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Which Supersymmetric Model?
CMSSM (4+ parameters)

mSUGRA (3+ parameters)

NUHM (5,6+ parameters)

(mini) Split SUSY (2+ parameters)



The CMSSM

Parameters: m1/2, m0, A0, tan β, sgn(μ)       {m3/2}

Electroweak Symmetry Breaking conditions:
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m1/2 - m0 planes
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mSUGRA models

	

 G = ϕ ϕ∗ + z z∗ + ln |W|2;   W = f(z) + g(ϕ)
Scalar Potential (N=1):   
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In the low energy limit (MP → ∞),
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Abstract. While the constrained minimal supersymmetric standard model (CMSSM) with universal gaug-
ino masses, m1/2, scalar masses, m0, and A-terms, A0, defined at some high energy scale (usually taken
to be the GUT scale) is motivated by general features of supergravity models, it does not carry all of the
constraints imposed by minimal supergravity (mSUGRA). In particular, the CMSSM does not impose a
relation between the trilinear and bilinear soft supersymmetry breaking terms, B0 = A0 −m0, nor does it
impose the relation between the soft scalar masses and the gravitino mass, m0 = m3/2. As a consequence,
tan β is computed given values of the other CMSSM input parameters. By considering a Giudice-Masiero
(GM) extension to mSUGRA, one can introduce new parameters to the Kähler potential which are asso-
ciated with the Higgs sector and recover many of the standard CMSSM predictions. However, depending
on the value of A0, one may have a gravitino or a neutralino dark matter candidate. We also consider the
consequences of imposing the universality conditions above the GUT scale. This GM extension provides a
natural UV completion for the CMSSM.
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1 Introduction

One of the most commonly studied variants of the min-
imal supersymmetric standard model is the constrained
model (CMSSM) [1, 2]. This is in part due to its simplic-
ity (it is specified by four parameters), and its connection
to supergravity [3, 4]. The CMSSM also provides a nat-
ural dark matter candidate [5], the neutralino, for which
the relic density may be brought into the range specified
by WMAP [6] relatively easily. Furthermore, these models
generally predict a relatively light mass for the Higgs bo-
son (mh ! 130 GeV) [7]. Not only is the theory testable,
but is currently under scrutiny from the ongoing experi-
ments at the LHC [8], resulting in strong constraints on
the CMSSM parameter space, particularly when recent
constraints from Higgs searches [10] are applied [11].

The CMSSM is defined by choosing universal soft su-
persymmetry breaking parameters input at the grand uni-
fied (GUT) scale, i.e., the scale at which gauge coupling
unification occurs. These are the universal gaugino mass,
m1/2, scalar mass,m0, and trilinear term, A0. The motiva-
tion of this universality stems from minimal supergravity
(mSUGRA) and indeed the two theories are often con-
fused.

Minimal supergravity is defined by a Kähler potential
with minimal kinetic terms (in Planck units),

G = K(φi,φi
∗, zα, z∗α) + ln(|W |2) , (1)

with
K = K0 = φiφi

∗ + zαz∗α , (2)

where W = f(zα) + g(φi) is the superpotential, assumed
to be separable in hidden sector fields, zα, and standard
model fields, φi. The scalar potential can be derived once
the superpotential is specified. Assuming that the origin
of supersymmetry breaking lies in the hidden sector, the
low energy potential is derived from

V = eK
(
KIJ̄DIWD̄J̄W̄ − 3|W |2

)

= eG
(
GIG

IJ̄GJ̄ − 3
)
, (3)

with DIW ≡ ∂IW +KIW and dropping terms inversely
proportional to the Planck mass, we can write [4]

V =

∣∣∣∣
∂g

∂φi
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2

+
(
A0g

(3) +B0g
(2) + h.c.

