

# AMS-02 results and decaying gravitino DM

Sho IWAMOTO(岩本 祥)

Kavli IPMU, Japan

20th Nov. 2013

PASCOS 2013 Conference @ Taipei, Taiwan

#### Reference)

M. Ibe, SI, S. Matsumoto, T. Moroi, and N. Yokozaki, JHEP **1308** (2013) 029 [1304.1483].

## Higgs!!

→ Hierarchy problem

```
SUSY!?
```

```
✓ Hierarchy solved.
```

$$M_{SUSY} = ???$$

# Higgs!! • ----- $m_h = 126 \,\text{GeV}$

→ Hierarchy problem



√ Hierarchy solved.

```
✓"LSP"
= DM candidate.
```

 $M_{SUSY} = ???$ 

 $M_{\rm SUSY} \sim (1-1000) \, {\rm TeV}$ 

 $m_{\rm LSP} \sim 1 \, {\rm TeV}??$ 



→ Hierarchy problem

✓ Hierarchy solved.

... 
$$M_{SUSY} = ???$$

Higgs!! 
$$\bigcirc$$
 ------  $m_h = 126 \,\text{GeV}$   
 $\longrightarrow$  Hierarchy problem

$$M_{SUSY} \sim (1-1000) \text{TeV}$$

 $m_{\rm LSP} \sim 1 \, {\rm TeV}??$ 

→ Hierarchy problem



✓ Hierarchy solved.

= DM candidate.

### **Decaying DM scenario**

(Gravitino with bilinear RPV)

Underlying model

(provides "suitably-tiny" bilinear RPV)

-----  $m_h = 126 \, \text{GeV}$ 

 $M_{SUSY} \sim (1-1000) \text{TeV}$  $m_{\rm LSP} \sim 1 \, {\rm TeV}??$ 



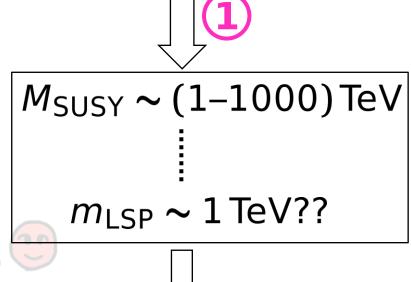
-----  $m_h = 126 \, \text{GeV}$ 

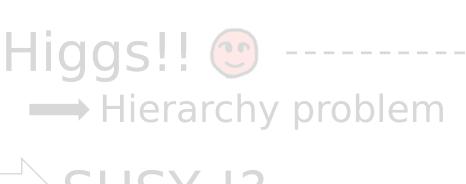
→ Hierarchy problem



✓ Hierarchy solved.

√"I SP"


= DM candidate.


### **Decaying DM scenario**

(Gravitino with bilinear RPV)

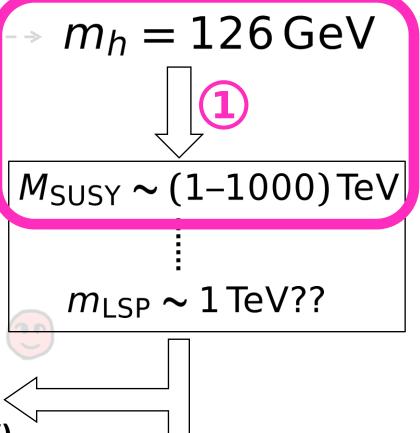
Underlying model

(provides "suitably-tiny" bilinear RPV)








✓ Hierarchy solved.

= DM candidate.

