
Search for non-SM Higgs bosons with CMS

Chayanit Asawatangtrakuldee (Peking University) on behalf of the CMS collaboration

> PASCOS2013 • 20-26 Nov 2013 Taipei (Taiwan)

Compact Muon Solenoid (CMS)

What're in this talk?

non-SM Higgs

"Invisible Higgs"	
VBF H \rightarrow invisible	CMS PAS HIG 13-013
Z(II)H, H \rightarrow invisible	CMS PAS HIG 13-018
$Z(bb)H, H \rightarrow invisible$	CMS PAS HIG 13-028

"MSSM Higgs sector"

- $\Phi \rightarrow \tau \tau$ CMS PAS HIG 13-021
- $\Phi \rightarrow \mu\mu$ CMS PAS HIG 12-011
- $\Phi \rightarrow bb$ CMS PAS HIG 12-033
- $H^{\pm} \rightarrow \tau^{\pm}v$ CMS PAS HIG 11-019, HIG 12-052

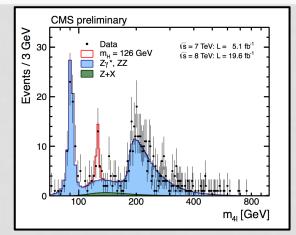
"NMSSM Higgs"

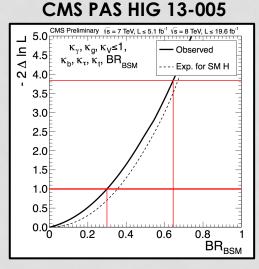
 $h \rightarrow 2a + X \rightarrow 4\mu + X$ CMS PAS HIG 13-010

Introduction

The discovery of a new Boson (The Nobel Prize 2013!)

- $m_X = 125.7 \pm 0.3$ (stat.) ± 0.3 (syst.) GeV
- Properties are consistent with SM Higgs


What's the problem of SM? Why we need BSM?


- Hierarchy problem
- Dark matter particle(s)
- Naturalness
- Asymmetry of matter-antimatter
- etc.

The current accuracy of Higgs boson measurement constrains $Br(H \rightarrow BSM \text{ decays}) < 0.64 (95\% \text{ CL.})$

• still have plenty of room for non-SM Higgs

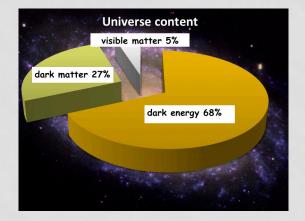
CMS PAS HIG 13-002

"Invisible Higgs"

chayanit@cern.ch

Searches of H → **Invisible**

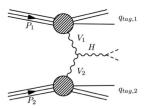
BR(H \rightarrow invisible) in SM, Higgs can only decays via H \rightarrow ZZ* \rightarrow vvvv (~0.1%)


Significant BR(H \rightarrow invisible) would be a strong sign of physics beyond the SM

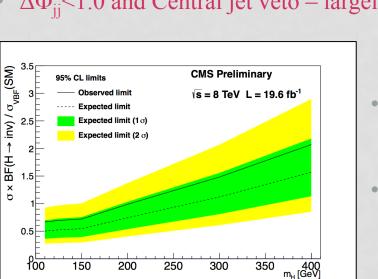
- $H \rightarrow 2LSPs$ in SUSY
- $H \rightarrow$ graviscalars in the ADD model

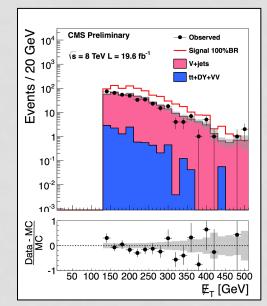
Evidence of Dark matter (DM)

• LHC is currently most sensitive DM detection apparatus, at least in the context of simple Higgs-portal models


- $\mathrm{H} \rightarrow \mathrm{invisible}$ topologies proposed for LHC searches
- VBF H \rightarrow inv : D. Zeppenfeld, O.J.Eboli 2000
- $Z(11,bb)H, H \rightarrow inv : D.P. Roy, D. Choudhuri 1994$
- $gg \rightarrow H+jet, H \rightarrow inv : A.$ Djouadi et. al. arXiv:1205.3169

combined soon!!

