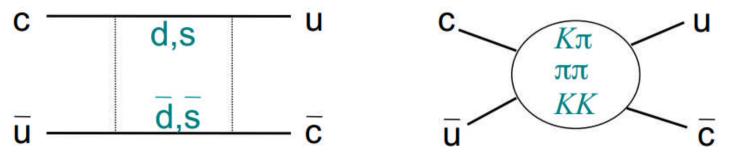


Gagan Mohanty* TIFR, Mumbai

* Replacement for N.K. Nisar

- Motivation
- **Data and methodology**
- **Indirect CP violation**
- **CP** violation in decays
- **Summary and outlook**

<image><image><image><image><section-header>


Motivation

- CP violation in charm decays provides an interesting test bed for new physics as the standard model (SM) expects a small asymmetry owing to
 - □ Large GIM/CKM suppression
 - □ Lack of a large hierarchy in the down-type quark masses
- Typical SM value of the order of 10⁻³ most promising candidates to study are singly Cabibbo-suppressed (SCS) decays
 Grossman, Kagan and Nir

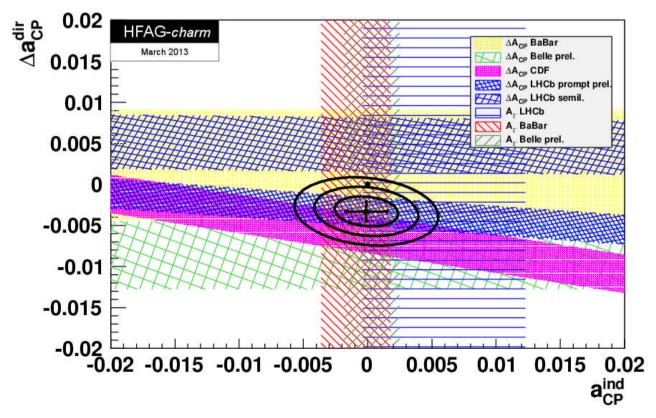
Grossman, Kagan and Nir PRD 75, 036008 (2007)

While talking about percentage effect, one needs a good control on the SM predictions, something that is in general lacking in this sector due to long-distance effects

An example of "short vs. long"

> Further, with $D^0-\overline{D}^0$ mixing being firmly established, could there be any CPV in the mixing or due to interference between mixing and decay?

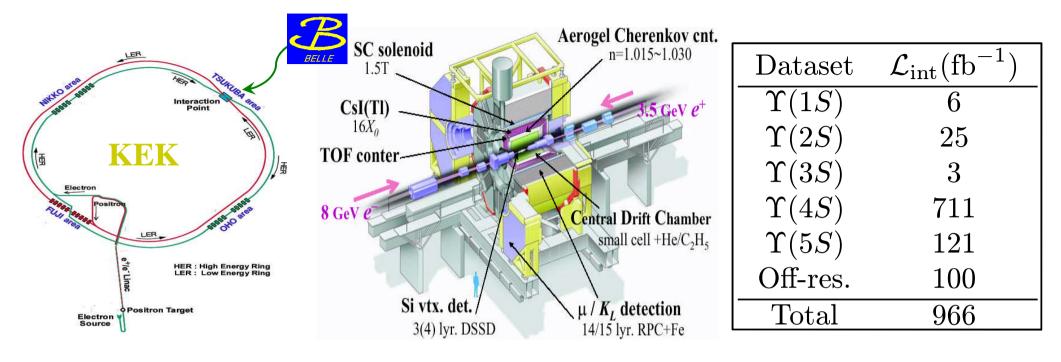
Current expectation for direct CP violation

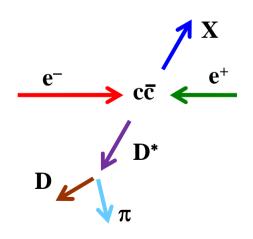

$$A_{\Gamma}^{f} \equiv \frac{\tau(\overline{D}^{0} \to f) - \tau(D^{0} \to f)}{\tau(\overline{D}^{0} \to f) + \tau(D^{0} \to f)} \approx -a_{C\!P}^{\rm ind}$$

$$A^{f}_{CP} \equiv \frac{\Gamma(D^{0} \to f) - \Gamma(\overline{D}^{0} \to f)}{\Gamma(D^{0} \to f) + \Gamma(\overline{D}^{0} \to f)}$$

JPG 39, 045005 (2012)