### **Decaying DM scenario**

(Gravitino with bilinear RPV)

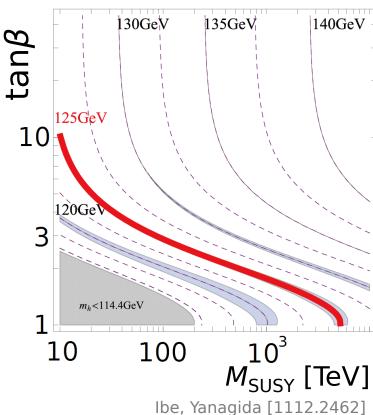
Underlying model
(provides "suitably-tiny" bilinear RPV)



Standard Model

$$V(H) = \lambda \left| H \right|^4 - \mu^2 \left| H \right|^2 \longrightarrow \begin{cases} \langle H \rangle = \mu / \sqrt{2\lambda} \\ m_h = \sqrt{2}\mu \end{cases}$$
 two adjustable parameters 
$$m_h \text{ is a free parameter.}$$

- MSSM
  - ho  $\lambda$  is fixed by SUSY.  $\left(\lambda = \frac{m_Z^2 \cos 2\beta}{4\langle H \rangle^2} + \delta \lambda^{\mathrm{loop}}\right)$


where  $\alpha$  is the stop mixing parameter.

> Large loop-correction is required.

Mass and/or mixing of scalar-top must be large.

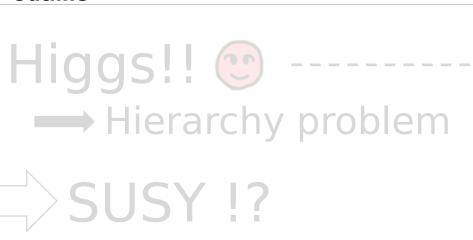
If the mixing is small...

$$\implies M_{\text{SUSY}} = O(1-1000) \text{ TeV}$$



$$\longrightarrow \begin{cases} \langle H \rangle = \mu/\sqrt{2\lambda} \\ m_h = \sqrt{2}\mu \end{cases}$$

$$m_h \text{ is a free parameter.}$$


$$\frac{n_t^4}{\frac{\lambda^2}{2}} \left[ \ln \frac{m_{\widetilde{t}}^2}{m_t^2} - \frac{(\alpha^2 - 6)^2}{12} + 3 \right]$$

one-loop level

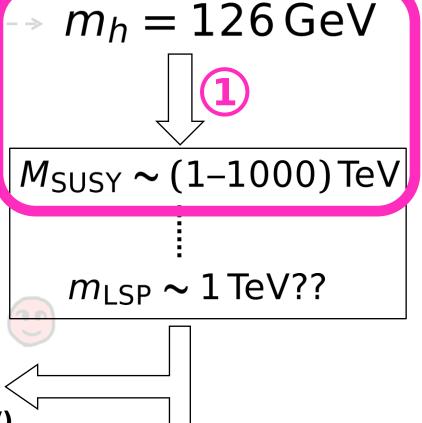
where  $\alpha$  is the stop mixing parameter.

<del>Large 100p-correction is</del> required.

Mass and/or mixing of scalar-top must be large.



✓ Hierarchy solved.


√"I SP"

= DM candidate.

### **Decaying DM scenario**

(Gravitino with bilinear RPV)

Underlying model
(provides "suitably-tiny" bilinear RPV)





---->  $m_h = 126 \, \text{GeV}$ 

→ Hierarchy problem



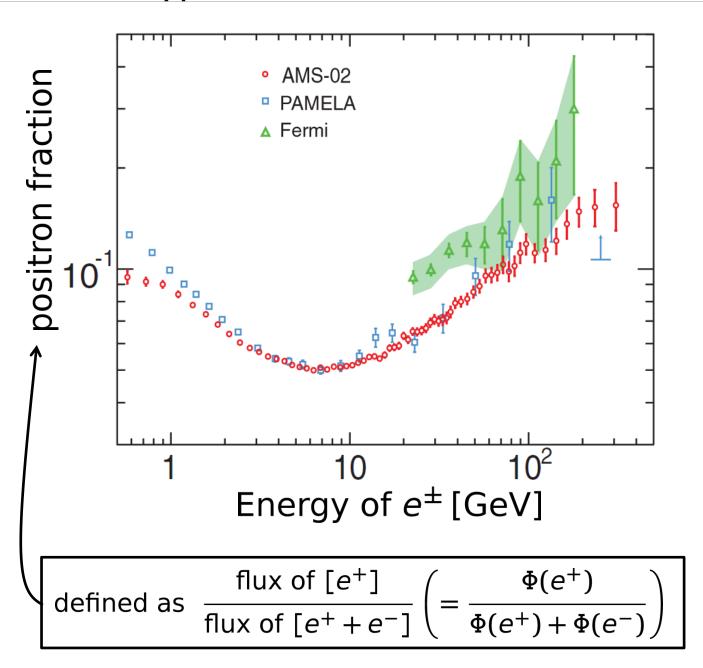
✓ Hierarchy solved.