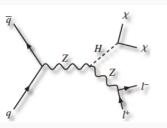

VBF H \rightarrow **Invisible**


Special VBF+MET triggers for VBF $H \rightarrow$ invisible

Events are tagged with 2 jets and large missing transverse energy

- jet pT > 50 GeV, $|\eta| < 4.7$
- $M_{jj} > 1100 \text{ GeV}, \Delta \eta_{jj} > 4.2$
- missing transverse energy > 130 GeV
- $\Delta \Phi_{ii} < 1.0$ and Central jet veto largely reduce QCD multijets

CMS PAS HIG 13-013



- Main backgrounds from $Z(\rightarrow vv)$ +jets and W+jets estimated using data-driven methods.
- *a* mH = 125 GeV
 Br(H → inv) < 0.69 (0.53 expected) at 95% CL.

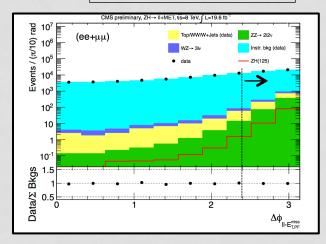
chayanit@cern.ch

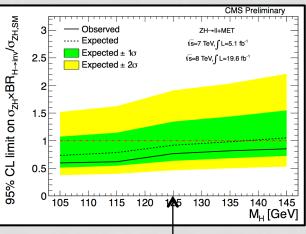
Z(ll)H → Invisible

Higgs production in associated with a Z boson

- lower cross-section than VBF but cleaner events
- events with two opposite charged leptons (only e,μ) and large missing transverse energy (MET)

Main backgrounds from irreducible $ZZ(\rightarrow llvv)$ and $WZ(\rightarrow lvll)$ when lepton from W is unidentified


• introduce offline cuts $|MET-p^{ll}_T|/p^{ll}_T$ and $\Delta \Phi_{ll-MET}$, reject most of reducible backgrounds

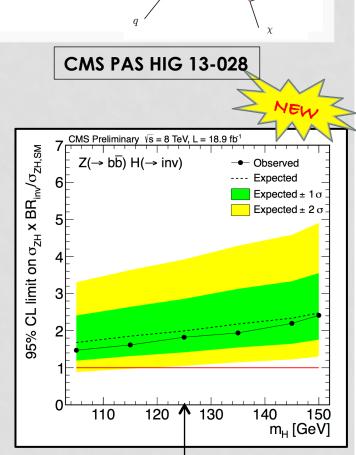

Good agreement between data/MC prediction is shown

@ mH = 125 GeV

• $Br(H \rightarrow inv) < 0.75 (0.91 \text{ expected}) \text{ at } 95\% \text{ CL}.$

CMS PAS HIG 13-018

Z(bb)H → Invisible


Higgs production in associated with a Z boson

- $Z(\rightarrow bb)H(\rightarrow inv)$ require events with a pair of central jets and missing transverse energy
- same final state with VH(\rightarrow bb) [CMS PAS HIG 13-012] but different mass of the resonance

Multivariate (BDT) regression technique applied to calibrate b jet energy on top of standard CMS corrections

- first used in CDF (arXiv:1107.3026)
- BDT shape analysis

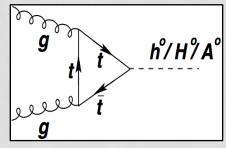
Sensitive within mass range of Higgs 105-150 GeV

"MSSM Higgs sector"

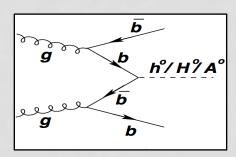
chayanit@cern.ch

Higgs sector of MSSM (1)

Higgs sector in SUSY contains two scalar doublets "MSSM Higgs Production"


- five physical Higgs bosons
- 3 neutral Higgs : Φ = CP-even h and H, CP-odd A
- 2 charged Higgs : H^{\pm}
- Standard Model-like Higgs : h

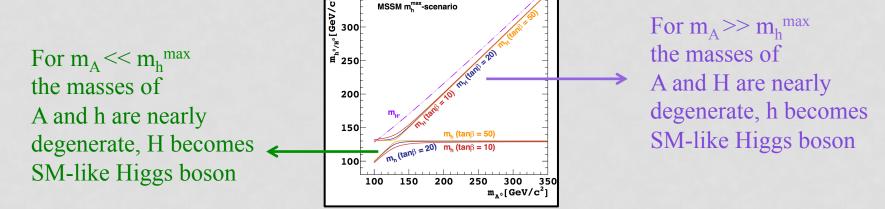
At tree level, Higgs sector is determined by only two parameters


• m_A and $tan\beta = v_u/v_d$

- $Br(\Phi \rightarrow bb) \sim 90\%$
- $Br(\Phi \rightarrow \tau \tau) \sim 10\%$
- $Br(\Phi \rightarrow \mu\mu)$ very low but allows good mass reconstruction