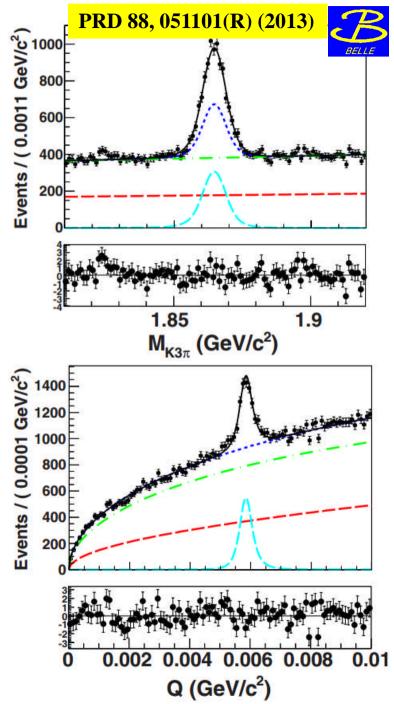
$$\Delta A_{CP} \equiv A_{CP}(K^+K^-) - A_{CP}(\pi^+\pi^-) = \left(1 + y\cos\phi\frac{\langle t\rangle}{\tau}\right)\Delta a_{CP}^{\mathrm{dir}} + \left(\frac{\Delta\langle t\rangle}{\tau}\right)a_{CP}^{\mathrm{ind}}$$


 $x \equiv \Delta m/\overline{\Gamma}$, $y \equiv \Delta \Gamma/2\overline{\Gamma}$ and $\phi \equiv \operatorname{Arg}(q/p)$, where Δm and $\Delta \Gamma$ are the mass and width difference between two D-meson mass eigenstates, $\overline{\Gamma}$ is their average width and (p, q) are the two complex coefficients that relate mass with flavor eigenstates



$$a_{CP}^{
m ind} = (+0.015 \pm 0.052)\%$$
 $\Delta a_{CP}^{
m dir} = (-0.333 \pm 0.120)\%$

> No CPV (0,0) point: $\Delta \chi^2 = 7.8$, CL = 2% (excluded at 2σ)


Dataset and Methodology

- ➤ Charge of the slow pion in the D* decay (D*+→ D⁰π⁺ or D*-→ D¯⁰π⁻) can tell us flavor of the D meson
- For a CP study, we need to keep in mind a) D* production and b) the kinematics of the accompanying charged pion

Study of the wrong-sign decay $D^0 \rightarrow K^+ \pi^- \pi^+ \pi^-$

- Contributions from both a doubly-Cabibbo suppressed (DCS) decay and D⁰-D⁰ mixing followed by a Cabibbo favored (CF) decay
- □ Measurement performed relative to the CF decay $D^0 \rightarrow K^- \pi^+ \pi^+ \pi^-$

$$R_{WS} = \frac{\Gamma(D^0 \to K^+ \pi^- \pi^+ \pi^-)}{\Gamma(D^0 \to K^- \pi^+ \pi^+ \pi^-)}$$

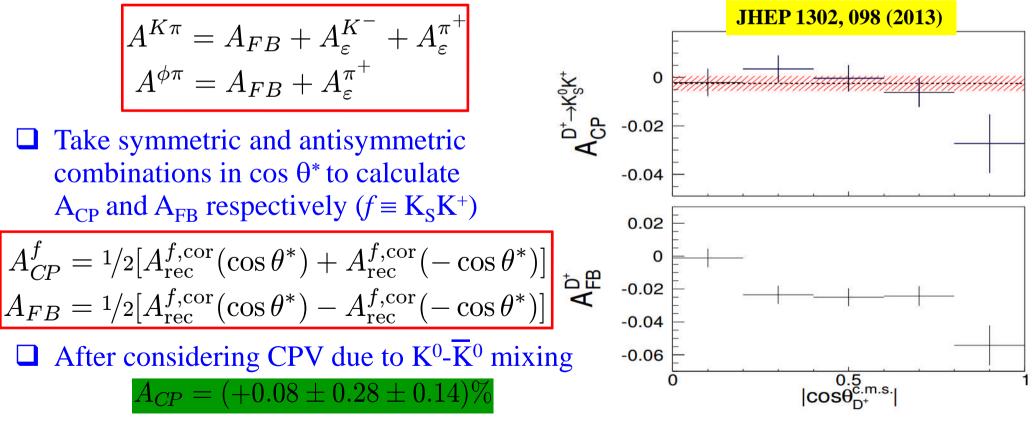
= $R_D + \alpha \, y' \sqrt{R_D} + \frac{1}{2} (x^2 + y^2)$

