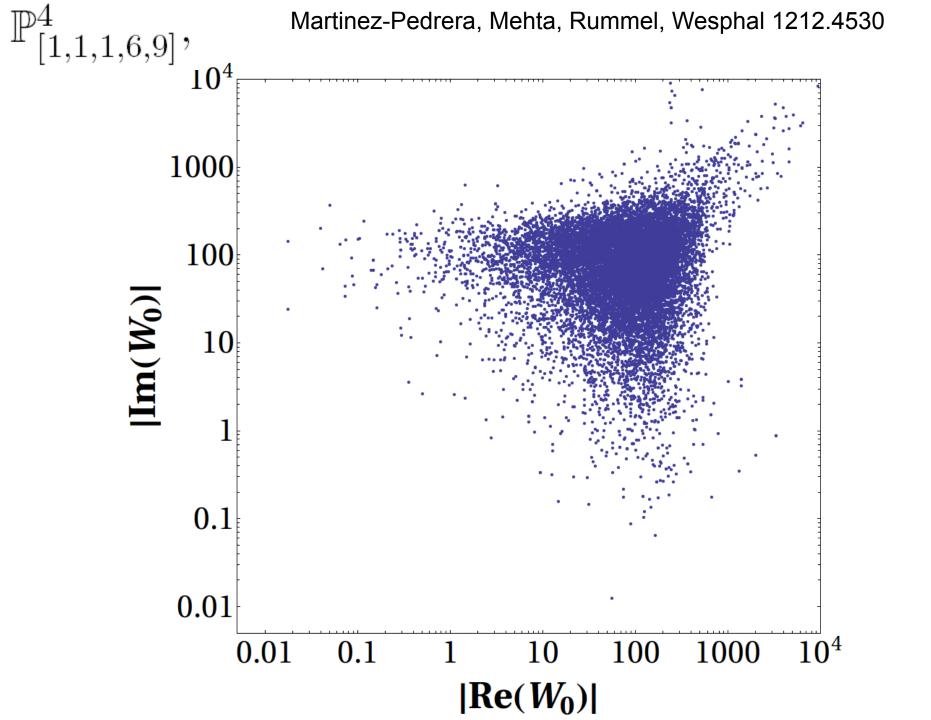
Example: $\mathbb{P}^4_{[1.1,1.6.9]}$, **Perturbative (alpha')** corrections to K $\mathcal{K} = -2\ln\left(\frac{1}{9\sqrt{2}}\left(\tau_{b}^{3/2} - \tau_{s}^{3/2}\right) + \frac{\xi}{2a_{s}^{3/2}}\right)$ $W = W_0 + A_s e^{-a_s T_s}.$ Volume • Nonperturbative corrections to W Fluxes $V = \sum \frac{\hat{K}^{\Phi\bar{\Phi}} D_{\Phi} W \bar{D}_{\bar{\Phi}} \bar{W}}{\mathcal{V}^2} + \frac{\lambda (a_s A_s)^2 \sqrt{\tau_s} e^{-2a_s \tau_s}}{\mathcal{V}} - \frac{\mu W_0 a_s A_s \tau_s e^{-a_s \tau_s}}{\mathcal{V}^2} + \frac{\nu \xi |W_0|^2}{a_s^{3/2} \mathcal{V}^3}$ $\Phi = S, U$ $\mathcal{V} \sim e^{a_s \tau_s} \gg 1 \text{ with } \tau_s \sim \frac{\xi^{2/3}}{q_s}.$

Exponentially large volumen, AdS + Broken SUSY!!!

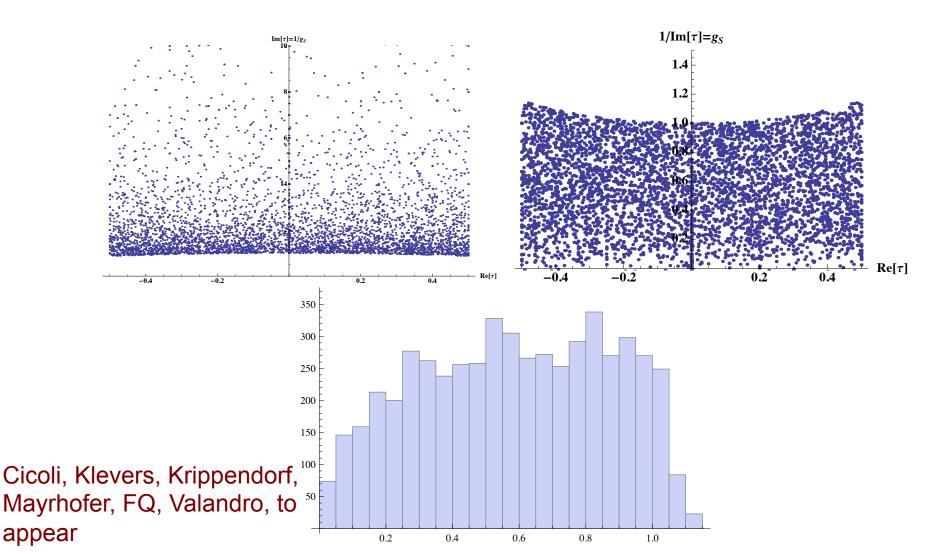
Cicoli et al arXiv:1203.1750

$$V_{
m up} \propto h^2 \, rac{e^{-2b\langle s
angle}}{\mathcal{V}} \, ,$$

Relevant Scales


- String scale Ms=M_P/V^{1/2}
- Kaluza-Klein scale M_{KK}=M_P/V^{2/3}
- Gravitino mass $m_{3/2} = W_0 M_P / V$
- Volume modulus mass $M_V = M_p / V^{3/2}$

