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Overview 

The Coleman de Luccia instanton started a trend of 
understanding more complex and physically realistic 
tunnelling scenarios, including gravity and nonlinear 
field theory.

CDL still the “gold standard” in computing probability of 
false vacuum decay, but –


? How dependent is amplitude on homogeneity?




Coleman	


Original work of Coleman 
considered a field theory with 
false vacuum, showed that in 
limit of small energy difference 
(relative to barrier) transition 
modelled by a “thin wall” bubble.


€ 

ϕF

€ 

ϕT

€ 

ϕF

€ 

ϕT
€ 

ε

€ 

ϕF



Coleman	


Amplitude determined by action of Euclidean tunneling 
solution: “The Bounce”
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Tunneling amplitude:




Coleman-de Luccia	



The picture is very similar, but gravity is included. 


o  The bubble is now a solution of the Euclidean Einstein 
equations with a bubble of flat space separated from dS 
space by a thin wall. 

o  The wall radius is determined by the Israel junction 
conditions

o  The action of the bounce is the difference of the action 
of this wall configuration and a pure de Sitter geometry.




CDL Action 

The instanton looks like a truncated sphere:


Israel conditions give truncation radius:


hence bounce action:




Geometrical Picture	



de Sitter space is 
represented by a 
hyperboloid (sphere) in 5D 
Lorentzian (Euclidean) 
spacetime. The instanton 
is often represented by 
joining the virtual 
Euclidean geometry to the 
real Lorentzian geometry 
across a surface of ‘time’ 
symmetry.


dS 



In general, the wall separates two different regions of 
spacetime, which are solutions to Einstein equations:


The regions in general have different cosmological constants, 
and possibly a black hole mass.


A more general look 



Wall trajectory:


Israel junction conditions determine the equation of motion:


Inputting the form of the trajectory gives a Friedmann like 
equation for R:


Wall trajectories 

Lorentz 

Euclid 



Coleman-de Luccia has:


Hence


and


CDL Wall 

Static 
patch 

Periodicity 
not the 
same as 
static patch 

HENCE CONICAL DEFICIT IN BOUNCE 



Conical Deficits	


Familiar in Euclidean sections, SdS has a deficit/excess on 
at least one horizon:




Conical Actions	


The conical deficit is produced by a delta function in the 
Ricci tensor (caveat – no transverse energy momentum, 
metric a product space) so can compute the action:


Smooth out A:




SdS Action	



Applying this to the SdS black hole now gives an interesting 
result. For a general periodicity:


i.e. the result is independent of β 
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Back to walls	



Adding in a wall adds in a contribution to the action:


So can compute the action of a bubble of Minkowski space 
inside SdS with a wall boundary:


For CDL, M=0, and recover usual result.




Adding a black hole	



Can take a more general instanton with a Minkowski bubble 
inside SdS


Find numerically (except for unstable static solution R*)




Static solution	


This is the one example where we can 
have no conical deficit (hence another 
cross-check). 


Both methods give the bounce action:
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General Results	


In general, have to construct the wall numerically, determine 
its periodicity, then perform the action integral.




or as a function of M/M*




The bounce action clearly drops as we add in an 
inhomogeneity, the larger the black hole, the lower 
the action.


For light tension walls the effect is most pronounced.


The periodicity of the bubble is (approx) a fixed ratio 
of the cosmological to black hole periodicity – 
depending on σl 




Periodicity as a function of M/MN
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Interesting to compare lifetime of universe v black hole:


For Hawking evaporation:


And tunneling:


Ratio:


i.e. less than unity for black holes above the Planck mass.


Black holes in pure dS will evaporate before they seed 
decay, but if not quite dS (slow roll) accretion can dominate.
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Summary 

  Have shown how to compute the action of a 
singular instanton, verified for known or special cases.


  Tunneling amplitude significantly enhanced in the 
presence of a black hole – even more so if a regular 
source


  Evaporation beats tunneling in pure dS, however if in 
a slow roll background, accretion beats evaporation.



