Individual and Combined Measurements of the Spin and Parity Properties of the Higgs boson using the ATLAS Detector

Roberto Di Nardo INFN - Laboratori Nazionali di Frascati

on behalf of the ATLAS collaboration

19th International Symposium on Particles, Strings and Cosmology (PASCOS 2013) Taipei, 20-26 November 2013

Introduction

- ATLAS and CMS experiments announced the discovery of a new boson at LHC on 4 July 2012
- The main experimental challenge after the discovery:
 - Is this particle the SM Higgs boson, responsible for the EW symmetry breaking mechanism?
 - Couplings to bosons and fermions as expected in SM
 - Quantum numbers as predicted in the SM: J^P=0⁺
- Experimental answer by measuring the properties of this boson:
 - Mass
 - Rates
 - Couplings
 - <u>Spin-parity</u>

PASCOS 2013 - Taipei, 20-26 November 2013

Spin and parity determination

- Production and decay kinematics of the new boson sensitive to spin and parity
 - Bosonic decay channels (ZZ,WW,γγ) used for the spin and parity determination
- Specific benchmark models tested against the SM $J^{P} = 0^{+}$
- **J**^P=**0**⁻ : pseudoscalar, no CP mixing
 - ggF production mechanism
- J^P=1⁺,1⁻: exotic vector and pseudovector.
 - $q\overline{q}$ production mechanism
 - Landau-Yang theorem: On-shell X(J=1) $\Rightarrow \gamma \gamma$
 - Worth testing with other decay modes
- J^P=2⁺ : graviton–inspired tensor with minimal couplings to SM particles
 - Both gg fusion and $q\overline{q}$ production
 - Observables sensitive to qqbar production fraction $f_{q\bar{q}} \rightarrow$ different polarizations along collision axis selected
 - Exclusion can be studied as function of the $f_{q\bar{q}}$

	ZZ^*	WW^*	$\gamma\gamma$
0-	~	-	-
1+,1-	~	1	-
2+	1	1	1

Spin-parity measurement in $H \rightarrow ZZ^* \rightarrow 41$

- Golden Channel : high S/B (~1), full final state reconstruction
 - Access to the spin and parity of the underlying resonance
 - Used to test all alternative hypothesis considered against the SM ($J^P=0^+$)
- Discriminating variables:
 - m_{Z1}, m_{Z2} masses of the on-shell and off-shell Z bosons
 - θ_1 and θ_2 angles of the negative leptons defined in the corresponding Zs rest frame.
 - θ^* angle of the on-shell Z boson in the Higgs rest frame
 - ϕ angle between the two Z decay planes
 - φ_1 angle angle between the Z_1 decay plane and a plane defined by the momentum of the Z_1 in the four-lepton rest frame and the direction of the beam axis

Roberto Di Nardo – INFN LNF

 θ_1

 Z_1

 θ^*

р

Z'

 Φ_1

Z

 e^+

 Z_2

 $heta_2$

 e^{-}

Φ

Spin-parity measurement in $H \rightarrow ZZ^* \rightarrow 41$

- Events within 115<m₄₁<130 GeV considered
 - 43 data candidates ($\sqrt{s}=7$ TeV and $\sqrt{s}=8$ TeV full datasets used)
- Same selection as in the rate analysis
- Background: from full simulation (irreducible ZZ*) and from control regions (tt,Z+jet)

Spin-parity measurement in $H \rightarrow ZZ^* \rightarrow 41$

- Multivariate discriminant based on **Boosted Decision Tree** trained using
 - J^P- discriminating variables to separate pairs of different J^P hypotheses
 - Similar results obtained using a ME discriminant based approach

Spin Measurement in $H \rightarrow \gamma \gamma$

- Sensitive to the spin of the Higgs, S/B~3%
 - 2 photons with $E_T > 35$, 25 GeV
- Signal region:
 - $122 < m_{\gamma\gamma} < 130 \text{ GeV}$
- SM compared to J^P=2⁺
- Discriminating variable: $|\cos \theta^*|$
 - Polar angle of the photon wrt z axis of Collins-Soper frame
 - Correlations between $m_{\gamma\gamma}$ and $|\cos \theta^*|$ reduced by $p_{T\gamma 1}/m_{\gamma\gamma}$ >0.35 and $p_{T\gamma 2}/m_{\gamma\gamma}$ >0.25 cuts
- Background shape from sidebands

p

-D

Spin Measurement in $H \rightarrow \gamma \gamma$

Spin Measurement in $H \rightarrow WW^* \rightarrow lvlv$

- Analysis restricted to e/μ final state
 - Smaller bkg wrt same flavour final state
- Preselection
 - $p_T(l) > 25,15 \text{ GeV}, |\eta(l)| < 2.5, 0\text{-jets}$
- Main backgrounds:
 - Z+jets,tt, t, WW, W+jets
 - Reduced with: $E_{T,miss} > 20 \text{ GeV}, m_{II} < 80 \text{ GeV},$ $p_{TII} > 20 \text{ GeV}, \Delta \phi_{II} < 2.8$
- Spin correlations between decay products shapes angular distributions
- Sensitive variables to various J^P:
 - M_{ll} , $\Delta \phi_{ll}$, $p_{T,ll}$, $E^{miss}_{T,rel}$

Spin Measurement in $H \rightarrow WW^* \rightarrow lvlv$

- Discrimination between SM 0⁺ and other J^P hypotheses (J^P=1⁺,1⁻ 2⁺) performed with a 2D-fit of two BDTs
 - BDT₀ (SM 0⁺ vs bkg) and BDT_{JP} (alternative J^P vs bkg)
 - $M_{\parallel}, \Delta \phi_{\parallel}, p_{T,\parallel}, m_{T,}$ used for the BDT training