• Lighter (fibre) moduli $M_1 = M_p / V^{5/3}$


LVS vs KKLT

- W₀~0.1-100
- U,S,T stabilised one step
- AdS non SUSY
- Minimum: perturbative in big cycle vs non-perturb. in small cycle
- Uplift:anti D3 branes, Dterms...
- Small parameter = 1/V
- SUSY broken by fluxes
- Many moduli: need h₂₁>h₁₁>1 + one blow up, the rest by loop effects/ D-terms

- W₀<<1
- U,S,T stabilised in 2 steps
- AdS SUSY
- Minimum: tree-level vs
 non-perturbative
- Uplift: anti D3 branes...(no D-terms)
- Small parameter W0
- SUSY broken by uplifting mechanism
- Many moduli: nonperturbative effects for each of them or ...

Distribution of Vacua (~Uniform in W_0 and g_s)

Stability of LVS minima

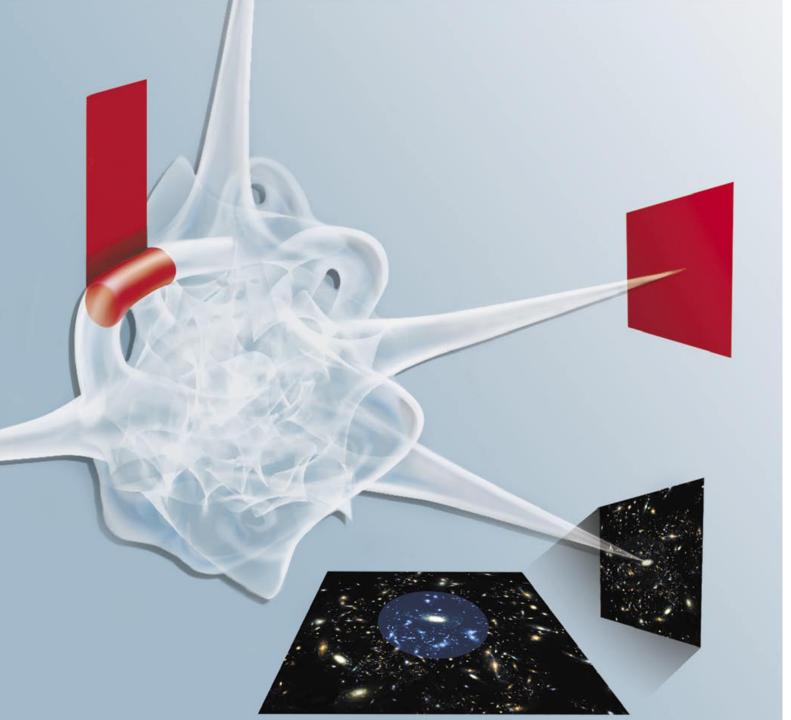
 Brown-Teitelboim (+CdL) D5/NS5 brane nucleation

 AdS: Brane tension>upper bound, so stable in EFT:

• dS: $P_{dS}/P_{AdS} \sim e^{-V}$ (The larger the volume, more stable!) $P_{dS}/P_{dec} \sim e^{V^2}$

(Also: no evidence for bubble of nothing decay)

S. de Alwis, R. Gupta, E. Hatefi, FQ arXiv:1308.1222


LVS and Particle Physics

LARGE Volume Implies

Standard Model is localised !

(SM D7 cannot wrap the exponentially large cycle since g²=1/V^{2/3}) → 'Bottom-up'

- D3/D7 Branes at a singularity (collapsed cycle)
- Magnetised D7 Brane wrapping a 'small' four-cycle
- Local F-Theory

Universe

D3 Brane or D7 Brane

But: Local/Global Mixing

- Standard Model in small cycle
- SM cycle usually NOT fixed by nonperturbative effects:

• SM chiral implies:
$$W_{np} = \left(\prod_{i} \Phi_{hidden,i}\right) \left(\prod_{j} \Phi_{MSSM,j}\right) e^{-aT_{MSSM}}$$
.

Blumenhagen et al.2007

$$D_a \sim \sum_i \left(|\Phi|^2 - \xi \right)^2, \quad \xi = (\partial_{V_a} K)|_{V_a = 0} \sim \mathbf{T}_{\mathsf{MSSM}}$$

MSSM: < Φ >=0, so W_{np}=0, $\xi = 0$.

SM at Singularity ! (Or $<|\Phi|^2 > \xi$)

SUSY Breaking

The Landscape

• Good: It allows for the first time to trust calculations for low-energy SUSY breaking.

 Bad: missed opportunity to have new physics at low energies from small Λ.

