Fermi bubbles under Dark Matter scrutiny

University College London (UCL) Wei-Chih Huang 11.20.2013 PASCOS 2013 Taipei

arXiv:1307.6862 1310.7609 with Alfredo Urbano and Wei Xue

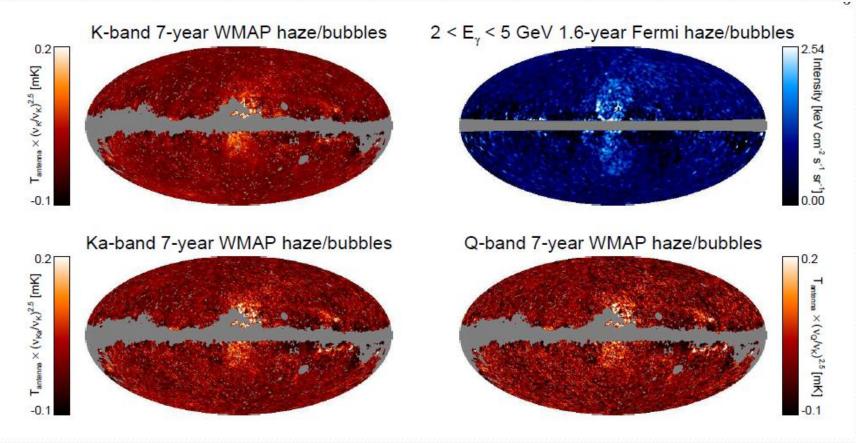
Outline

- Introduction
- Inverse Compton Scattering (ICS) and Dark Matter (DM) annihilation
- Fermionic DM in the context of Effective Field Theory (EFT) approach
- Scalar dark matter
- Realizations
- conclusions

Fermi Bubbles

- The Fermi bubbles (M. Su et al , arXiv:1005.5480.) refer to a pair of large gamma-ray lumps extending 50° both north and south of the Galactic Center.
- There exists a fairly flat energy spectrum and almost constant as a function of the latitude b for the regions of |b| > 30°.
- For lower latitudes, the energy spectrum of the Fermi Bubbles peaks between 1 to 4 GeV. (D. Hooper et al, arXiv:1302.6589)

WMAP haze and Fermi bubbles



D. P. Finkbeiner arXiv:astro-ph/0311547 Gregory Dobler arXiv:1109.4418v2

WMAP haze and Fermi bubbles

- Due to the spatial correlation, a population of GeV-TeV electrons with an approximately power-law spectrum can explain the WMAP haze via the microwave synchrotron radiation in the presence of microgauss-scale magnetic fields (arXiv:1302.6589).
- The same electron population scattering off Cosmic Microwave Background (CMB), infrared, and starlight photons can also account for Fermi bubbles for high latitudes with flat energy spectrum.
- For low latitudes, there still exists the residue excess after subtracting the ICS component in the Fermi bubbles.

ICS photons

- Assume a population of GeV TeV electrons with a powerlaw energy spectrum
- The electrons scatter off InterStellar Radiation Field (ISRF), including CMB, infrared, and starlight photons

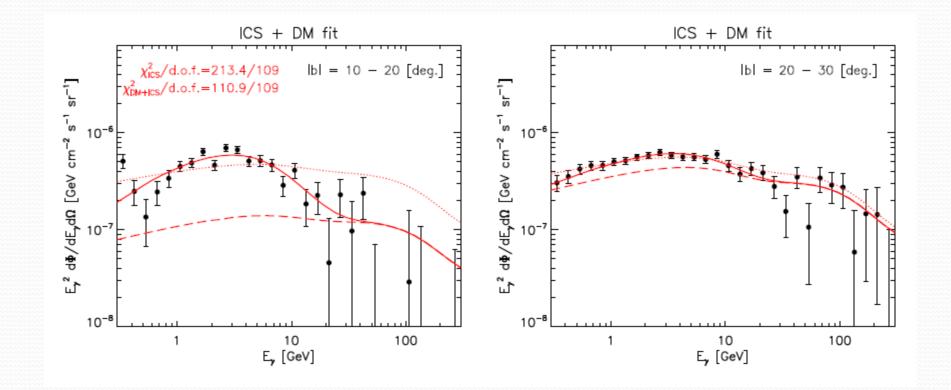
$$\frac{d\Phi}{dE_{\gamma}d\Omega} = \frac{1}{E_{\gamma}} \int_{\text{l.o.s.}} ds \; \frac{j[E_{\gamma}, r(s)]}{4\pi}$$
$$j[E_{\gamma}, r(s)] = \int_{m_e}^{E_{\text{cut}}} dE_e \; \mathcal{P}(E_{\gamma}, E_e, r) \; n_e(r, E_e)$$

