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Motivation:

General Relativity (GR) is a very successful theory. For further tests
of GR, good to have an alternative theory to compare with, and
test both against the data. The Brans-Dicke theory was introduced
for that purpose in 1960s

Cosmic acceleration: a new physical scale of dark energy,
10−33 eV ; this might be a scale where GR should be modified

Extension of GR by a mass term is arguably the best motivated
modification. Yet, such an extension had been a problem up until
recently. This problem – good enough motivation for a theorist to
ask the questions: what is the potential for gravity?



A scalar field theory:

Kinetic term = −(∂µΦ)2

Mass+ potential (renormalisable) = m2Φ2 + λ4Φ4

Effective potential= m2Φ2 + λ4Φ4 + λ6Φ6 + · · ·

The coefficients λ4, λ6, λ8, etc . need not take any special values
(only need to satisfy some positivity constraints); they need not be
tuned to each other for consistency of the effective field theory.

However, as we’ll see in the potential for gravity all the polynomial
terms have to be related, even in the classical theory!



The Potential for General Relativity:

√
gR → Kinetic term= ∂h∂h

hµν ≡ gµν − ηµν :

√
g = simplest potential = 1 + h

2 + h2

8 −
h2
µν

4 · · ·

Coefficients in different orders are fixed to sum up into the root g

This potential does not change the number of degrees of freedom,
it’s not a mass term



Mass term for gravity: 5 degrees of freedom

Quadratic mass term= b1h
2
µν + b2h

2

Fierz and Pauli 1939: b1 = −b2 to preserve unitarity

Fierz-Pauli mass term= M2
plm

2(h2
µν − h2)

The vDVZ discontinuity: van Dam, Veltman; Zakharov 70
Non-lineartities can restore continuity Vainshtein 72
A nonlinear invariant form:

gµν = ηµν + hµν → gµν = ∂µφ
a∂νφ

bηab + Hµν Siegel , ′93

LFP = M2
pl
√
g
(
R −m2(H2

µν − H2)
)

However, this contains h3 and higher terms that give rise to
nonlinear instabilities (Boulware and Deser ’72).
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Can this be fixed by adding appropriate higher order terms?

√
g (R −m2(H2

µν − H2 + c1H
3
µν + c2HH

2
µν + c3H

3

+ d1H
4
µν + d2HH

3
µν + d3H

2H2
µν + d4(H2

µν)2 + d5H
4 + · · · ))

Generically one gets 6 degree of freedom, 5 in massive graviton plus
the Boulware Deser (BD) mode

This can be avoided for specific choice of the coefficients:

For c1 = 2c3 + 1/2, c2 = −3c3 − 1/2 no ghost in 3rd order;
however, the instability is still present in the 4th order; choose the
coefficients in the 4th order O(H4

µν) terms, and so on...

The BD ghost cancellation can be achieved order-by-order:
de Rham, GG ,’10.

The cancellation conditions are so powerful that the entire series
can be summed up: de Rham, GG, Tolley ’11.
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GR Extended by Mass and Potential Terms

de Rham, GG, Tolley, ’11

5 dof’s in gµν(x) and 4 scalars φa(x), a = 0, 1, 2, 3, define

Kµν (g , φ) = δµν −
√
gµαfαν fαν ≡ ∂αφa∂νφbηab

The Lagrangian is written using notation tr(K) ≡ [K]:

LdRGT = M2
pl
√
g
(
R + m2 (U2 + α3 U3 + α4 U4)

)
U2 = [K]2 − [K2]

U3 = [K]3 − 3[K][K2] + 2[K3]

U4 = [K]4 − 6[K2][K]2 + 8[K3][K] + 3[K2]2 − 6[K4]



Lagrangian Rewritten via Levi-Civita Symbols:

de Rham, GG, Heisenberg, Pirtskhalava ’11 (decoupling limit)

LdRGT = M2
pl
√
g
(
R + m2 (U2 + α3 U3 + α4 U4)

)
U2 = εµναβε

ρσαβKµρKνσ

U3 = εµναγε
ρσβγKµρKνσKαβ

U4 = εµνρσε
αβγδKµαKνβKργKσδ

In various dimensions: D=3 only two terms, in D=5 one more
term, in D=6 two more terms, and so on
Hamiltonian construction: Hassan, Rachel A. Rosen, ’11,’12
Another proof of 5 dof: Mirbabayi, ’12



Minkowski background and massive graviton

gµν = ηµν , ∂µφ
a = δaµ

Symmetry breaking pattern

ISO(3, 1)GCT × ISO(3, 1)INT → ISO(3, 1)DIAG (1)

Linearized theory: 3 NG Bosons eaten up by the tensor field that
becomes massive. The theory guarantees unitary 5 degrees of
freedom on (nearly) Minkowski backgrounds.

Nonlinear interactions are such that there are 5 degrees of freedom
on any background. However, there is no guarantee that some of
these 5 degrees of freedom aren’t bad on certain backgrounds, thus
destabilizing those backgrounds.