• Ugly: It allows not to use SUSY to address the hierarchy problem (Split SUSY, High-energy SUSY)

SUSY Breaking

- Approximate Universality
- $\Psi \iff \text{K\"ähler moduli},$ $\chi \iff \text{Complex structure moduli}.$ $\Phi = \Psi_{\text{susy-breaking}} \oplus \chi_{\text{flavour}}$ **CAQS, Conlon** (Mirror Mediation)

• Two cases: • $F_{SM} \neq 0$ soft terms~ $m_{3/2}$ Ms~10¹² GeV

F_{SM}=0 soft terms <<m_{3/2}
 or~m_{3/2}

Different Scenarios

F_{SM}≠0 (Magnetised D7s, D3/D7@singularities)
 M_{soft}=αM_{3/2}~αW₀/V

 W_0 ~1, V~10¹⁵, Ms~10¹¹GeV (TeV√, GUT?, CMP?) W_0 ~10⁻¹¹, V~10⁵, Ms~M_{GUT} (tuning?,CMP?) W_0 ~1, V~10⁵, Ms~M_{GUT} (hierarchy?, CMP√)

F_{SM}=0 (D3@singularity): Sequestered !

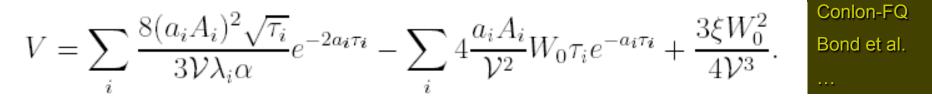
$$\begin{split} M_{soft} \sim M_{3/2} / V, V \sim 10^{6-7}, Ms = M_{GUT} (GUT \checkmark, CMP \checkmark) \\ M_{1/2} = M_{3/2} / V, M_0 \sim M_{3/2} / V^{1/2} (GUT \checkmark, CMP \checkmark, mini-split?) \\ M_{soft} \sim M_{3/2} / V^{1/2} (GUT \checkmark, CMP \checkmark, 1000 \text{TeV soft masses?}) \end{split}$$

Sequestered Scenario

Blumenhagen et al 0906.3297

$$egin{aligned} M_P &\equiv 2.4 imes 10^{18}\,{
m GeV},\ M_{string} &\sim M_P/\sqrt{\mathcal{V}},\ m_{ au_{s,i}} &\sim m_{a_{s,i}} &\sim M_P\ln\mathcal{V}/\mathcal{V},\ m_{3/2} &\sim m_U \sim m_S &\sim M_P/\mathcal{V},\ m_{ au_b} &\sim M_P/\mathcal{V}^{3/2},\ m_{a_b} &\lesssim M_P\,e^{-2\pi\mathcal{V}^{2/3}} \sim 0\,. \ {
m Model independent}\,. \end{aligned}$$

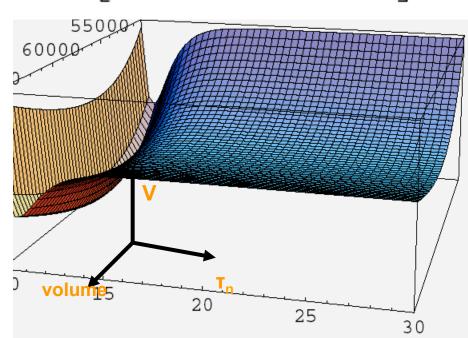
$$egin{aligned} M_{soft} &\sim rac{M_P}{\mathcal{V}^2} \ll m_{ au_b} \sim rac{M_P}{\mathcal{V}^{3/2}} \,. \ M_{soft} &\sim 1 \,\mathrm{TeV} \qquad m_{ au_b} \sim 3 imes 10^6 \,\mathrm{GeV_s} \end{aligned}$$