$$\begin{aligned} \mathcal{P}(E_{\gamma}, E_{e}, r) &= \\ \frac{3\sigma_{T}}{4\gamma^{2}} E_{\gamma} \int_{1/4\gamma^{2}}^{1} dq \left[1 - \frac{1}{4q\gamma^{2}(1 - \tilde{E_{\gamma}})} \right] \frac{n_{\gamma}(E_{\gamma}', r)}{q} \left(2q \log q + q + 1 - 2q^{2} + \frac{1 - q}{2} \frac{\tilde{E_{\gamma}}^{2}}{1 - \tilde{E_{\gamma}}} \right) \end{aligned}$$

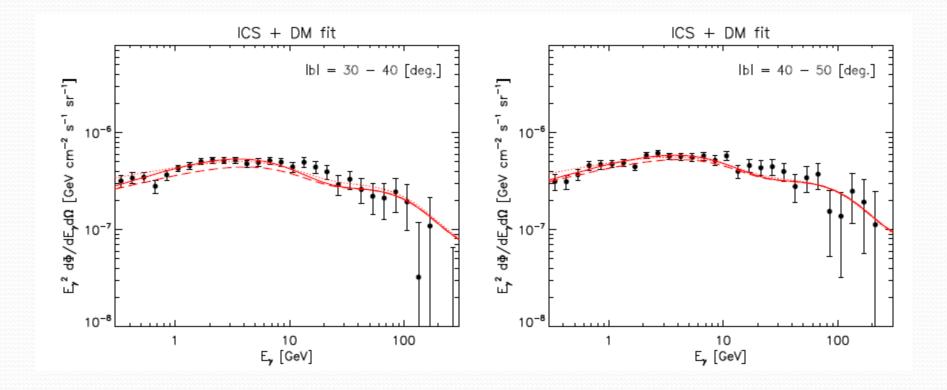
arXiv:0904.3830

$$\begin{aligned} \frac{d\Phi_{\gamma}}{d\Omega dE_{\gamma}} &= \frac{r_{\odot}}{4\pi} \begin{cases} \frac{1}{2c} \left(\frac{\rho_{\odot}}{M_{\chi}}\right)^2 \bar{J} \sum_{f} \langle \sigma v \rangle_f \frac{dN_{\gamma}^f}{dE_{\gamma}} & \text{(annihilation)} \\ \frac{\rho_{\odot}}{M_{\chi}} \bar{J} \sum_{f} \Gamma_f \frac{dN_{\gamma}^f}{dE_{\gamma}} & \text{(decay)} \end{cases} \end{aligned}$$
$$\rho_{\text{gNFW}}(r) &= \rho_s \left(\frac{r}{R_s}\right)^{-\gamma} \left(1 + \frac{r}{R_s}\right)^{\gamma-3} \quad J(\theta) = \int_{\text{l.o.s.}} \frac{ds}{r_{\odot}} \left[\frac{\rho_{\text{NFW}}(r(s,\theta))}{\rho_{\odot}}\right]^a \end{cases}$$
$$\begin{cases} \gamma = 1.2 \\ R_s = 20 \text{ kpc} \\ r_{\odot} = 8.33 \text{ kpc} \\ \rho_{\odot} = 0.4 \text{ GeV/cm}^3 \\ a = 1(2) \text{ decay(annihilation)} \\ c = 1(2) \text{ Majorana DM(Dirac DM)} \end{cases}$$