PASCOS2013 • 20-26 Nov 2013

gluon-fusion : small and moderate value of $tan\beta$

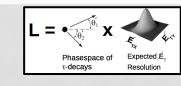


b-associated : large value of $tan\beta$

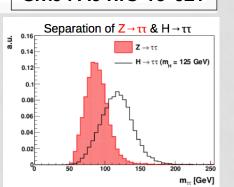
Higgs sector of MSSM (2)

At large tan β , mass of CP-odd boson A is usually degenerate with one of CP-even bosons, h and H

The observation of H(125) does not exclude a heavy MSSM Higgs in wide range of $tan\beta$, so still fits both SM and MSSM

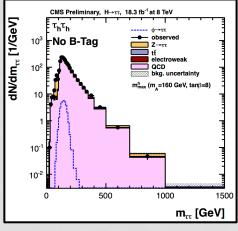

Charged Higgs "H^{\pm}" decay modes depend on mass of H^{\pm}

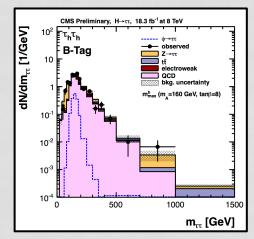
- Light $H^{\pm}(m_{H}^{\pm} < m_{top})$: dominated by $H^{\pm} \rightarrow \tau^{\pm}v$
- Heavy $H^{\pm}(m_H^{\pm} > m_{top}) : H^{\pm} \rightarrow tb \text{ and } H^{\pm} \rightarrow \tau^{\pm}v$


$MSSM \Phi \to \tau\tau$

Reconstructed via 5 (out of 6) $\tau\tau$ final states

• $e\tau_h$, $\mu\tau_h$, $e\mu$, $\mu\mu$, $\tau_h\tau_h$ (new!)


Signal extraction : determine invariant mass of di- τ system using maximum likelihood method (15-20% resolution of M_{$\tau\tau$})


CMS PAS HIG 13-021

Main backgrounds from $Z \rightarrow \tau\tau$ (embedding $Z \rightarrow \mu\mu$), QCD, $Z \rightarrow ee/\mu\mu$, ttbar and Diboson

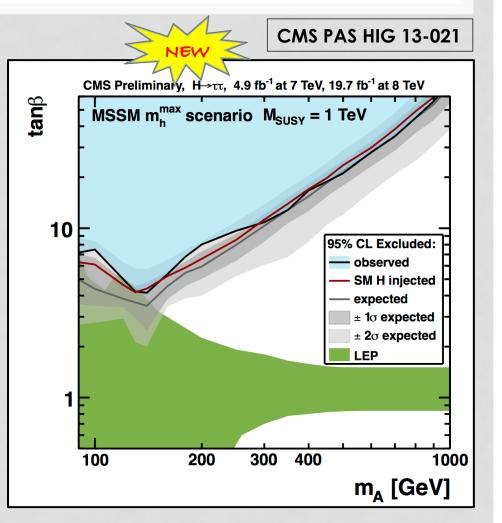
Categorization of selected events

No B-Tag sensitive to gluon fusion production, no b-tagged jets with $p_T > 20$ GeV

B-Tag to enhance Higgs boson production associated with b-quarks, at least one b-tagged jet with $p_T > 20$ GeV

chayanit@cern.ch

$MSSM \Phi \to \tau\tau$


No excess events over the predicted SM background in any categories

Exclude values of tan β as low as 4.2 at $m_A=140$ GeV for the MSSM m_h^{max} scenario (at 95% CL.)

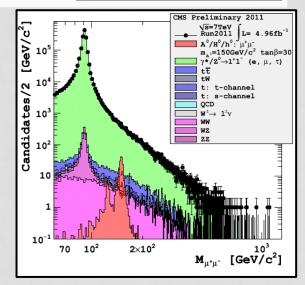
assuming no MSSM but a SM Higgs 125-126 GeV (red line)

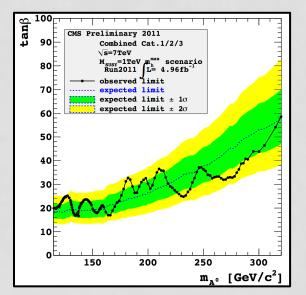
• assuming no (neither MSSM nor SM) Higgs $\rightarrow \tau\tau$ signal (grey line)

• LEP result (green band)