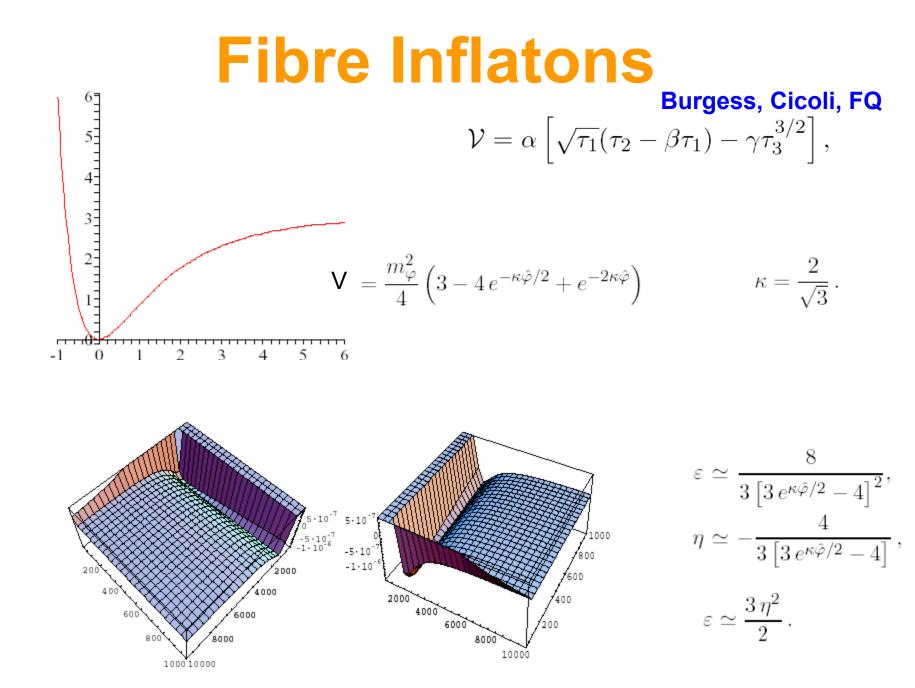

*No CMP, *No gravitino induced moduli problem, *Volume reheating

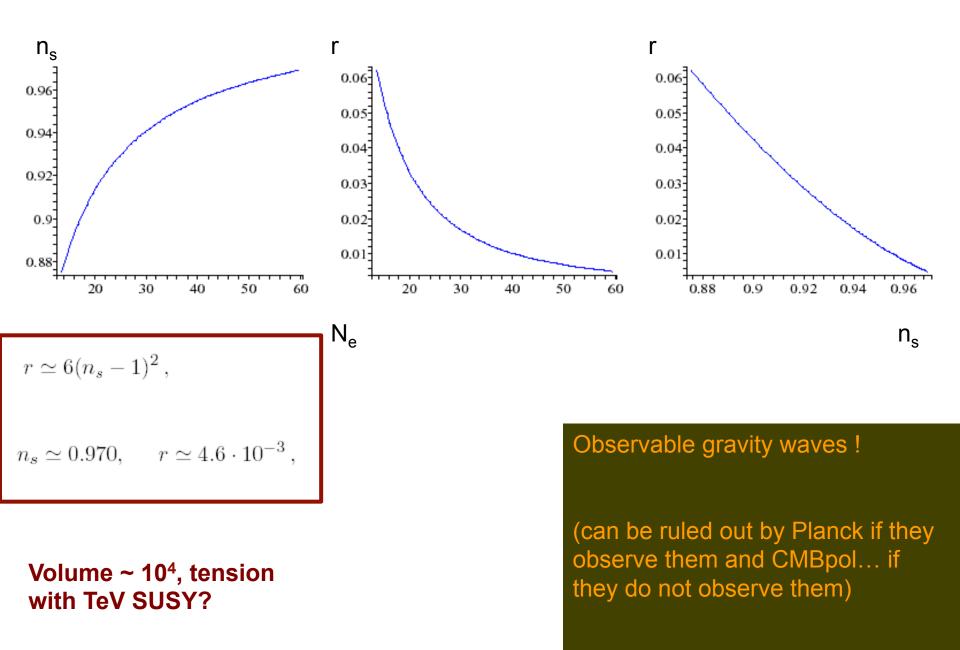
LHC Phenomenology: Aparicio et al to appear

Cosmology

Inflation

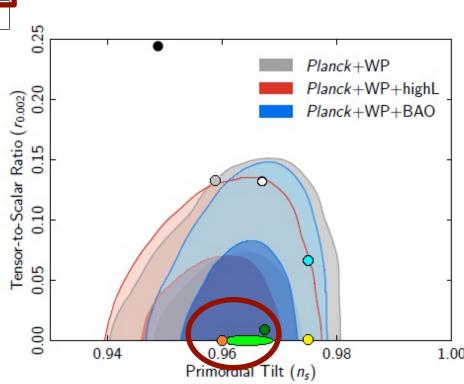

Kähler Moduli Inflation (Blow-up)




$$V \cong V_0 - \frac{4W_0 a_n A_n}{\mathcal{V}^2} \left(\frac{3\mathcal{V}}{4\lambda}\right)^{2/3} (\tau_n^c)^{4/3} \exp\left[-a_n \left(\frac{3\mathcal{V}}{4\lambda}\right)^{2/3} (\tau_n^c)^{4/3}\right].$$

Calabi-Yau: h₂₁>h₁₁>2

Small field inflation (r<<<1) No fine-tuning!! 0.960<n<0.967 Loop corrections??



String Scenario	n_s	r	
$\overline{\mathrm{D3}}/\overline{\mathrm{D3}}$ Inflation	$0.966 \le n_s \le 0.972$	$r \le 10^{-5}$	
Inflection Point Inflation	$0.92 \le n_s \le 0.93$	$r \le 10^{-6}$	
DBIInflation	$0.93 \le n_s \le 0.93$	$r \le 10^{-7}$	
Wilson Line Inflation	$0.96 \le n_s \le 0.97$	$r \le 10^{-10}$	
${ m D3/D7}$ Inflation	$0.95 \le n_s \le 0.97$	$10^{-12} \le r \le 10^{-5}$	
Racetrack Inflation	$0.95 \le n_s \le 0.96$	$r \le 10^{-8}$,
N - flation	$0.93 \le n_s \le 0.95$	$r \le 10^{-3}$	
Axion Monodromy	$0.97 < n_s < 0.98$	$0.04 \le r \le 0.07$	
Kahler Moduli Inflation	$0.96 \le n_s \le 0.967$	$r \le 10^{-10}$	
Fibre Inflation	$0.965 \le n_s \le 0.97$	$0.0057 \le r \le 0.007$	
Poly – instanton Inflation	$0.95 \le n_s \le 0.97$	$r \le 10^{-5}$	

Overall, string inflation models in good shape after Planck 2013, waiting for further tests