R_D: ratio of the DCS to CF decay amplitude squared α : coherence factor that accounts for strong phase variation over the phase space ($0 \le \alpha \le 1$) $y' = y \cos \delta - x \sin \delta$ where δ is strong-phase difference between DCS and CF decays

A 2D binned maximum likelihood fit to the $M_{K3\pi}$ and $Q = M_{D*\pi} - M_D$ distributions

$$R_{WS} = (0.324 \pm 0.008 \pm 0.007)\%$$

$$\mathcal{B}_{WS} = (2.61 \pm 0.06^{+0.09}_{-0.08}) \times 10^{-4}$$


With α and δ from CLEOc: $R_D = (0.327 + 0.019) \%$

Search for CP violation in $D^+ \rightarrow K_S K^+$

$$\square We measure here: A_{rec}^{K_SK^+} = A_{CP}^{K_SK^+} + A_{FB} + A_{\varepsilon}^{K^+} + A_{K^0}$$

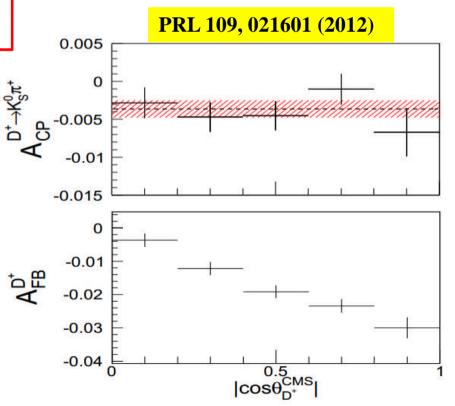
Worry about the detection efficiency asymmetry for charged kaons and the asymmetry owing to difference in interactions of K^0 and \overline{K}^0 inside detector

□ Obtain the charged kaon detection asymmetry using the self-tagged decay channels $D^0 \rightarrow K^-\pi^+$ ($\overline{D}^0 \rightarrow K^+\pi^-$) and $D_s^+ \rightarrow \phi \pi^+$ ($D_s^- \rightarrow \phi \pi^-$)

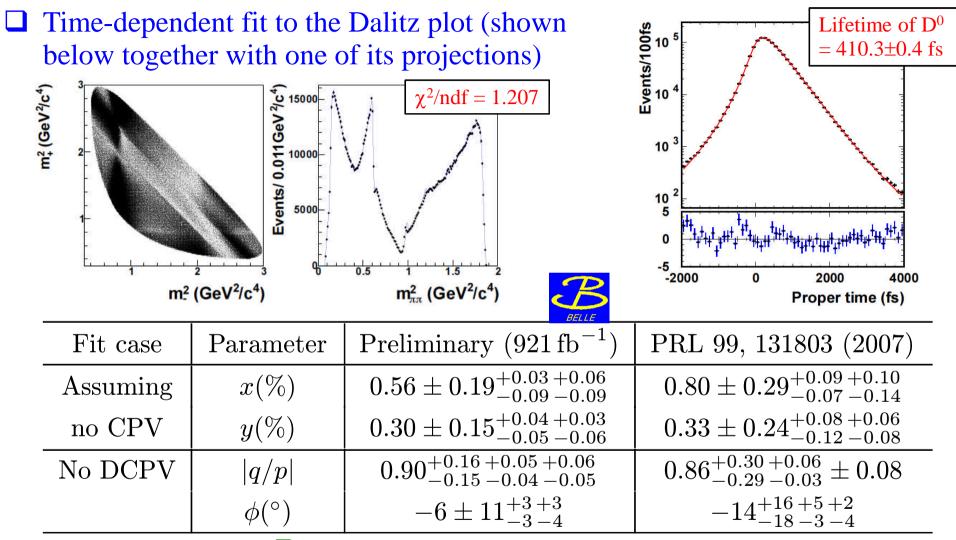
Search for CP violation in $D^+ \rightarrow K_S \pi^+$

• We measure here:
$$A_{\text{rec}}^{K_S \pi^+} = A_{CP}^{K_S \pi^+} + A_{FB} + A_{\varepsilon}^{\pi^+} + A_{K^0}$$

Complication arises due to difference in interactions of K^0 and \overline{K}^0 inside the detector