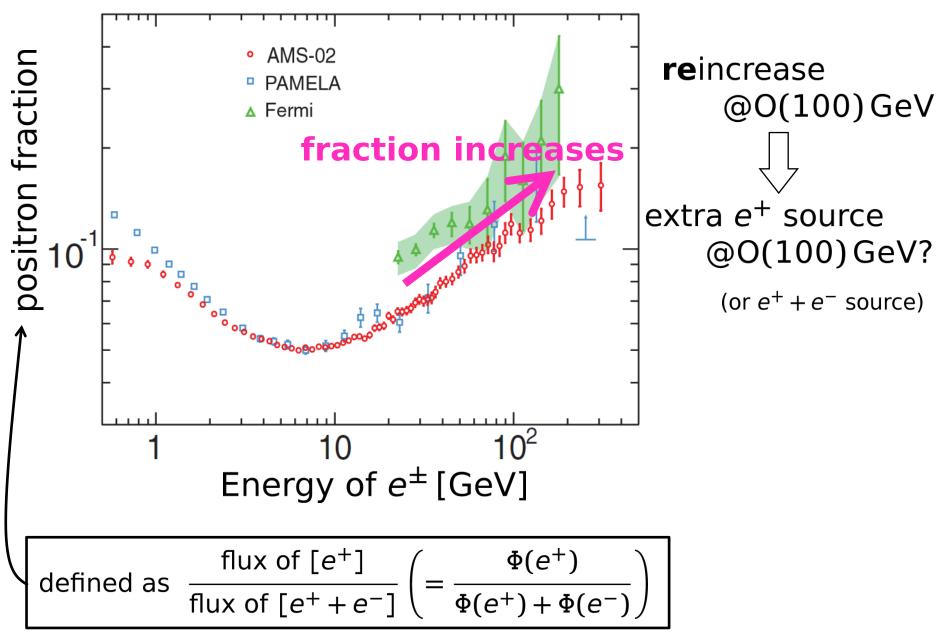
 $M_{SUSY} \sim (1-1000) \text{TeV}$ 

 $m_{\rm LSP} \sim 1 \, {\rm TeV}??$ 



#### **Decaying DM scenario**

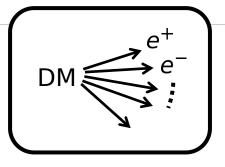

(Gravitino with bilinear RPV)