)
+m2

3/2φ
iφ∗i ,(4)

where g(3) is the part of the superpotential cubic in fields,
and g(2) is the part of the superpotential quadratic in



  

For example,
Polonyi: f(z) = m0 (z + β) ; 

m0 = m3/2 ;	

 A0 = (3 - √3) m0;	

 B0 = A0 - m0

With <z> = √3 - 1  for β = 2 - √3	

    

where

A0g
(3) =

✓
�i @g

(3)

@�i
� 3g(3)

◆
m3/2 + z⇤(zf⇤ +

@f⇤

@z⇤
)g(3)



mSUGRA

Parameters: m1/2, m3/2, A0, sgn(μ)     

Electroweak Symmetry Breaking conditions used to solve for tanβ:
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MCMC technique to sample efficiently the 
SUSY parameter space, and thereby 
construct the χ2 probability function

Combines SoftSusy, FeynHiggs, SuperFla, 
SuperIso, MicrOmegas, and SSARD

Purely frequentist approach (no priors) and 
relies only on the value of χ2  at the point 
sampled and not on the distribution of 
sampled points.

70 million points sampled (CMSSM)

Mastercode - MCMC
Long list of observables to
constrain CMSSM parameter space

O. Buchmueller et al.: Likelihood Functions for Supersymmetric Observables in Analyses of the CMSSM and NUHM1 3

in Section 6.1 the implications of removing the (g − 2)µ

constraint. We also discuss the predictions of our fits for
BR(b → sγ), Ωχh2 and Mh, presenting the likelihood
functions for each of these observables without their own
contributions. None of these observables exhibits any sig-
nificant tension with the others.

2 Description of the Frequentist Statistical
Method Employed

We define a global χ2 likelihood function, which combines
all theoretical predictions with experimental constraints:

χ2 =
N

∑

i

(Ci − Pi)2

σ(Ci)2 + σ(Pi)2

+ χ2(Mh) + χ2(BR(Bs → µµ))

+ χ2(SUSY search limits)

+
M
∑

i

(fobs
SMi

− ffit
SMi

)2

σ(fSMi
)2

(1)

Here N is the number of observables studied, Ci repre-
sents an experimentally measured value (constraint) and
each Pi defines a prediction for the corresponding con-
straint that depends on the supersymmetric parameters.
The experimental uncertainty, σ(Ci), of each measure-
ment is taken to be both statistically and systematically
independent of the corresponding theoretical uncertainty,
σ(Pi), in its prediction. We denote by χ2(Mh) and
χ2(BR(Bs → µµ)) the χ2 contributions from the two mea-
surements for which only one-sided bounds are available
so far, as discussed below. Furthermore we include the
lower limits from the direct searches for SUSY particles
at LEP [64] as one-sided limits, denoted by “χ2(SUSY
search limits)” in eq. (1).

We stress that, as in [4,53], the three standard model
parameters fSM = {∆αhad, mt, MZ} are included as fit
parameters and allowed to vary with their current exper-
imental resolutions σ(fSM). We do not include αs as a fit
parameter, which would have only a minor impact on the
analysis.

Formulating the fit in this fashion has the advantage
that the χ2 probability, P (χ2, Ndof), properly accounts
for the number of degrees of freedom, Ndof , in the fit and
thus represents a quantitative and meaningful measure for
the “goodness-of-fit.” In previous studies [53], P (χ2, Ndof)
has been verified to have a flat distribution, thus yielding
a reliable estimate of the confidence level for any par-
ticular point in parameter space. Further, an important
aspect of the formulation is that all model parameters
are varied simultaneously in the MCMC sampling, and
care is exercised to fully explore the multi-dimensional
space, including possible interdependencies between pa-
rameters. All confidence levels for selected model param-
eters are performed by scanning over the desired parame-
ters while minimizing the χ2 function with respect to all

other model parameters. That is, in order to determine
the function χ2(x) for some model parameter x, all the
remaining free parameters are set to values corresponding
to a new χ2 minimum determined for fixed x. The function
values where χ2(x) is found to be equal to χ2

min +∆χ2 de-
termine the confidence level contour. For two-dimensional
parameter scans we use ∆χ2 = 2.28(5.99) to determine
the 68%(95%) confidence level contours.