□ Obtain the charged pion detection asymmetry using $D \rightarrow K\pi\pi$ decays

$$A(D^{+} \to K^{-}\pi^{+}\pi^{+}) = A_{FB} + A_{\varepsilon}^{K^{-}\pi^{+}} + A_{\varepsilon}^{\pi^{+}}$$
$$A(D^{0} \to K^{-}\pi^{+}\pi^{0}) = A_{FB} + A_{\varepsilon}^{K^{-}\pi^{+}}$$
$$0.005$$


□ Calculate A_{CP} and A_{FB} from the symmetric and antisymmetric combinations in $\cos \theta^*$ ($f \equiv K_S \pi^+$)

$$A_{CP}^{f} = \frac{1}{2} \left[A_{\text{rec}}^{f,\text{cor}}(\cos\theta^{*}) + A_{\text{rec}}^{f,\text{cor}}(-\cos\theta^{*}) \right]$$
$$A_{FB} = \frac{1}{2} \left[A_{\text{rec}}^{f,\text{cor}}(\cos\theta^{*}) - A_{\text{rec}}^{f,\text{cor}}(-\cos\theta^{*}) \right]$$

After considering CPV due to $K^0-\overline{K}^0$ mixing $A_{CP} = (-0.024 \pm 0.094 \pm 0.067)\%$

Mixing and CPV results from $D^0 \rightarrow K_S \pi^+ \pi^-$

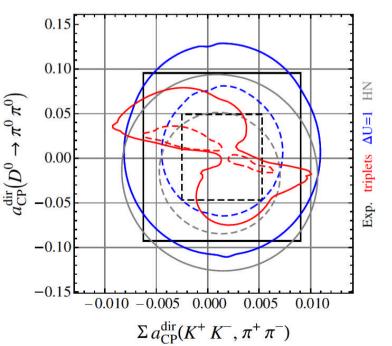
No DCPV \Rightarrow A_f = \overline{A}_f when f is a self-conjugate mode such as K_S $\pi^+\pi^-$

- \geq 2.5 σ away from the no-mixing hypothesis
- No evidence for indirect CP violation

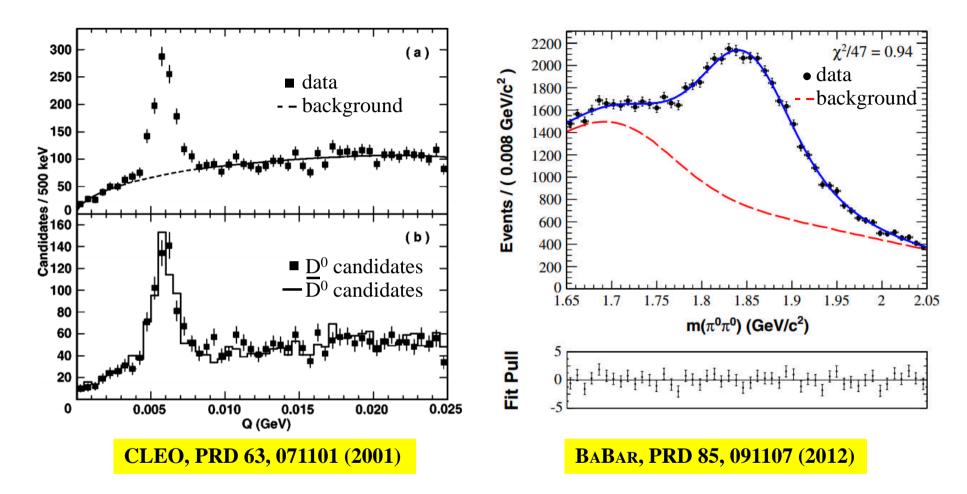
Search for CP violation in $D^0 \rightarrow \pi^0 \pi^0$

□ Large CP asymmetries expected in this decay for NP scenarios having large penguin contributions and large chromo-magnetic dipole operators

Decay mode	Large penguins	Large c.d.o.	Cheng and Chiang, PRD 86, 014014 (2012)
$D^0 o \pi^+ \pi^-$	3.96 (4.40)	5.18 (3.70)	
$D^0 o \pi^+ \pi^- \ D^0 o \pi^0 \pi^0$	0.93 (1.01)	8.63 (6.19)	
•••	• • •	••• X	10^{-3}