Cosmological solutions: No flat FRW solution:
D’Amico, de Rham, Dubovsky, GG, Pirtskhalava, Tolley, ’11

ds2 = −dt2 + a(t)2d~x2, φ0(t) = f (t), φj(x) = x j

Minisuperspace Lagrangian (for α3,4 = 0 ):

L = 3M2
pl

(
−aȧ2 + m2(2a3 − 3a2 + a)−m2ḟ (a3 − a2)

)
d

dt
(m2(a3 − a2)) = 0

No cosmology if m is a constant.
Possible ways to proceed for the flat universe:
(1) Heterogeneous and/or anisotropic cosmologies
(2) Field dependent mass m→ m(σ): FRW solutions re-emerge
Exception: Open FRW selfaccelerated universe:
Gumrukcuoglu, Lin, Mykohyama



Heterogeneous Solutions: Qualitative Picture

The Vainshtein radius for a domain of density ρ and size R

r∗ =

(
ρ

ρco

)1/3

R, ρco ≡ 3M2
plm

2

Within a patch of radius 1/m, consider a typical Hubble volume,
i.e., the volume enclosed by the sphere of radius

H−1 =

√
3M2

pl

ρ

This volume is in the Vainshtein regime, i.e., r∗ >> H−1, as long as

ρ >> ρco

Hence, should recover FRW with great accuracy for ρ >> ρco!



Heterogeneous solutions: Quantitative Picture

ds2 = −dt2 + C (t, r)dtdr + A(t, r)2(dr2 + r2dΩ2),

φ0 = f (t, r), φj(x) = g(t, r)
x j

r

Einstein’s equation extended with the mass and potential terms:

Gµν = m2Xµν + 8πGNTµν

Early universe: in the first approximation neglect m2Xµν , get FRW.
In the obtained FRW background solve for φa’s

m2∇µgFRWXµν(gFRW , φ
a) = 0

Find φa’s, and calculate backreaction to make sure that
m2Xµν << 8πGNTµν . This is the case for ρ >> ρco .
What about the case when ρ ∼ ρco?



Selfacceleration and pseudo-homogeneous solutions: In the dec
limit: de Rham, GG, Heisenberg, Pirtskhalava. Exact solution:
Koyama, Niz, Tasinato (1,2,3), M. Volkov; L. Berezhiani, et al; ...
For instance, Koyama-Niz-Tasinato solution:

ds2 = −dτ2 + emτ (dρ2 + ρ2dΩ2)

while, φ0 and φρ, are inhomogeneous functions of

arctanh

(
sinh(mτ/2) + emτ/2m2ρ2/8
cosh(mτ/2)− emτ/2m2ρ2/8

)
, ρemτ/2

Selfacceleration with heterogeneous metric: Gratia, Hu, Wyman 12
Selfacceleration is a generic feature of this theory, however,
vanishing of the kinetic terms for some of the 5 modes seems to be
a common feature of these solutions.
Anisotropic solutions with stable fluctuations: Gumrukcuoglu, Lin,
Mukohyama, ’12.



Theory of Quasi-Dilaton: D’Amico, GG, Hui, Pirtskhalava, ’12

Invariance of the action to rescaling of the reference frame
coordinates φa w.r.t. the physical space coordinates, xa, requires a
field σ. In the Einstein frame:

φa → eα φa, σ → σ − αMPl

Hence we can construct the invariant action by replacing K by K̄

K̄µ
ν = δµν −

√
gµαf̄αν f̄αν = e2σ/MPl∂αφ

a∂νφ
bηab

and adding the sigma kinetic term

L = LdRGT
(
K → K̄

)
− ω√g(∂σ)2

and the term
∫
d4x

√
−detf̄ can also be added. In the Einstein

frame σ does not couple to matter, but it does in the Jordan frame



Extended Quasi-Dilaton: De Felice, Mukohyama, ’13

The quasidilaton Lagrangian is not the most general one consistent
with the symmetries – derivative terms for σ, suppressed by a
higher scale can also be included, retaining the symmetry

φa → eα φa, σ → σ − αMPl

Hence we can construct the invariant action by replacing K by K̃

K̃µ
ν = δµν −

√
gµαf̃αν f̃αν = f̄αν −

∂ασ∂νσ

m2M2
pl

and adding the sigma kinetic term

L = LdRGT
(
K → K̃

)
− ω√g(∂σ)2

and the term
∫
d4x

√
−detf̃ can also be added. In the Einstein

frame σ does not couple to matter, but it does in the Jordan frame



Cosmology of Quasi-Dilaton: Flat FRW Solutions, Extended
Quasidilaton

ds2 = −dt2 + a(t)2d~x2 φ0 = f (t), φi = x i , σ = σ(t)

Friedmann equation:

3M2
PlH

2 =
ω

2
σ̇2 + ρm +

3M2
Plm

2

c0 + c1

(
eσ/MPl

a

)
+ c2

(
eσ/MPl

a

)2

+ c3

(
eσ/MPl

a

)3


Constraint equation:

q0 + q1

(
eσ/MPl

a

)
+ q2

(
eσ/MPl

a

)2

+ q3

(
eσ/MPl

a

)3

=
ke−σ/MPl

a3 .