C. Burgess, M. Cicoli, FQ arXiv:1306.3512

After Inflation

Volume Reheating*

*Sequestered scenarios

M.Cicoli, J.P. Conlon, FQ arXiv:1208.3562 T. Higaki, F.Takahashi arXiv:1208.3563

$$\begin{split} \Gamma_{\Phi \to a_{b}a_{b}} &= \frac{1}{48\pi} \frac{m_{\Phi}^{3}}{M_{P}^{2}}. & \text{Volume axion } a_{b} \\ \Gamma_{\Phi \to H_{u}H_{d}} &= \frac{2Z^{2}}{48\pi} \frac{m_{\Phi}^{3}}{M_{P}^{2}} & \text{Higgses} \\ \Gamma_{\Phi \to BB} &= \left(\frac{\lambda}{3/2}\right)^{2} \frac{9}{16} \frac{1}{48\pi} \frac{m_{\Phi}^{3}}{M_{P}^{2}} & \text{Closed string axions} \\ \Gamma_{\Phi \to C\bar{C}} &\sim \frac{m_{0}^{2}m_{\Phi}}{M_{P}^{2}} \ll \frac{m_{\Phi}^{3}}{M_{P}^{2}} & \text{Matter scalars C} \\ \hline T_{reheat} &\sim \frac{m_{\Phi}^{3/2}}{M_{Pl}^{1/2}} \sim 0.6 \ \text{GeV} \left(\frac{m_{\Phi}}{10^{6} \text{GeV}}\right)^{3/2}. \end{split}$$

Dark Radiation

Energy density:

$$\rho_{total} = \rho_{\gamma} \left(1 + \frac{7}{8} \left(\frac{4}{11} \right)^{4/3} N_{eff} \right).$$

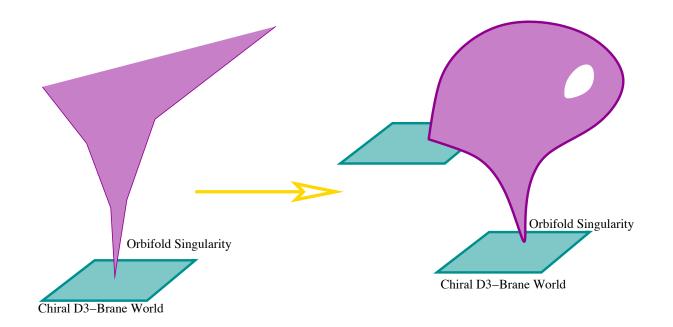
Standard Model N_{eff}=3.04 At CMB: WMAP, ACT, SPT

 $N_{eff} = 4.34^{+0.86}_{-0.88}, 4.56\pm0.75, 3.86\pm0.42$

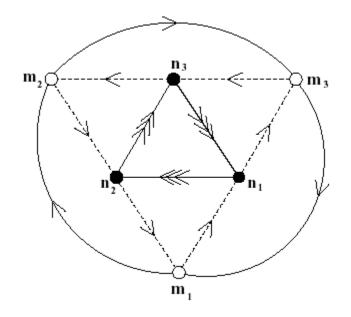
$$3.12\,\kappa \leq \Delta N_{eff} \leq 3.48\,\kappa$$

 $\kappa = (1+9n_a/16)/n_HZ^2$

Simplest Z=1:


$$1.56 \le \Delta N_{eff} \le 1.74$$

General: Strong constraints on matter and couplings (even if not sign of DR)! Also CAB (Conlon+Marsh)


Global Embedding and Moduli Stabilisation

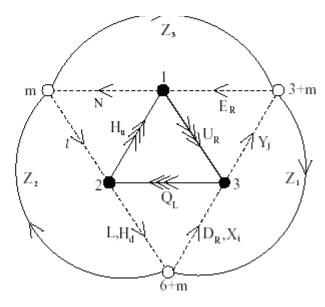
Cicoli, Krippendorf, Mayrhofer, FQ, Valandro 1206.5237, 1304.0022, 1304.2771 + Klevers (to appear next week!)

Branes at Singularities

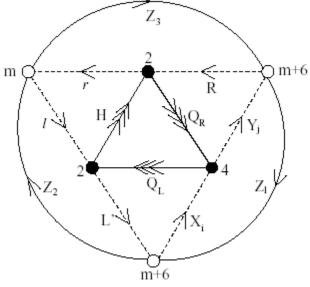
Del Pezzo Singularities/Quivers

e.g. del Pezzo 0 (C₃/Z₃) n_i D3 Branes (group ΠU(n_i)) m_j D7 Branes (group ΠU(m_i)) Arrows=bi-fundamentals

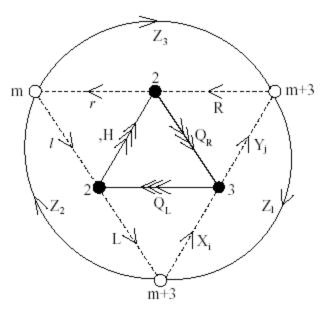
 $\begin{array}{l} 3\left[(\mathbf{n_1}, \mathbf{\bar{n_2}}, \mathbf{1}) + (\mathbf{1}, \mathbf{n_2}, \mathbf{\bar{n_3}}) + (\mathbf{\bar{n_1}}, \mathbf{1}, \mathbf{n_3})\right] + m_1\left[(\mathbf{\bar{n_1}}, \mathbf{1}, \mathbf{1}) + (\mathbf{1}, \mathbf{n_2}, \mathbf{1})\right] \\ + m_2\left[(\mathbf{1}, \mathbf{\bar{n_2}}, \mathbf{1}) + (\mathbf{1}, \mathbf{1}, \mathbf{n_3})\right] + m_3\left[(\mathbf{1}, \mathbf{1}, \mathbf{\bar{n_3}}) + (\mathbf{n_1}, \mathbf{1}, \mathbf{n_1})\right] & \textbf{3 Families!} \end{array}$

