

Searches for New Phenomena in Events with Multiple Leptons with the ATLAS Detector

TÜLİN VAROL

University of Massachusetts, Amherst On Behalf of the ATLAS Collaboration

PASCOS

19th International Symposium on Particles, Strings and Cosmology

OUTLINE

• Introduction

• Excited e/µ Search

• Trilepton Search

Type-III SeeSaw Heavy Fermions Search

Conclusion

INTRODUCTION

- Multi-lepton final states are predicted by many extensions to the Standard Model
- Two leptons: Excited e/ μ searches with two same flavour leptons with additional photon contribution in the final state (ℓ^{\pm})(ℓ^{\mp})(γ)
- Three leptons: A generic search with three charged leptons in the final state (ℓ)(ℓ)(ℓ or τ)
- Four leptons: A search for heavy neutrinos with four leptons in the final state $(\mathbf{Z}^0 \to \ell^+\ell^-)(\ell^\pm)(\ell^\pm)$

Excited e/µ: Introduction

Search for lepton compositeness

- Motivation: Mass hierarchy and the generational structure of quarks and leptons
- SIM leptons: Ground states
- Excited state ℓ *: Consequence of lepton compositeness

Effective Theory

- ℓ^* produced via contact interactions
- Effective model holds for $m_{\ell^*} < \Lambda$

Unknown parameters

- ullet Compositeness scale Λ
- ullet Mass of excited leptons m_{ℓ^*}

Studied Channel: $pp \to \ell\ell^* \to \ell\ell\gamma$

Excited e/µ: Background Determination

Event Selection

- Two lepton candidates and a photon candidate
- $m_{\ell\ell}$ > 110 GeV, suppressing Z+ γ

Signal Regions

- $m_{\ell\ell\gamma} > m_{\ell^*} + 150 \text{ GeV}$, if $m_{\ell^*} < 900 \text{ GeV}$
- $m_{\ell\ell\gamma}$ > 1050 GeV, if $m_{\ell^*} \ge 900$ GeV

- **Z**+γ: dominant irreducible
- **Z+jets:** reducible
- W+ γ +jets: for electron channel only
- Diboson, ttbar: small contributions

Excited e/µ: Results

- No significant excess is observed in the signal region
- 95% upper limits are set on $\sigma(pp \to \ell\ell^*) \times \mathfrak{B}(\ell^* \to \ell\gamma)$
- For $m_{\ell^*}=\Lambda$, $m_{\ell^*}<2.2$ TeV excluded

Three Charged Leptons: Introduction

- A model-independent search for new phenomena with ≥ 3 charged leptons
- Rare SM events
 - Dominated by WZ/ZZ production
 - Any excess would be interesting
- Complementary search for previous analysis
 - Avoiding optimization for specific models
 - Creating signal regions for various possible signatures
 - Presenting results as upper limits on event yields in a fiducial volume

Three Charged Leptons: Signal Regions

Define four mutually exclusive signal channels

On-Z ≥ 3 e/ μ

On-Z $2 e/\mu + \ge 1 \tau_{had}$

Off-Z ≥ 3 e/ μ

Off-Z $2e/\mu + \ge 1 \tau_{had}$

On-Z: $|m_{\ell\ell} - m_{\rm Z}| < 20 \,\,{\rm GeV}$

Off-Z: $|m_{\ell\ell} - m_{\rm Z}| > 20 \; {\rm GeV}$

Minimum p_T , isolation, hit quality and fiducial volume requirements are applied to leptons

Variable					
$H_{ m T}^{ m leptons}$	Sum of 3 lepton $p_{\rm T}$				
$H_{ m T}^{ m jets}$	Sum of jet $p_{\rm T}$				
$E_{ m T}^{ m miss}$	Missing transverse energy				
$m_{ m eff}$	$H_{ m T}^{ m leptons} + H_{ m T}^{ m jets} + E_{ m T}^{ m miss}$				

Variable		Signal Reg	Additional Requirement		
$H_{\mathrm{T}}^{\mathrm{leptons}}$	Inclusive	≥200 GeV	≥ 500 GeV	≥ 800 GeV	
Min. p_{T}^{ℓ}	Inclusive	≥ 50 GeV	≥ 100 GeV	≥ 150 GeV	
$E_{ m T}^{ m miss}$	Inclusive	≥100 GeV	≥ 200 GeV	≥ 300 GeV	$H_{\rm T}^{\rm jets} < 150~{ m GeV}$
$E_{ m T}^{ m miss}$	Inclusive	≥100 GeV	≥ 200 GeV	≥ 300 GeV	$H_{\rm T}^{\rm jets} \ge 150 {\rm GeV}$
$m_{ m eff}$	Inclusive	≥600 GeV	≥1000 GeV	≥1500 GeV	
$m_{ m eff}$	Inclusive	≥600 GeV	≥1200 GeV		$E_{\rm T}^{\rm miss} \ge 100 \text{ GeV}$
$m_{ m eff}$	Inclusive	≥600 GeV	≥1200 GeV		$m_{\rm T}^{\tilde{W}} \ge 100 \text{ GeV}, \text{ on-}Z$
<i>b</i> -tags	Inclusive	≥ 1	≥ 2		-