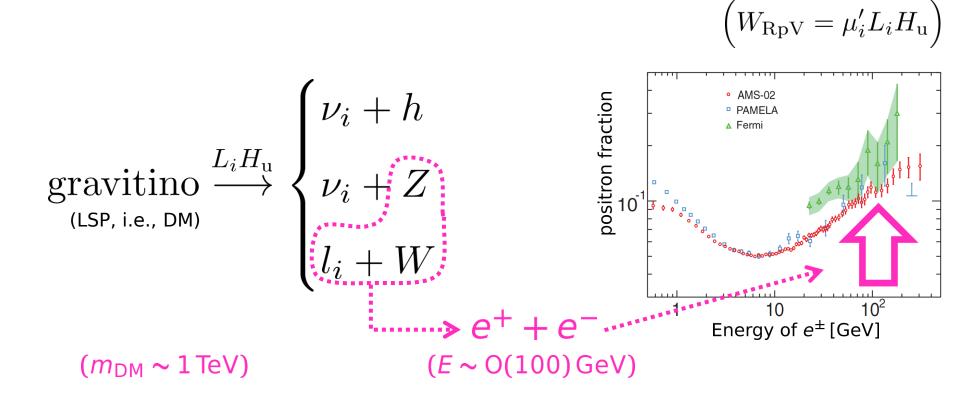

nderlying model

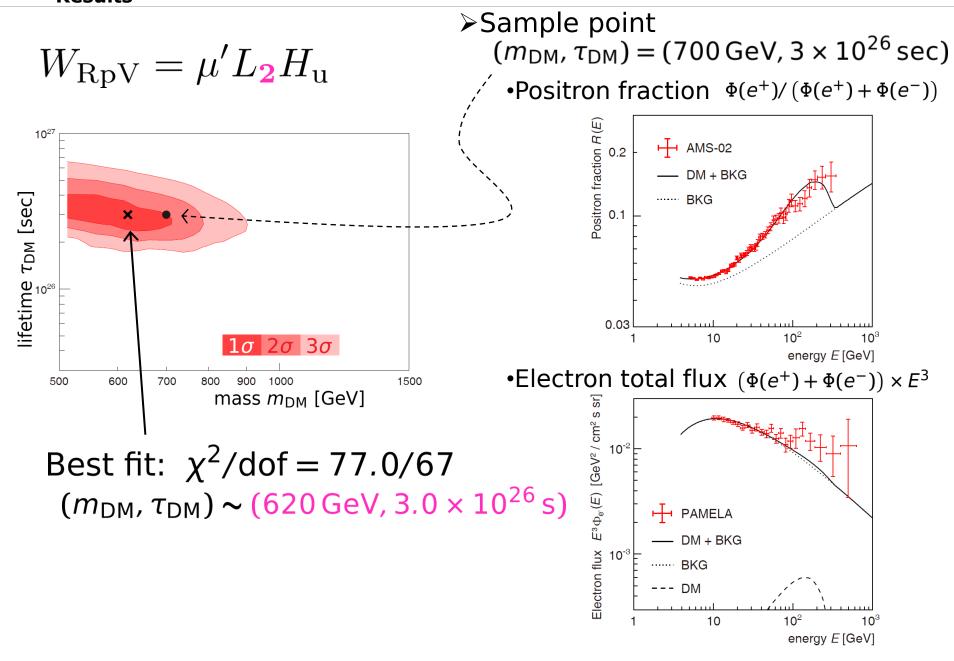
(provides "suitably-tiny" bilinear RP

PAMELA & AMS-02

 $e^+$  excess @ O(100) GeV





### A decaying DM scenario

"SUSY with gravitino LSP

with bilinear R-parity violation"







**15**/2!



---->  $m_h = 126 \, \text{GeV}$ 

→ Hierarchy problem



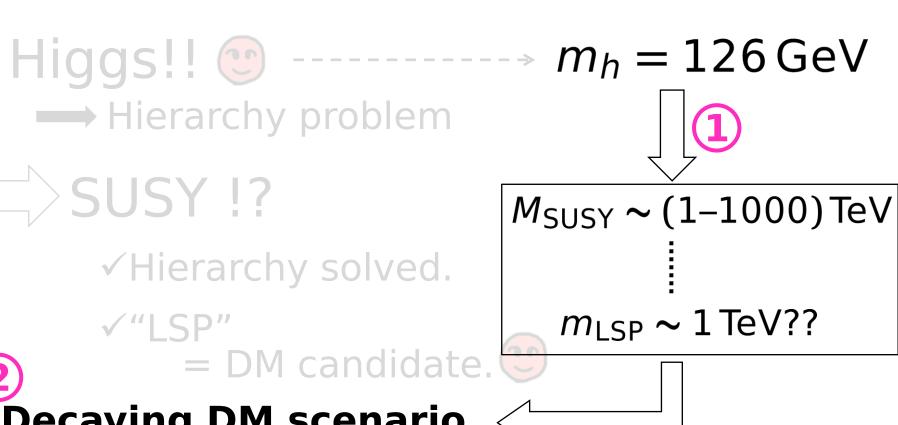
✓ Hierarchy solved.