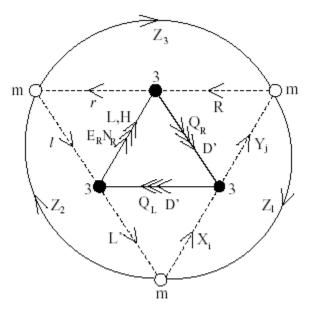

 $m_2 = 3(n_3 - n_1) + m_1$ $m_3 = 3(n_3 - n_2) + m_1$ Anomaly/tadpole cancelation

$$Q_{anomaly-free} = -\sum_{i=1}^{3} \frac{Q_i}{n_i},$$

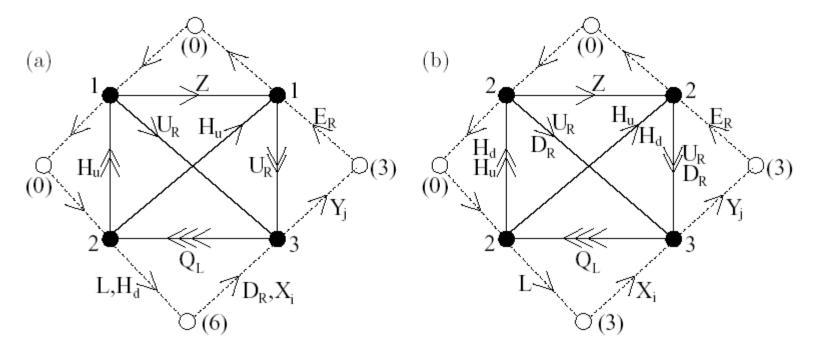

Hypercharge (n_i≠n_j)

D7s:Franco-Uranga


Standard Models


Pati-Salam Models

LR-Symmetric Models


Trinification Models

e.g. Realistic dP₁ Models

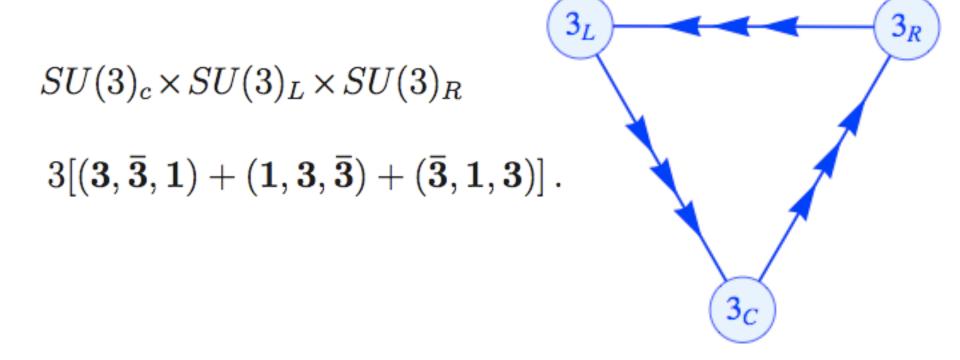
Standard Model

Global Picture

Classification from Toric Ambient Spaces

$h^{1,1} = 4:1197$ polytopes	Σ	$dP_0 \\$	$dP_1 \\$	$dP_2 \\$	$dP_{3} \\$	dP_4	dP_5	dP_6	dP_7	dP_8
There are 2 dP_n + O-involution The 2 dP_n do not intersect Further rigid divisor		9	5	-	-	-	2	10	31	25
The 2 dP_n do not intersect		9	2	-	-	-	2	10	27	18
Further rigid divisor	21	3	-	-	-	-	-	4	9	5
$h^{1,1} = 5:4990$ polytopes	Σ	dP_0	$dP_1 \\$	dP_2	dP_3	$dP_4 \\$	dP_5	dP_6	dP_7	dP_8
There are 2 dP_n & O-involution	386	27	60	21	7	3	13	40	121	94
The 2 dP_n do not intersect		27	55	7	3	1 -	11	39	112	72
Further rigid divisor	168	14	16	-	-	-	5	28	68	37