ICS +DM(b) FSR

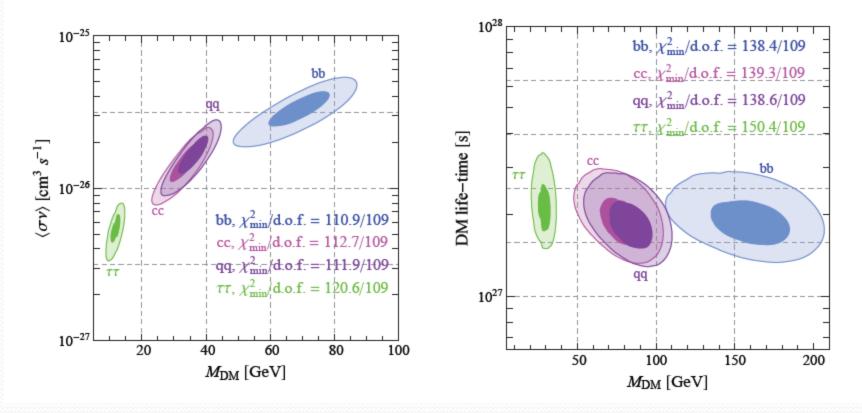


ICS +DM(b) FSR

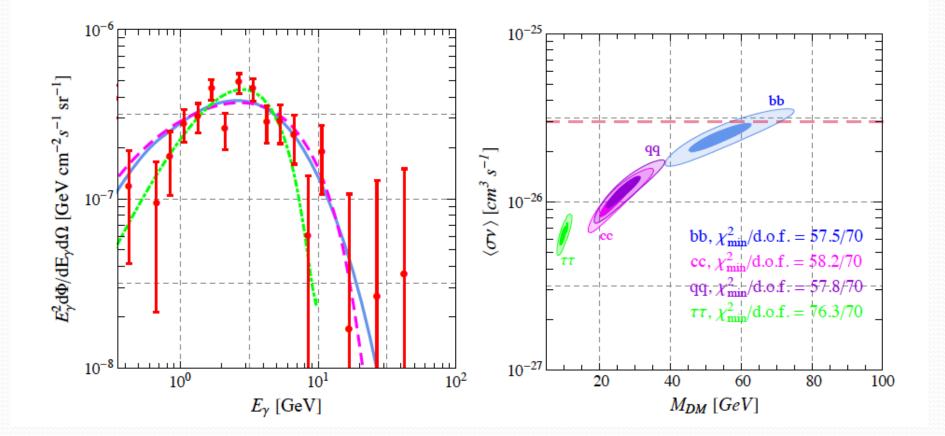


ICS +DM FSR

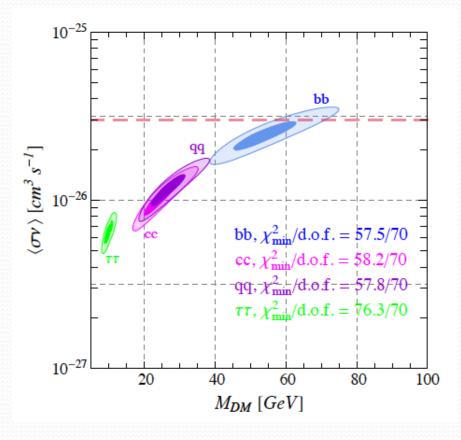
 Annihilating DM is preferred due to concentration of the gamma ray excess toward the Galactic center



DM signal after ICS removal



DM signal after ICS removal



➢ If the annihilation cross section is dominated by the s-wave component, only b channel can simultaneously explain the bubbles and yield the correct relic density

>We shall see one counterexample.

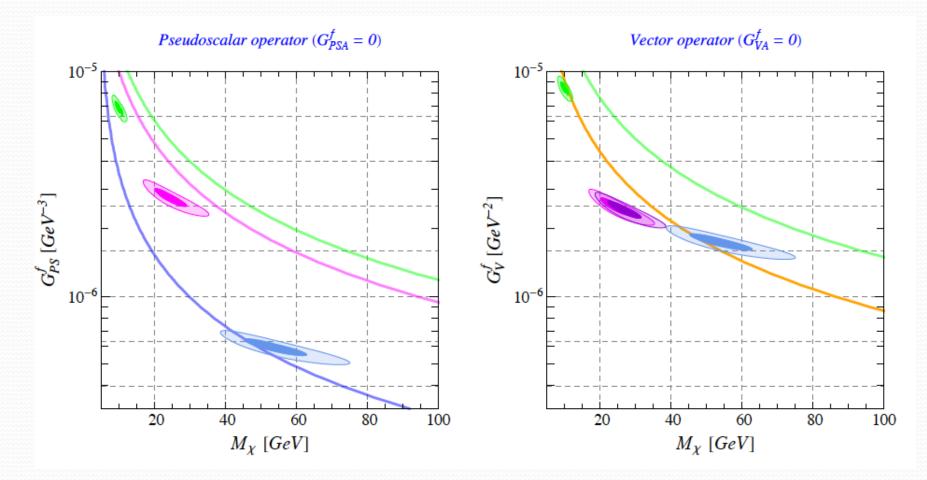
DM explanation in EFT

- We look for operators that *simultaneously* account for the bubbles and generate the correct relic density.
- Any operators suffering from velocity suppression can not explain the bubbles due to the current low DM velocity.
- Any operators with the suppression of the final state mass will disfavor the light final states, such as u- and d-quark.
- We include direct search bounds, especially XENON 100 SI bounds.
- The validity of the EFT approach is also taken into account.