 $M_{SUSY} \sim (1-1000) \text{TeV}$ 

 $m_{\rm LSP} \sim 1 \, {\rm TeV}??$ 



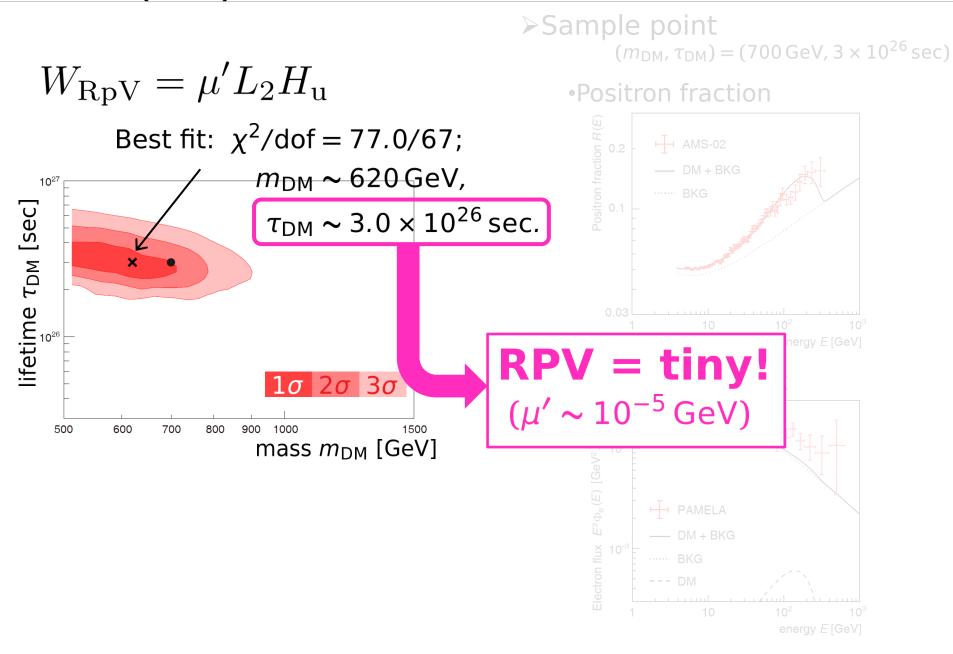
### **Decaying DM scenario**


(Gravitino with bilinear RPV)

nderlying model

(provides "suitably-tiny" bilinear RP

PAMELA & AMS-02


 $e^+$  excess @ O(100) GeV



### **Decaying DM scenario**

(Gravitino with bilinear RPV)

**Underlying model** (provides "suitably-tiny" bilinear RPV)



MSSM +  $\overline{N}$  + two singlets ( $\phi$ , X) w. discrete R-sym.  $\mathbb{Z}_{5R}$ 

|                   |            |            |    |          |         | i singlets |   |  |
|-------------------|------------|------------|----|----------|---------|------------|---|--|
|                   | $H_{ m u}$ | $H_{ m d}$ | 10 | <b>5</b> | $ar{N}$ | $\phi$     | X |  |
| $\mathbb{Z}_{5R}$ | 1          | 1          | 3  | 3        | 3       | 1          | 0 |  |

$$W = y_u H_u \mathbf{10} \mathbf{10} + y_d H_d \mathbf{10} \mathbf{\overline{5}} + y_\nu H_u \mathbf{\overline{5}} \bar{N} + \mu H_u H_d$$

$$+ y_m \phi \bar{N} \bar{N} - \frac{c_4}{M_{\rm pl}^2} \phi^4 \bar{N} + \frac{c_7}{M_{\rm pl}^4} \phi^7$$

$$+ y_X X \left( \phi^2 + c_H \frac{\mu}{M_{\rm pl}} H_u H_d - c_W \frac{\langle \mathbf{W_0} \rangle}{M_{\rm pl}} \right)$$