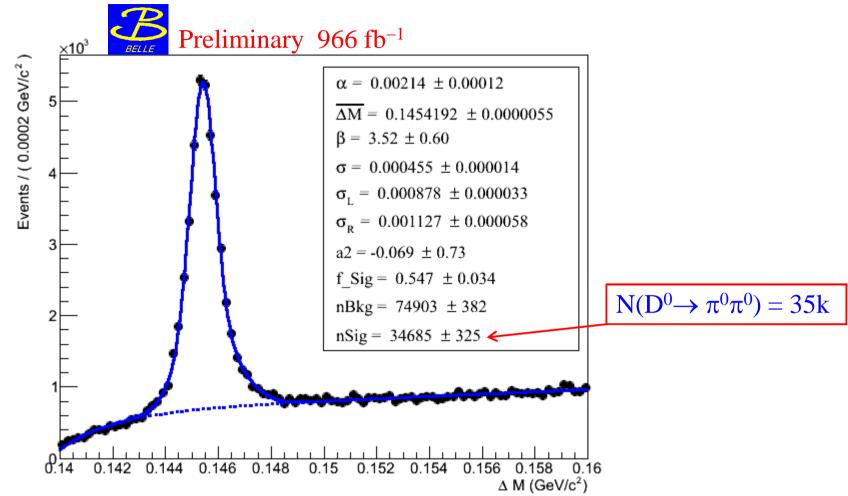

□ Large penguin contribution is predicted for $D^0 \rightarrow \pi^0 \pi^0$

Bhattacharya, Gronau and Rosner, PRD 85, 014014 (2012)


□ Some NP models e.g., triplet model, predict a sizeable CP asymmetry in D⁰→ $\pi^0\pi^0$

> Hiller, Jung and Schacht, PRD 87, 014024 (2013)

Need a precise measurement that can only be done at the e⁺e⁻ flavor factories


Current experimental status

□ Based on a 13.7fb⁻¹ data, CLEO has measured $A_{CP} = (+0.1\pm4.8)\%$

□ Using 470.5fb⁻¹ of data BABAR found the branching fraction BF(D⁰→ $\pi^0\pi^0$) = [8.4 ± 0.1(stat.) ± 0.4(syst.) ± 0.3(norm.)]×10⁻⁴, no attempt is made for A_{CP}

Ongoing study from Belle

- □ Signal component is parametrized as a sum of Gaussian and an asymmetric Gaussian function with common mean, while the background as a threshold function $f(x) = (x-m_0)^{\alpha} \exp[-\beta(x-m_0)]$
- Expected statistical error on A_{CP} is 0.64% (an order of magnitude better than CLEO)

Summary and Outlook

 \Box presented a sample of results related to CP violation in charm from \leq

1) Measured the rate for "wrong-sign" decay $D^0 \rightarrow K^+\pi^-\pi^+\pi^-$ relative to the "right-sign" decay $D^0 \rightarrow K^-\pi^+\pi^+\pi^-$ decays

$$R_{WS} = (0.324 \pm 0.008 \pm 0.007)\%$$

$$\mathcal{B}_{WS} = (2.61 \pm 0.06^{+0.09}_{-0.08}) \times 10^{-4}$$

- 2) Searched for CP violation in $D^+ \rightarrow K_S K^+ \implies$ consistent with no CPV
- 3) Story is same for $D^+ \rightarrow K_S \pi^+$ as well as $D^0 \rightarrow K_S \pi^+ \pi^-$ (indirect CP violation)
- 4) Conducting the most precise measurement of CP violation in the decay $D^0 \rightarrow \pi^0 \pi^0$, which can be only done at e⁺e⁻ flavor factories
- > Many other related studies are ongoing with the data recorded with Belle

Bonus slides

Systematic uncertainties in $D^0 \rightarrow K_S \pi^+ \pi^-$

$\overline{\mathbf{D}}$			
	Source	$\Delta x (imes 10^{-4})$	$\Delta y(imes 10^{-4})$
	Best candidate selection	+1.05	+1.87
	Signal and background yields	± 0.30	± 0.27
	Wrong tagged event fraction	-0.67	-0.45
	Time resolution of signal	-1.39	-0.92
	Efficiency	-1.13	-2.09
	Combinatorial PDF	$\begin{array}{c}+1.90\\-4.82\end{array}$	$\begin{array}{c} +2.28 \\ -3.88 \end{array}$
	$K^{\star}(892)$ DCS/CF fraction	-7.28	+2.29
	$K_2^{\star}(1430) \text{ DCS/CF}$ fraction	+1.71	-0.67
	Total	$^{+2.78}_{-8.94}$	$+3.74 \\ -4.58$

Improved systematic uncertainties together with statistical with respect to the previous publication
 Belle, PRL 99, 131803 (2007)