Concrete (Compact) Calabi-Yau

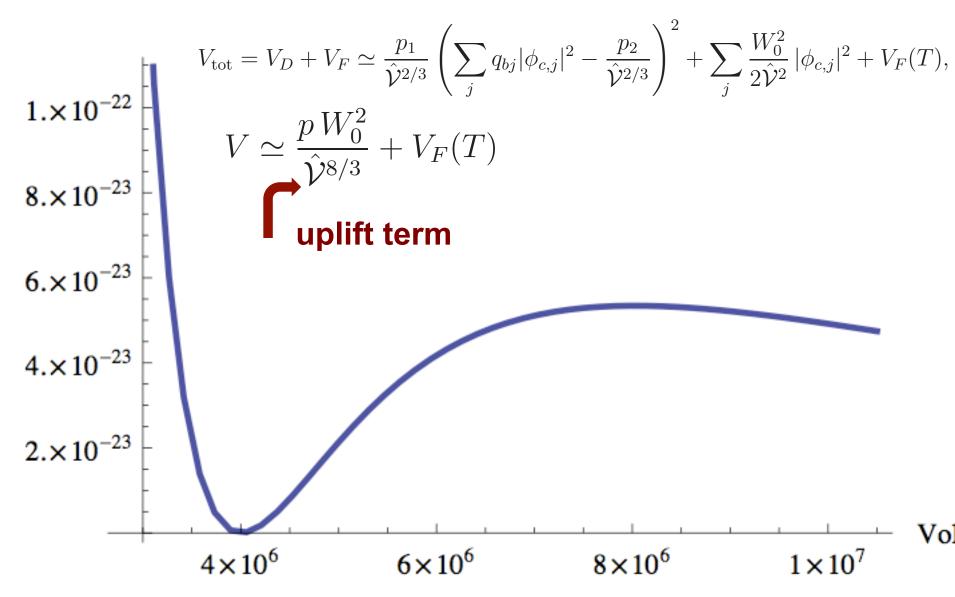

z_1	z_2	z_3	z_4	z_5	z_6	z_7	z_8	D_{eq_X}	
1	1	1	0	3	3	0	0	9	
0	0	0	1	0	1	0	0	2],
0	0	0	0	1	1	0	1	3	
0	0	0	0	1	0	1	0	2	

$$SR = \{z_4 z_6, z_4 z_7, z_5 z_7, z_5 z_8, z_6 z_8, z_1 z_2 z_3\}.$$

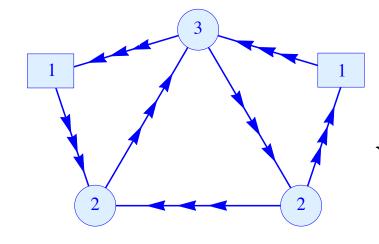
Orientifold $z_4 \leftrightarrow z_7$ and $z_5 \leftrightarrow z_6$

O7-planesLocus in ambient spaceHomology class in X_3 $O7_1:$ $y_6 = z_4 z_5 - z_6 z_7 = 0$ $D_{O7_1} = D_6 + D_7 = \mathcal{D}_b$ $O7_2:$ $y_5 = z_8 = 0$ $D_{O7_2} = D_8 = \mathcal{D}_s$

dP₀ with only D3 Branes



 $SU(3)_c \times SU(3)_L \times SU(3)_R \rightarrow SU(3)_c \times SU(2)_L \times SU(2)_R \times U(1)_{B-L}$ $\rightarrow SU(3)_c \times SU(2)_L \times U(1)_Y.$


Consistency Constraints

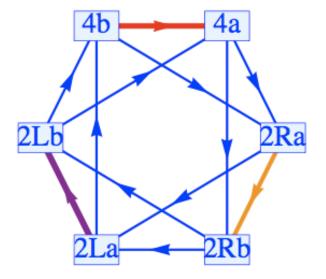
- Orientifolding induces orientifold planes with non zero 3-7 charges
- D7 tadpoles
- D5 tadpoles
- D3 tadpoles
- Freed-Witten anomaly
- K-theory charges