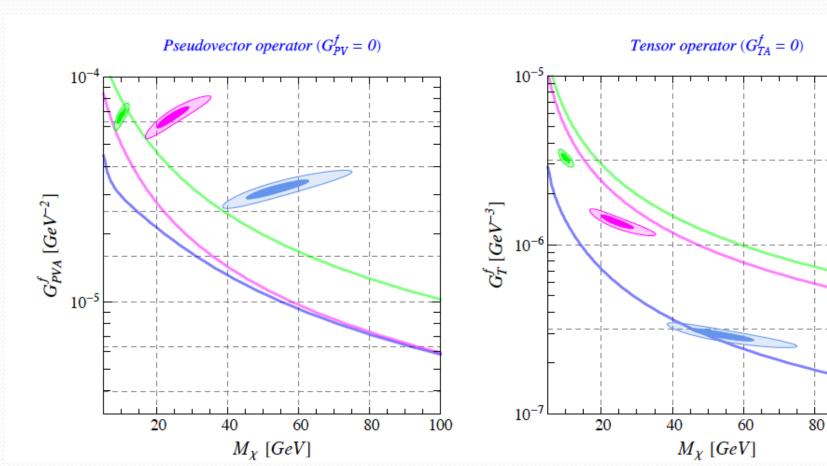
$$\frac{1}{s-\Lambda^2} = -\frac{1}{\Lambda^2} - \frac{s}{\Lambda^4} + \mathcal{O}(s^2)$$

$$\begin{aligned} \text{Scalar}: \quad \mathcal{O}_{\text{S}}^{f} &\equiv \frac{m_{f}}{\sqrt{2}} \,\bar{\chi}\chi \,\bar{f} \left[G_{\text{S}}^{f} + G_{\text{SA}}^{f} \gamma^{5} \right] f \;, \\ \text{Pseudoscalar}: \quad \mathcal{O}_{\text{PS}}^{f} &\equiv \frac{m_{f}}{\sqrt{2}} \,\bar{\chi}\gamma^{5}\chi \;\bar{f} \left[G_{\text{PS}}^{f} + G_{\text{PSA}}^{f} \gamma^{5} \right] f \;, \\ \text{Vector}: \quad \mathcal{O}_{\text{V}}^{f} &\equiv \frac{1}{\sqrt{2}} \,\bar{\chi}\gamma^{\mu}\chi \;\bar{f}\gamma_{\mu} \left[G_{\text{V}}^{f} + G_{\text{VA}}^{f} \gamma^{5} \right] f \;, \\ \text{Pseudovector}: \quad \mathcal{O}_{\text{PV}}^{f} &\equiv \frac{1}{\sqrt{2}} \,\bar{\chi}\gamma^{\mu}\gamma^{5}\chi \;\bar{f}\gamma_{\mu} \left[G_{\text{PV}}^{f} + G_{\text{PVA}}^{f} \gamma^{5} \right] f \;, \\ \text{Tensor}: \quad \mathcal{O}_{\text{T}}^{f} &\equiv \frac{m_{f}}{\sqrt{2}} \,\bar{\chi}\sigma^{\mu\nu}\chi \;\bar{f}\sigma_{\mu\nu} \left[G_{\text{T}}^{f} + G_{\text{TA}}^{f} \gamma^{5} \right] f \;, \end{aligned}$$

Fermionic Dark Matter								
Operator	Channel	$\begin{array}{ c c c c c } \hline & \mbox{Annihilation cross section} \\ \hline & m_f^2 \mbox{ suppression } & v^2 \mbox{ suppression} \\ \hline \end{array}$		DD cross section	$s/\Lambda^2~(\%)$			
S	$\tau^+\tau^-$			×				
	$c\bar{c}$			\checkmark				
	$b\overline{b}$	v	v	\checkmark				
	$q\bar{q}$			\checkmark				
PS	$\tau^{+}\tau^{-}$ (76.3)				13.7			
	$c\bar{c}$ (58.2)	,			43.7			
	$b\bar{b}$ (57.5)	V	×	×	78.5			
	$q\bar{q}$							
v	$\tau^{+}\tau^{-}$ (76.3)			√ (1L)	0.3			
	$c\bar{c}$ (58.2)			√ (1L)	0.6			
	$b\bar{b}$ (57.5)	×	×	√ (1L)	1.9			
	$q\bar{q}$ (57.8)			\checkmark	0.7			
PV	$\tau^{+}\tau^{-}$ (76.3)				2.5			
	$c\bar{c}$ (58.2)	,			14.4			
	$b\bar{b}$ (57.5)	V	×	×	34.6			
	$q\bar{q}$							
т	$\tau^{+}\tau^{-}$ (76.3)				8.3			
	$c\bar{c}$ (58.2)	/	~	~	29.1			
	$b\bar{b}$ (57.5)	V	×	×	49.1			
	$q \bar{q}$							