The Ro

Roberto Di Nardo – INFN LNF

Results

Statistical Treatment

- Two hypotheses testing: SM ($J^{P}=0^{+}$) vs = 0^{-} , 1^{-} , 1^{+} , 2^{+}
- Observables sensitive to spin and parity used to create a binned likelihood J^P dependent
 Expected signal
 Nuisance Parameters

$$\mathcal{L}(J^{P}, \mu, \theta) = \prod_{j}^{N_{\text{chann.}}} \prod_{i}^{N_{\text{bins}}} P(N_{i,j} \mid \mu_{j} \cdot S_{i,j}^{(J^{P})}(\theta) + B_{i,j}(\theta)) \times \mathcal{A}_{j}(\theta)$$

$$\underset{\text{events}}{\overset{\text{signal rate for events}}{\overset{\text{events}}{\overset{\text{constraints}}{\overset{\text{signal rate for events}}{\overset{\text{constraints}}{\overset{\text{signal rate for events}}}}}$$

• Test statistic to distinguish two J^P hypothesis based on ratio of profiled likelihoods

$$q = \log \frac{\mathcal{L}(J^P = 0^+, \hat{\hat{\mu}}_{0^+}, \hat{\hat{\theta}}_{0^+})}{\mathcal{L}(J^P_{\text{alt}}, \hat{\hat{\mu}}_{J^P_{\text{alt}}}, \hat{\hat{\theta}}_{J^P_{\text{alt}}})}$$

- Pseudo experiments used to extract the test statistic distribution
- Exclusion of alternative hypothesis wrt
 - SM evaluated in terms of CLs

Standard Model J^P=0⁺ vs J^P=0⁻

• $H \rightarrow ZZ^* \rightarrow 4l$ channel only

- Data in agreement with J^P=0⁺ hypothesis
- J^P=0⁻ hypothesis of the observed resonance excluded @ 97.8% CL
 - expected exclusion: 99.6%

Channel	0 ⁻ assumed Exp. $p_0(J^P = 0^+)$	0^{+} assumed Exp. $p_0(J^P = 0^{-})$	Obs. $p_0(J^P = 0^+)$	Obs. $p_0(J^P = 0^-)$	$\operatorname{CL}_{\mathrm{s}}(J^P = 0^-)$
$H \to ZZ^*$	$1.5 \cdot 10^{-3}$	$3.7 \cdot 10^{-3}$	0.31	0.015	0.022

ATL

Standard Model J^P=0⁺ vs J^P=1⁺, 1⁻

• $H \rightarrow ZZ^* \rightarrow 41$ and $H \rightarrow WW^* \rightarrow lvlv$ combination

Spin 1 hypothesis (J^P=1⁺ and 1⁻) excluded @ more than 99.7% CL

Standard Model J^P=0⁺ vs J^P=2⁺

- Exclusion of the J^P=2⁺ studied as function of qq/gg production mechanism fraction
- In minimal model 2⁺_m production dominated by ggF @ LO in QCD
 f_{qq}=4%
- All studied channels contribute
 - Complementary sensitivities as function
 of f -

75

50

	ZZ^*	WW^*	$\gamma \gamma$
0-	1	-	-
1+,1-	1	1	-
2+	1	1	1

Roberto Di Nardo – INFN LNF

25

Standard Model J^P=0⁺ vs J^P=2⁺

- ATLAS combined exclusions ($\gamma\gamma$, WW* \rightarrow lvlv, ZZ* \rightarrow 4l) for J^P=2⁺:
 - $J^P=2^+(100\% \text{ gg})$ hypothesis excluded at >99.9% CL
 - $J^P=2^+(100\% q\overline{q})$ hypothesis excluded at >99.9% CL

Conclusions

- Great performances of ATLAS and CM experiments @ LHC
 - Discovery of new boson
- Full RUN1 datasets used to study the properties of this new particle
 - Is this the Higgs Boson of SM?
- Quantum numbers studied with 3 diboson channels

- $H \rightarrow \gamma \gamma$, $H \rightarrow WW^* \rightarrow lvlv$, $H \rightarrow ZZ^* \rightarrow 4l$

- Data favor the SM J^P=0⁺ against the alternative hypotheses tested
 - J^P=0⁻ excluded at 98.7% CL
 - $J^{P}=1^{+}, 1^{-}$ excluded at > 99.7% CL
 - $J^P=2^+$ excluded at > 99.9% CL for all
 - $gg/q\overline{q}$ production fraction tested

Roberto Di Nardo – INFN LNF

Backup

References

- "Measurements of the properties of the Higgs-like boson in the four lepton decay channel with the ATLAS detector using 25 fb⁻¹ of proton-proton collision data"
 - ATLAS-CONF-2013-013
- "Study of the spin properties of the Higgs-like boson in the H \rightarrow WW(*) \rightarrow e $\nu \ \mu \ \nu$ channel with 21 fb⁻¹ of $\sqrt{s} = 8$ TeV data collected with the ATLAS detector"
 - ATLAS-CONF-2013-031
- "Study of the spin of the Higgs-like boson in the two photon decay channel using 20.7 fb⁻¹ of pp collisions collected at sqrt(s) = 8 TeV with the ATLAS detector"
 - ATLAS-CONF-2013-029
- "Study of the spin of the new boson with up to 25 fb⁻¹ of ATLAS data"
 - ATLAS-CONF-2013-040
- * "Evidence for the spin-0 nature of the Higgs boson using ATLAS data"
 - Phys. Lett. B 726 (2013), pp. 120-144