$MSSM \Phi \to \mu \mu$

CMS PAS HIG 12-011


Good mass resolution due to full reconstructed final state


- events with two opposite charged high p_T muons
- three non-overlapping categories :

cat1 \geq 1 b-tagged jet for gg \rightarrow bb Φ

cat2 failed cat 1 but 3^{rd} muon with $p_T > 3 \text{ GeV}$

cat3 failed cat1 and cat2 (purely di-muon events) $gg \rightarrow \Phi$

Main backgrounds : Drell-Yan (Z⁰bb), ttbar (cat1), WW (cat3)

No excess events is observed over SM background

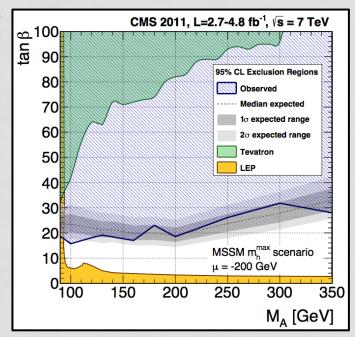
Exclude range of tan β 16-26 for m_A 115 to 175 GeV in the MSSM m_h^{max} scenario at 95% CL.

$MSSM \Phi \to bb$

CMS PAS HIG 12-033

Highest branching fraction (~90%) but also large QCD multijet background

- dedicated trigger to identify b-tagged jets
- challenging background estimates (data-driven method)

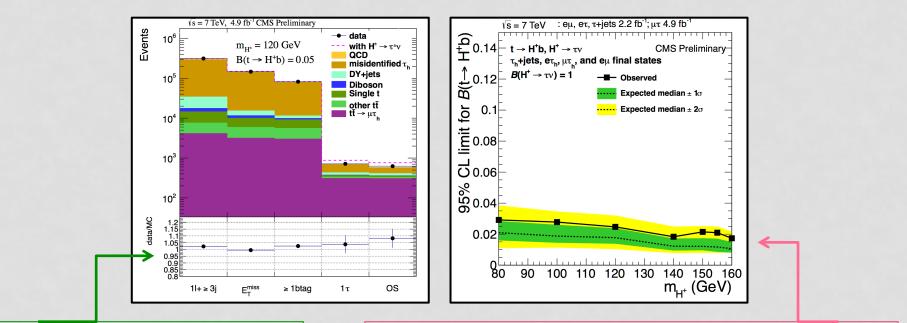

Two categories of selected events for $gg \rightarrow bb\Phi$ production

- All hadronic : three b-tagged leading jets (sorted by p_T)
- Semileptonic : two b-tagged leading jets + a muon $p_T > 15$ GeV in a jet

Signal extraction from a peak in the di-jet mass M_{12}

No signal over the expected SM background

Upper limits reach as low as $tan\beta \sim 18$ for $m_A \sim 100$ GeV in the MSSM m_h^{max} scenario (at 95% CL.)



$MSSM H^+ \rightarrow \tau^+ v$

Dominant decay mode for light H^{\pm} ($m_{H}^{\pm} < m_{top}$) and tan $\beta > 5$

CMS PAS HIG 11-019 & CMS PAS HIG 12-052

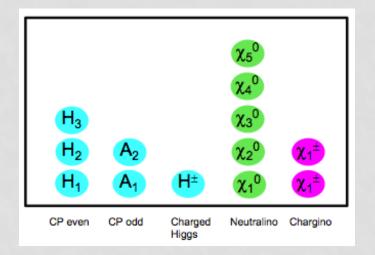
Combined result of 4 final states : τ_h +jets, $e\tau_h$, $e\mu$ and $\mu\tau_h$

data/MC agree well no excess over SM prediction Upper limits on Br(H[±] $\rightarrow \tau^{\pm}v$) between 2-3% for Higgs mass 80-160 GeV assuming Br(H[±] $\rightarrow \tau^{\pm}v$) = 1

"NMSSM Higgs"

chayanit@cern.ch

Higgs sector of NMSSM

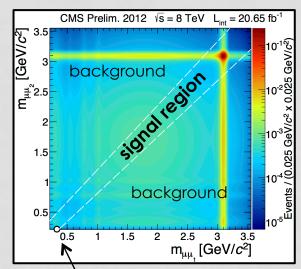

Next to Minimal Supersymmetric Standard Model

- NMSSM superfields = MSSM superfields + Higgs superfield singlet \hat{S}
- solve "µ-problem" of MSSM
- requires less fine-tuning

Additional two Higgs boson from singlet \hat{S}

seven physical Higgs bosons
neutral Higgs : 3 CP-even h_{1,2,3}, CP-odd a₁ a₂ (m_{h1} < m_{h2} < m_{h3}) and (m_{a1} < m_{a2})
charged Higgs : H[±]

A fifth neutralino. compared to four in MSSM


$\mathbf{H} \rightarrow \mathbf{2}a + X \rightarrow \mathbf{4}\mu + X$

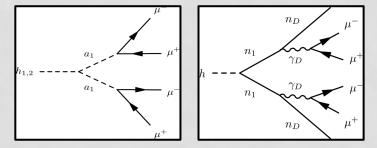
CMS PAS HIG 13-010

Search of a non-SM Higgs decays to two new light bosons, each decays to dimuon pair.