100



Effective operators (Scalar DM)

$$\begin{aligned} \text{Scalar}: \quad \mathcal{O}_{\text{S}}^{s} &\equiv \frac{m_{f}}{\sqrt{2}} \,\bar{\phi}\phi \,\bar{f} \left[F_{\text{S}}^{s} + F_{\text{SA}}^{s}\gamma^{5}\right] f \ , \\ \text{Vectorscalar}: \quad \mathcal{O}_{\text{VS}}^{s} &\equiv \frac{m_{f}}{\sqrt{2}} \,\partial_{\mu}\bar{\phi}\partial^{\mu}\phi \,\bar{f} \left[F_{\text{VS}}^{s} + F_{\text{VSA}}^{s}\gamma^{5}\right] f \ , \\ \text{Vector}: \quad \mathcal{O}_{\text{V}}^{s} &\equiv \frac{i}{\sqrt{2}} \,\bar{\phi}\overset{\leftrightarrow}{\partial}_{\mu}\phi \,\bar{f}\gamma^{\mu} \left[F_{\text{V}}^{s} + F_{\text{A}}^{s}\gamma^{5}\right] f \ , \\ \text{Tensor}: \quad \mathcal{O}_{\text{T}}^{s} &\equiv \frac{m_{f}}{\sqrt{2}} \,\partial^{[\mu}\bar{\phi}\partial^{\nu]}\phi \,\bar{f}\sigma_{\mu\nu} \left[F_{\text{T}}^{s} + F_{\text{TA}}^{s}\gamma^{5}\right] f \ , \end{aligned}$$

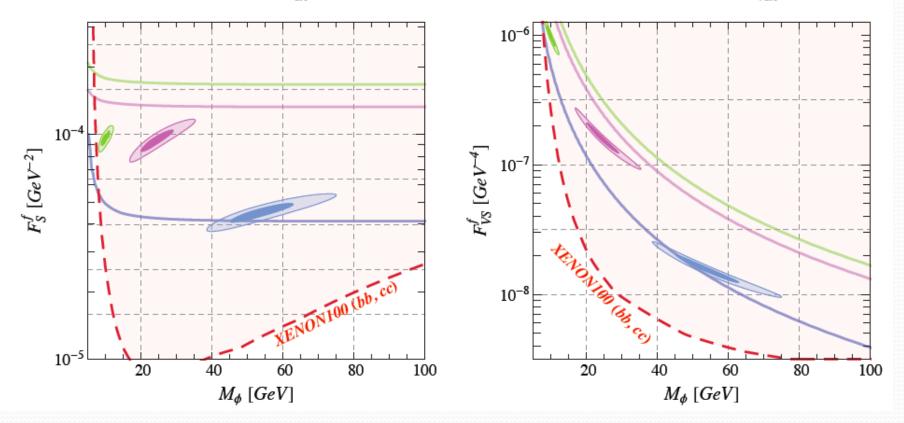
Effective operators (Scalar DM)

Complex Scalar Dark Matter								
Operator	Channel	Annihilation cross section		DD cross section	s/Λ^2 (%)			
		m_f^2 suppression	v^2 suppression					
S	$ au^+ au^-$ (76.3)			×	2.5			
	$c\bar{c}$ (58.2)	./	×	\checkmark	15.7			
	$b\bar{b}$ (57.5)	v	^	\checkmark	34.8			
	$q\bar{q}$			\checkmark				
vs	$\tau^{+}\tau^{-}$ (76.3)			×	31.8			
	$c\bar{c}$ (58.2)	,		\checkmark	76			
	$b\bar{b}$ (57.5)	v	×	\checkmark	118			
	$q\bar{q}$			\checkmark				
v	$ au^+ au^-$			√ (1L)				
	$c\bar{c}$	×	,	√ (1L)				
	$b\overline{b}$	<u>^</u>	v	√ (1L)				
	$q\bar{q}$			\checkmark				
т	$\tau^+\tau^-$							
	$c\bar{c}$ $b\bar{b}$./	./	×				
	bb	v	v	^				
	$q\bar{q}$							