Moduli Stabilisation

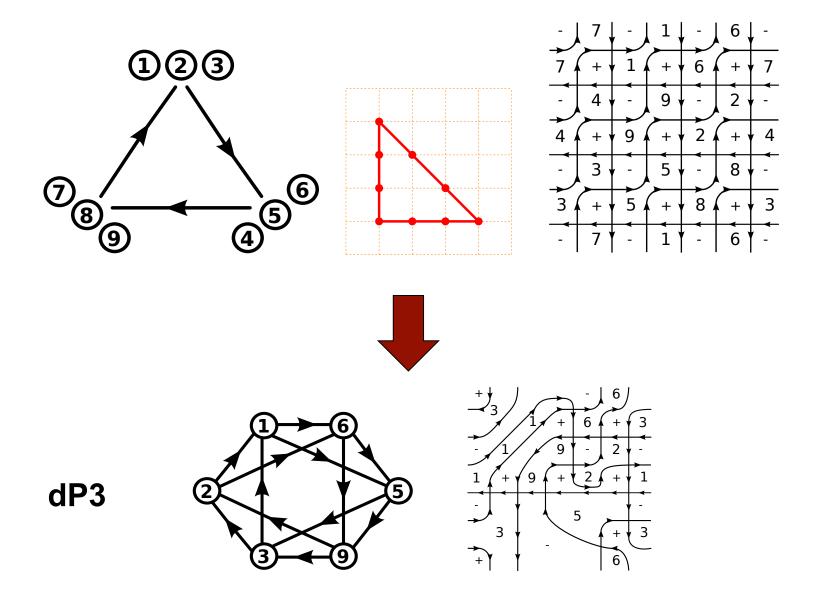
dP₀ and Flavour D7 Branes

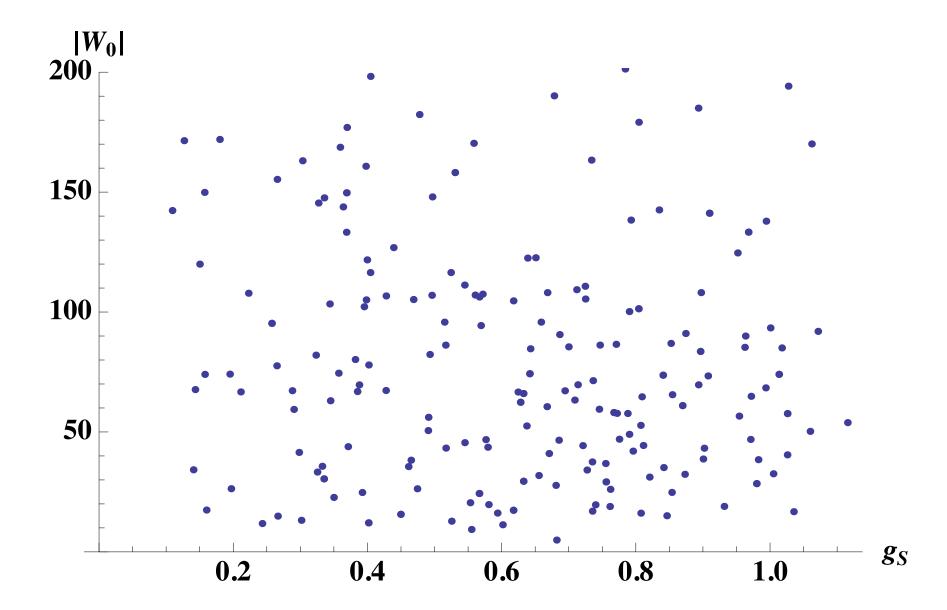
 $SU(3)_c x SU(2)_L x SU(2)_R x U(1)_{B-L}$

 $\mathcal{V}/W_0 \simeq 5 \cdot 10^{13}, \Lambda = 0 \Rightarrow W_0 \simeq 0.01, \mathcal{V} \simeq 5 \cdot 10^{11}$ $\zeta \simeq 0.522 \Rightarrow g_s \simeq 0.015 \simeq 1/65, M_s \simeq 10^{12} \text{GeV}$

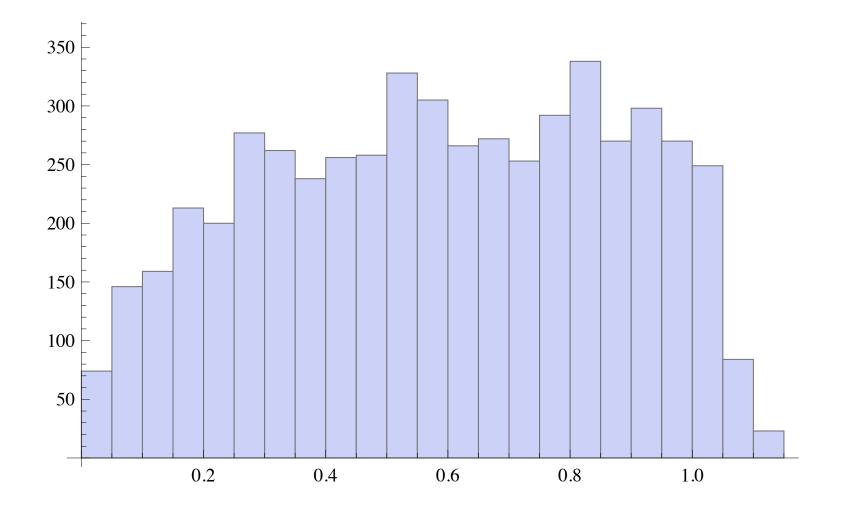

Couplings unified highly non-trivial! (bottom-up matching top-down)

(Simplest realistic global string model! But problem with Yukawas...)


'Realistic' 'Pati-Salam' Model (dP3)


- Break symmetry to SM (+ U(1) or LR)
- Breaking U(1) to SM: RH sneutrino (R-parity broken)
- Quark+ lepton mass hierarchies
- See-saw neutrino masses
- Stable proton
- CKM, CP
- Controlled kinetic terms!!
- Gauge Unification

(But not Global realisation yet)



Global dP6 with D3 Branes

First Explicit String Model

- Explicit Complex Structure + Dilaton stabilisation
- Explicit de Sitter after Kahler moduli stabilisation
- Chiral (realistic) spectrum
- Realistic scales (GUT, soft masses, no CMP, etc.)
- Detailed Phenomenology to be done

CONCLUSIONS

- Continuous progress on local string models
- Several SUSY breaking scenarios
- Local models: Global embedding and dS
 Moduli Stabilisation!!!

✓ Local models global embedding

- Most known ingredients used: geometry, fluxes, branes, perturbative, non-perturbative effects
- Relatively Complicated models

(Recall: SM is based on elegant principles but it is ugly !)

Open Questions

- Single model with all moduli stabilised and realistic chiral matter (all cs)
- Stabilise 'flat' matter fields directions
- Complete phenomenological study of soft terms scenarios at low-energies
- Explicit realisation of dark radiation string models with excess of X-rays
- Extension to global F-theory models (α' corections to K)....
- K for matter fields, loop corrections, etc.

International Centre for Theoretical Physics

To come:

PASCOS 2015 @ ICTP !!!