Three Charged Leptons: <u>Backgrounds</u>

Irreducible backgrounds:

- Prompt leptons produced in the hard interaction:
 - WZ, ZZ, ttbar+W/Z processes
- $Z+\gamma (\gamma \rightarrow e)$

Reducible backgrounds:

- Events with up to 2 prompt leptons with at least 1 non-prompt lepton
 - Non-isolated, fake lepton candidates
 - Z+jets, W+jets, tt, single top, multijets
 - Estimated by using data-driven fake factor method

60000000

- Distributions are shown in terms of $H_T^{leptons}$, H_T^{jets} , m_{eff} and E_T^{miss}
- No significant deviation from the expected background is observed

Three Charged Leptons: Results

- The 95% C.L upper limits set on the number of events from non-SM sources (N_{95})
- CL_s method is used
- The N_{95} limits are converted into limits on the "visible cross section" ΛT

 $\sigma_{vis}^{95} = \frac{N_{95}}{\int Ldt}$

 No significant deviation is observed in any signal region under study

Three Charged Leptons: Model Testing

- Allow to set limits on specific models by using model independent limits given in terms of $\sigma_{\rm vis}$
 - Define a fiducial volume at the particle level for a chosen model
 - Provide single lepton efficiencies (ϵ_{fid}) as a function of p_T and η in that fiducial volume

• A 95% upper-limit on the cross section in the new model is then

defined as;

$$\sigma_{95}^{fid} = rac{N_{95}}{\epsilon_{fid} \int L dt} = rac{\sigma_{95}^{vis}}{\epsilon_{fid}}$$

Type-III SeeSaw: Introduction

- In the Standard Model (SM) neutrinos are massless
- From neutrino oscillation experiments:
 - At least two neutrinos of all three generations are massive

The origin and smallness of neutrino masses?

• SeeSaw models are proposed as an effective framework in order to provide answers to these puzzles

Type-III SeeSaw Mechanism

- Introduces at least two fermionic triplets that generate neutrino masses
- The lightest fermionic triplet; N⁺ and N⁻, N⁰ Approximately degenerate masses
- No and N[±] decay into a W, Z or H and accompanying charged or neutral lepton

$$\bullet pp \to N^0 + N^{\pm} \to \ell^{\pm}W^{\mp} + \ell^{\pm}Z$$

•
$$pp \rightarrow N^+ + N^- \rightarrow \ell^- Z + \ell^+ Z$$

•
$$pp \rightarrow N^+ + N^- \rightarrow \ell^+ Z + \nu_\ell W^-$$

$$\bullet \ pp \to N^+ + N^- \to \nu_\ell W^+ + \ell^- Z$$

$$\bullet \ pp \to N^0 + N^\pm \to \nu_\ell Z + \nu_\ell W^\pm$$

Type III SeeSaw: Event Selection

- At least four leptons (e or μ) in the event
 - Z candidate: 2 leptons with opposite sign and same flavour, invariant mass within ±10 GeV of the Z mass
 - **Bachelor lepton:** Third lepton candidate, closest in ϕ to the reconstructed Z
 - Fourth lepton: Highest p_T e or μ candidate remaining in the event

Type III SeeSaw: <u>Backgrounds</u>

- MC based estimates
 - ZZ(*) dominant background
 - Veto events with a second Z boson with $|m_{\ell^+\ell^-} m_Z| < 10 \, \mathrm{GeV}$
 - Remains a small and irreducible contribution from ZZ*
 - **Z+jets** (**Z+bb/cc**) small contribution
 - Validated with data in the control region
 - ttv, vvv small contribution

Type III SeeSaw: Results

 m_N distribution p_0 at 420 GeV = 0.2

Exclusion limits on m_N

- No significant deviation from the SM is observed
- 95% upper limits are placed on $\sigma \mathcal{B}$ by using the CLs method
- Limits depend on $\mathfrak{B}(\mathrm{N}^{\pm} \to \mathrm{Z}\ell^{\pm})\mathfrak{B}(\mathrm{N}^{0} \to \mathrm{W}^{\mp}\ell^{\pm})$
- For $\mathcal{B} = 1$, m_N up to 350 GeV is excluded (same as expected)
- For nominal mass dependent \mathcal{B} , m_N up to 245 GeV is excluded (243 GeV expected)