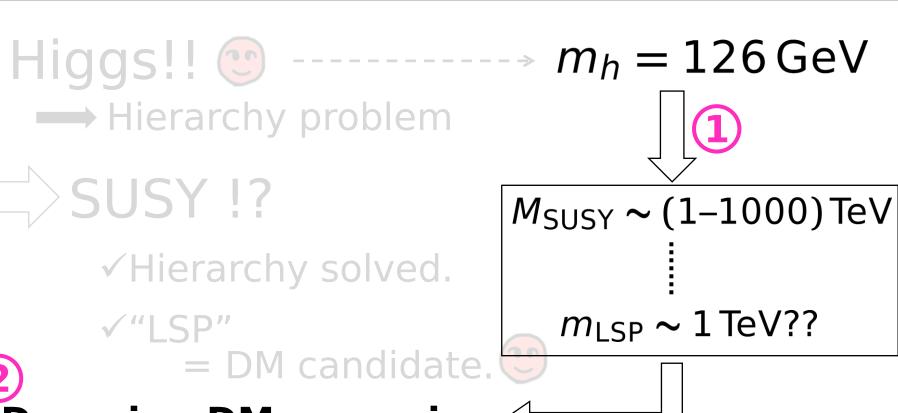
MSSM +  $\overline{N}$  + two singlets ( $\phi$ , X) w. discrete R-sym.  $\mathbb{Z}_{5R}$ 

|                   |            |            |    |          | singlets |        |   |  |  |
|-------------------|------------|------------|----|----------|----------|--------|---|--|--|
|                   | $H_{ m u}$ | $H_{ m d}$ | 10 | <u>5</u> | $ar{N}$  | $\phi$ | X |  |  |
| $\mathbb{Z}_{5R}$ | 1          | 1          | 3  | 3        | 3        | 1      | 0 |  |  |

MSSM + N + two singlets ( $\phi$ , X) w. discrete R-sym.  $\mathbb{Z}_{5R}$ 

|                   |            |            |    | <b>r</b> singlets |         |        |   |  |
|-------------------|------------|------------|----|-------------------|---------|--------|---|--|
|                   | $H_{ m u}$ | $H_{ m d}$ | 10 | <u>5</u>          | $ar{N}$ | $\phi$ | X |  |
| $\mathbb{Z}_{5R}$ | 1          | 1          | 3  | 3                 | 3       | 1      | 0 |  |

with 
$$m_{3/2} \sim 1 \, \text{TeV}$$
 and  $c, y \sim O(1)$ ,  $\begin{cases} \langle \phi \rangle = O(10^{11}) \, \text{GeV}, \\ \langle \bar{N} \rangle = O(10^{-5}) \, \text{GeV}. \end{cases}$ 


MSSM +  $\bar{N}$  + two sing Bilinear RpV ~ O(10<sup>-5</sup>)GeV (as desired) w. discrete R-sym.

with  $m_{3/2} \sim 1 \, \text{TeV}$  and  $c, y \sim O(1)$ ,  $\begin{cases} \langle \phi \rangle = O(10^{11}) \, \text{GeV}, \\ \langle \bar{N} \rangle = O(10^{-5}) \, \text{GeV}. \end{cases}$ 

MSSM +  $\bar{N}$  + two sing Bilinear RpV ~ O(10<sup>-5</sup>)GeV (as desired) w. discrete R-sym.