Effective operators (Scalar DM)

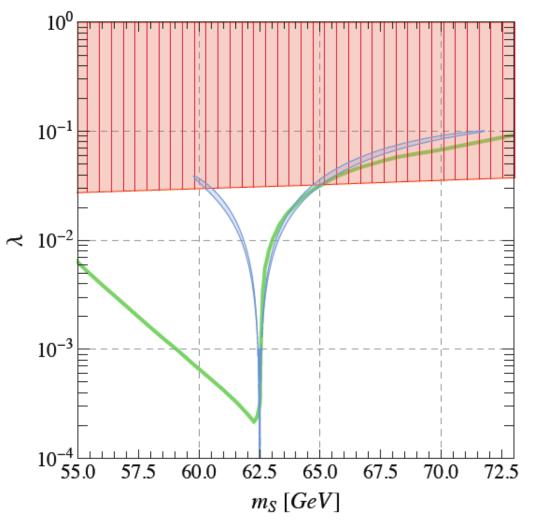
Scalar operator $(F_{SA}^f = 0)$

Vectorscalar operator $(F_{VSA}^f = 0)$



Scalar Higgs Portal

Scalar Higgs portal



$$\mathcal{L}_{S} = \frac{1}{2} (\partial_{\mu} S) (\partial^{\mu} S) - \frac{1}{2} \mu_{S}^{2} S^{2} - \frac{1}{2} \lambda S^{2} |H|^{2} ,$$

$$\sigma_{S} v = \frac{2}{\sqrt{s}} \left[\frac{\lambda^{2} v^{2}}{(s - m_{h}^{2})^{2} + \Gamma_{h,S}^{2} m_{h}^{2}} \right] \Gamma_{h}(\sqrt{s}) ,$$

1

1

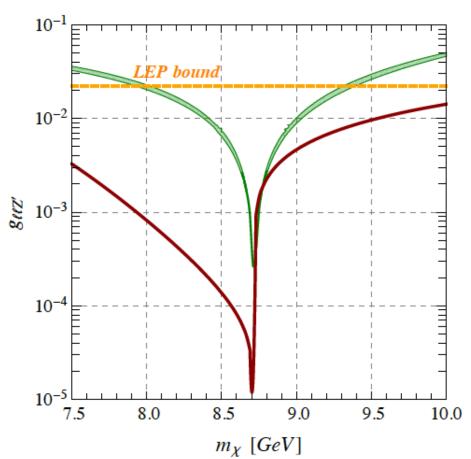
$$BR_{inv}(m_S, \lambda) \equiv \frac{\Gamma_{inv}(h \to SS)}{\Gamma_{inv}(h \to SS) + \Gamma_{vis}} ,$$

V. Silveira and A. Zee 1985

1

- J. McDonald 1995
- C. Burgess, M. Pospelov, and T. ter Veldhuis, 2001
- B. Patt and F. Wilczek, 2006

Z' exchange with Fermionic DM



Z' exchange

In order to avoid direct search bounds, we simply assume:

 the pseudovector-type coupling between DM and Z'
leptophilic Z'

In addition, couplings of the Z' and SM leptons are proportional to those of Z to SM leptons.

$$\mathcal{L} \supset g_{\chi\chi Z'} \bar{\chi} \gamma^{\mu} \gamma^{5} \chi Z'_{\mu} + g_{\ell\ell Z'} \bar{\ell} \gamma^{\mu} (g_{\ell_R} P_R + g_{\ell_L} P_L) \ell Z'_{\mu}$$

 $g_{\chi\chi Z'} = 1$ and $m'_Z = 17.5 \text{ GeV}$

Conclusions

- The residue after subtracting the diffuse background features a peak around 4 GeV in low latitudes, that can be explained by DM annihilation, and a flat spectrum in high latitudes, that can be accounted for by the additional GeV-TeV electron population.
- In the context of the EFT, the peak feature can be realized with fermionic DM annihilating into b-quark via the vector operator and into τ via the pseudovector operator.
- In addition, we provide two models , i.e., the Higgs portal with scalar DM and the Z' exchange with fermionic DM.
- These two models exhibit the resonance enhancement and fall outside the territory of EFT.