Two models interpretation

- NMSSM benchmark $h_{1,2} \rightarrow 2a_1 \rightarrow 4\mu$
- Dark SUSY benchmark $h \rightarrow 2n_1 \rightarrow 2n_D + 2\gamma_D \rightarrow 2$

Analysis strategy

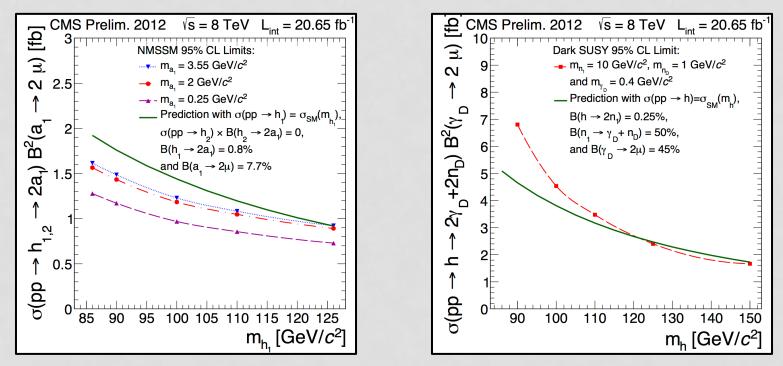

- $\geq 1 \text{ muon } p_T > 17 \text{ GeV } |\eta| < 0.9 \text{ (central region)} +$
 - \geq 3 muons p_T > 8 GeV | η | < 2.4
- grouped 2 opposite charged muons with $m_{\mu\mu} < 5 \text{ GeV}$
- two dimuons from same pp collision $|z_{\mu\mu1}-z_{\mu\mu2}| < 0.1$ cm
- diagonal signal region : $|m_{\mu\mu1} m_{\mu\mu2}| < 5\sigma (m_{\mu\mu1} \approx m_{\mu\mu2})$

Main backgrounds from bb, J/ψ and $pp \to 4 \mu$

3.8 ± 2.1 expected SM background

chayanit@cern.ch

observed 1 event w.r.t



$\mathbf{H} \rightarrow \mathbf{2}a + X \rightarrow \mathbf{4}\mu + X$

CMS PAS HIG 13-010

"Dark SUSY"

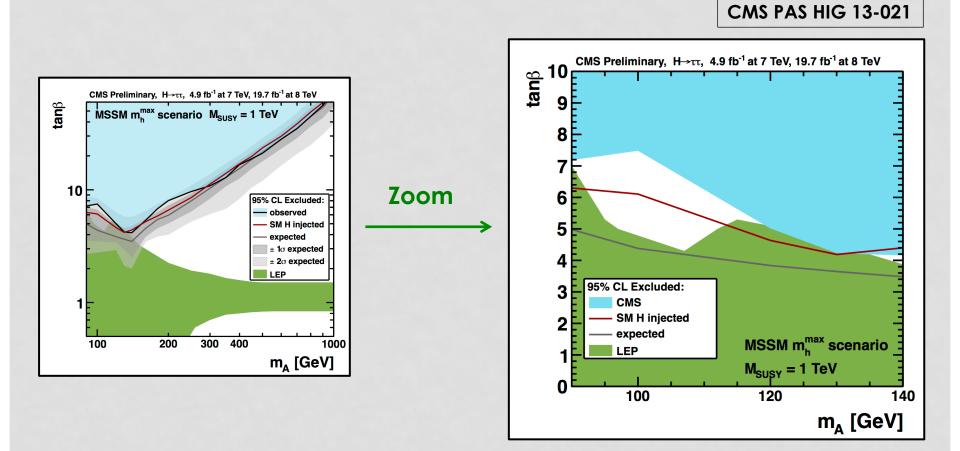
"NMSSM"

95% CL. Upper limit on the Higgs boson production in NMSSM and Dark SUSY as functions of h_1 or h Higgs boson mass

chayanit@cern.ch

Summary

- A large amount of non-SM Higgs searches has been presented using data collected with the CMS detector during LHC Run I
 - No sign of new physics so far
 - Stay tuned for LHC Run II!



BACKUP

chayanit@cern.ch

$MSSM \Phi \to \tau\tau$