| \ | 1            |    | $H_{ m u}$ | $H_{ m d}$ | 10 | $\overline{f 5}$ | $ar{N}$ | $\phi$ | X |
|---|--------------|----|------------|------------|----|------------------|---------|--------|---|
|   | $\mathbb{Z}$ | 5R | 1          | 1          | 3  | 3                | 3       | 1      | 0 |

with 
$$m_{3/2} \sim 1 \, \text{TeV}$$
 and  $c, y \sim O(1)$ ,  $\begin{cases} \langle \phi \rangle = \mathrm{O}(10^{11}) \, \mathrm{GeV}, \\ \langle \bar{N} \rangle = \mathrm{O}(10^{-5}) \, \mathrm{GeV}. \end{cases}$ 



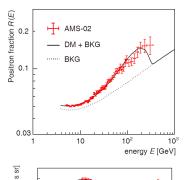
**Decaying DM scenario** 

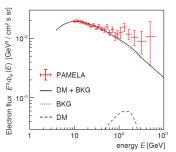
(Gravitino with bilinear RPV)

Underlying model
(provides "suitably-tiny" bilinear RPV)

#### 1. Decaying Gravitino dark matter

through bilinear R-parity violation


- $\triangleright$  is motivated by the Higgs mass ( $m_h = 126\,\text{GeV}$ ).
- ightharpoonup explains the AMS-02 results with  $W_{\rm RpV} = \mu' L_2 H_{\rm u}$ ,  $(m_{\rm DM}, \tau_{\rm DM}) \sim (700\,{\rm GeV}, 10^{26}\,{\rm sec})$ .  $(\mu' \sim 10^{-5}{\rm GeV})$



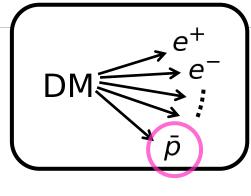

|                   | $H_{ m u}$ | $H_{ m d}$ | 10 | $\overline{5}$ | $ar{N}$ | $\phi$ | X |
|-------------------|------------|------------|----|----------------|---------|--------|---|
| $\mathbb{Z}_{5R}$ | 1          | 1          | 3  | 3              | 3       | 1      | 0 |

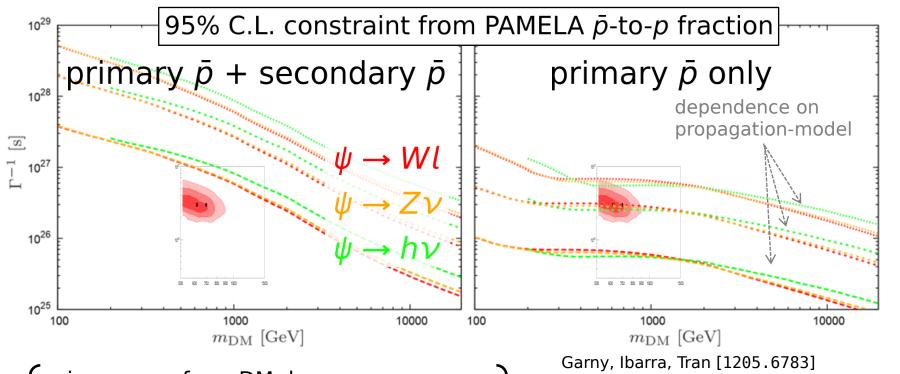
$$m_{3/2} \sim 1 \,\text{TeV} \implies \begin{cases} \mu' \sim 10^{-5} \,\text{GeV}, \\ M_N \sim 10^{11} \,\text{GeV}. \end{cases}$$








# Backup


#### **Antiproton constraint**

#### $(m_{\rm DM}, \tau_{\rm DM}) \sim (700 \, {\rm GeV}, 10^{26} \, {\rm sec})$

is on the edge of anti-proton constraint.

$$\left( DM \to \{W, Z, h\} \to q\bar{q} \to p\bar{p} \right)$$





primary = from DM decay secondary = spallation on interstellar gas See also: Delahaye and Grefe [1305.7183]