CONCLUSIONS

- Presented three recent ATLAS analyses with multi-lepton final states
- No significant excesses observed

Two lepton final states - Excited e/µ search:

- Analysis is performed with 13 fb⁻¹ of \sqrt{s} = 8 TeV data
- An upper limit is set at 95% CL on the excited lepton mass
 - For $m_{\ell^*}=\Lambda$, $m_{\ell^*}>2.2 \text{ TeV}$

Three lepton final states - Model independent search:

- Analysis is performed with 20.3 fb⁻¹ of \sqrt{s} = 8 TeV data
- ullet Provided model independent limits on σ_{vis}
 - Limits vary from 0.19 fb⁻¹ to 340 fb⁻¹
- ullet Single lepton efficiencies are provided in terms of p_T and η to derive model-dependent limits

Four lepton final states - Type-III SeeSaw model heavy fermions search:

- Analysis is performed with 5.8 fb⁻¹ of \sqrt{s} = 8 TeV data
- Limits are set on the mass of the N states at 95% CL
 - For $\mathcal{B} = 1$, $m_N > 350 \text{ GeV}$
 - For nominal mass dependent \mathcal{B} , $m_N > 245 \text{ GeV}$

REFERENCES

"Search for excited electrons and muons in √s = 8 TeV proton-proton collisions with the ATLAS detector"
 New J. Phys. 15 093011

 "Search for New Phenomena in Events with Three Charged Leptons at √s = 8 TeV with the ATLAS detector"
 ATLAS-CONF-2013-070

 "Search for Type III SeeSaw Model Heavy Fermions in Events with Four Charged Leptons using 5.8 fb⁻¹ of √s = 8 TeV data with the ATLAS Detector" ATLAS-CONF-2013-019

BACK UP

Excited e/µ: Event/Object Selection

yy trigger

- $p_T^{leading,subleading} > \{40 \text{ GeV}, 30 \text{ GeV}\}$
- $|\eta|$ < 2.47, crack region excluded
- Electron medium ID
- Isolation: E_T^{el} ($\Delta R = 0.2$) < 7 GeV

• Single muon trigger

- Muon hit quality requirements
- Muon Spectrometer three station hits
- Impact parameter requirements
- Isolation: $\Sigma p_T (\Delta R = 0.3) / p_T^{\mu} < 5\%$
- Opposite sign pair

• $p_T^{\gamma} > 30 \text{ GeV}$

- $|\eta|$ < 2.47, crack region excluded
- Tight photon definition
- Isolation: $E_T^{iso}(\Delta R = 0.4) < 10 \text{ GeV}$ or $E_T^{iso}/p_T^{\gamma} < 1\%$
- $\Delta R(1, \gamma) > 0.7$

Three Charged Leptons: Systematic Uncertainties

Sample systematics from most representative signal regions

Source of uncertainty	Uncertainty
Trigger efficiency	1%
Electron energy scale	<1%
Electron energy resolution	<1%
Electron identification	2%
Electron non-prompt/fake backgrounds	9%
Muon momentum scale	<1%
Muon momentum resolution	<1%
Muon identification	<1%
Muon non-prompt/fake backgrounds	5%
Tau energy scale	2%
Tau identification	2%
Tau non-prompt/fake backgrounds	25%
Jet energy scale	5%
Jet energy resolution	4%
Luminosity	2.8%
Cross-section uncertainties	34%
Total uncertainty	11 – 35%

Three Charged Leptons: Other Distributions

Three Charged Leptons: All Limits I

Three Charged Leptons: All Limits II

23

Type III SeeSaw: Systematic Uncertanties

Summary of the systematic uncertainties on the normalisation of the signal (m_N = 120 GeV) and background contributions, given in percentages

	ZZ	Z+jets	VVV	$t\bar{t}V$	Signal [120 GeV]
E_e Resolution	0.2	_	< 0.1	< 0.1	0.3
E_e Scale	0.1	_	0.3	0.6	0.6
e Identification	2.7	2.8	2.8	2.7	2.7
μ Res. ID	0.1	_	< 0.1	1.7	0.1
μ Res. Spectr.	0.1	_	< 0.1	1.7	0.1
E_{μ} Scale	< 0.1	_	< 0.1	5.8	0.2
Shape	_	100	_	_	_
Scale Factor	_	370	_	_	_
Fast sim.	_	_	_	_	6.8
Signal PDF	_	_	_	_	0.9
Cross Section	6.4	11	100	50	_
Total	7.0	390	100	50	7.4

The luminosity uncertainty is 3.6%