Particular Solutions for k = 0:(
eσ/MPl

a

)
= c , σ̇ = MPlH

Friedmann equation

(3− ω

2
)M2

PlH
2 = ρm + 3M2

Plm
2 [c0 + c1c + c2c

2 + c3c
3]

Expansion like in ΛCDM. Constraint equation

q0 + q1c + q2c
2 + q3c

3 = 0

Determine f (t) from the sigma equation:

aḟ = 1 +
ω

3κm3 (3H2 + Ḣ)



Small Perturbations:

The selfaccelerated solution in the Quasidilaton theory necessarily
contains a ghost: De Felice, Gumrukcuoglu, Hinterbichler, Lin,
Mukohyama, Trodden ’13 & D’Amico, GG, Hui, Pirtskhalava ’13

Extended Quasidilaton has a homogeneous and isotropic
selfaccelerated solution with no ghosts! The first model of this kind
De Felice, Mukohyama, ’13; Mukohyama, ’13; De Felice,
Gumrukcuoglu, Mukohyama, ’13.

Quasidilaton for ω > 6 is similar to massive gravity (for ω →∞ it
reduces to massive gravity) and therefore has non-FRW solutions;
their perturbations appear to be stable GG, Kimura, Pirtskhalava,
in progress.



Open issues and outlook

I. Superluminality vs acausality

II. Strong coupling behavior



I. Superluminality: In the high energy limit, E , p >> m, the theory
reduces to certain Galileons. Galileons in general are known to lead
to superluminal phase and group velocities. For some parameter
space there is no superuminality for massive gravity Galileons, at
least for the spherically symmetric solutions due to specific nature
of these theories:

−(∂π)2 +
πεε∂∂π∂∂π

m2Mpl
+
πεε∂∂π∂∂π∂∂π

m4M2
pl

(no cubic Galileon without the quartic one; special couplings to
matter, superluminal solutions unstable, L. Berezhiani, G. Chkareuli,
GG). However, in most of the extensions of massive gravity
(quasidilaton, extended quasidilaton, bigravity), and for a generic
parameter choice one finds superluminal phase and group velocities.
Does this mean that these theories are acausal?
1. Chronology protection due to strong coupling
Burrage, de Rham, L. Heisenberg, Tolley, ’11.
2. (A)causality is determined by the front velocity, which is affected
by the strong coupling regime. Work in progress



A well-known example of GR + QED: Drummond Hathrell, ’80

LGR+QED = M2
pleR + e

(
−1
4
FF + ψ̄(i D̂ −me)ψ

)
A good effective theory below Mpl (other charged particles included
in the standard way).

At energies below the electron mass E , p << me , via one loop
vacuum polarization diagram one gets an effective theory

Leff = M2
ple(R + c

αem
m2

e

RFF )− e
1
4
FF · · ·

Among the RFF terms is RiemannFF term that renormalizes the
photon kinetic term in an external gravitational field (e.g., of the
Earth), and gives superluminal phase and group velocities.
However, this does not mean that LGR+QED gives a acausal theory,
in fact it gives a good causal effective theory below Mpl.
Reconciliation – extensive discussions by Hollowood and Shore



II. Toward UV completion via vierbein formulation:
The square root structure in the massive gravity Lagrangian is
indicative of a low energy theory. The vierbein formalism for
massive gravity can get rid of that structure Hinterbichler and
Rachel A. Rosen ’12. Moreover, one can formulate a fully GCT and
LLT invariant action for massive gravity in the vierbein formalism
GG, Hinterbichler, Pirtskhalava, Yanwen Shang, ’13

L2 ∼ M2
plm

2 εµναβεabcd e a
µ e b

ν k c
α k d

β , (2)

L3 ∼ α3M
2
plm

2 εµναβεabcd e a
µ k b

ν k c
α k d

β , (3)

L4 ∼ α4M
2
plm

2 εµναβεabcd k a
µ k b

ν k c
α k d

β .

where k a
µ ≡ e a

µ − λaā∂µφā, and λaā belongs to SO(3, 1).
The mass terms can be promoted to the locally SL(4) symmetric
structures by promoting λ’s to SL(4)! Hence the mass terms can
have a larger local symmetry group than the EH term does.



Conclusions:
I A classical theory that extends GR by the mass and potential

term is available now; many questions of astrophysics and
cosmology can be studies and comparisons can be made with
GR as well as with data

I Generic cosmological solutions have no FRW symmetries, but
can approximate well FRW cosmologies in the early universe

I Selfaccelerated solutions emerge as a generic feature; but some
fluctuations loose kinetic terms for pseudo-homogeneous
solutions.

I Dynamical mass theories differ – FRW solutions re-emerge. An
example: Extended Quasi-dilaton with selfacceleration exhibits
nonvanishing kinetic terms for all perturbations

I The GCT and LLT invariant first order formulations is a useful
staring point for addressing the issue of the UV completion,
and hence of superluminality vs. (a)causality.

I Other extensions: bi-gravity Hassan, R.A. Rosen ’11,
multigravity with very interesting structure Hinterbichler, R.A.
Rosen, ’12; mass-varying massive gravity Q-G Huang, Y-S
Piao, S-Y Zhou ’12