Only experimental constraints are imposed when de-
riving confidence level contours, without any arbitrary
or direct constraints placed on model parameters them-
selves.3 This leads to robust and statistically meaning-
ful estimates of the total 68% and 95% confidence levels,
which may be composed of multiple separated contours.
Finally, the sensitivity of the global fit to different con-
straint scenarios can be studied by removing one of the
experimental constraints or by rescaling one of the exper-
imental uncertainties, as discussed in Sect. 3 in [4]. Stud-
ies of such scenarios are particularly helpful in identifying
which experimental data are most useful in constraining
the theoretical model and hence in precisely studying how
hyper-volumes in parameter space become more tightly
constrained (either now or in the future).

Since each new scenario in which a parameter is re-
moved or an uncertainty re-scaled represents, fundamen-
tally, a new χ2 function which must be minimized, mul-
tiple re-samplings of the full multi-dimensional param-
eter space are, in principle, required to determine the
most probable fit regions for each scenario. However, these
would be computationally too expensive. To avoid this dif-
ficulty, we exploit the fact that independent χ2 functions
are additive and result in a well defined χ2 probability.
Hence, we define “loose” χ2 functions, χ2

loose, in which the
term representing some constraint, e.g., ΩCDM, is removed
from the global χ2 function. The χ2

loose function represents
the likelihood that a particular set of model parameter val-
ues is compatible with a sub-set of the experimental data
constraints, without any experimental knowledge of the
removed constraint.

An exhaustive, and computationally expensive, 25 mil-
lion point pre-sampling of the χ2

loose function is then per-
formed in the full multi-dimensional model parameter
space using a MCMC. Constraint terms representing the
various experimental scenarios are then re-instated or re-
moved to form different χ2 functions, one for each scenario
studied. If the scenario requires an additional constraint
to be removed from the χ2

loose function, the density of
points pre-sampled for the χ2

loose function was carefully
tested and verified to also be an unbiased and sufficiently
complete sampling of the studied model parameter space
for the full χ2 function by using dedicated MCMC sam-
ples of approximately one million sampling points each,
where the particular constraint in question was removed.

3 For reasons of stability of higher-order contributions, we
limit the range of tanβ to values below tanβ = 60. As ex-
plained in Section 3 below, we furthermore impose a cut on
parameter regions where the higher-order corrections relating
the running mass to the on-shell mass of the pseudo-scalar
Higgs boson get unacceptably large.

Buchmueller, Cavanaugh, De Roeck, Ellis, Flacher, Heinemeyer, 
Isidori, Olive, Ronga, Weiglein



Δχ2 map of m0 - m1/2 plane
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Neutralino mass and Relic 
Density from MCMC analysis

Buchmueller, Cavanaugh, De Roeck, Ellis, Flacher, Heinemeyer, 
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Elastic scaterring cross-section

CMSSM
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Elastic cross section from 
MCMC analysis
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Elastic cross section from 
MCMC analysis
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Most recent result from XENON100
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ATLAS Results from run I

~20.7fb-1 @ 8 TeV
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m1/2 - m0 planes incl. LHC
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The Higgs Search
The LHC @ ~20.7/fb

 (GeV)γγm
110 120 130 140 150S

/(S
+B

) W
ei

gh
te

d 
E

ve
nt

s 
/ 1

.5
 G

eV

0

500

1000

1500

Data
S+B Fit
B Fit Component

σ1±
σ2±

-1 = 8 TeV, L = 5.3 fbs-1 = 7 TeV, L = 5.1 fbsCMS

 (GeV)γγm
120 130

E
ve

nt
s 

/ 1
.5

 G
eV

1000

1500
Unweighted

Ev
en

ts
 / 

2 
G

eV

2000

4000

6000

8000

10000

ATLAS Preliminary
aaAH

-1Ldt = 4.8 fb0 = 7 TeV, s
-1Ldt = 20.7 fb0 = 8 TeV, s

Selected diphoton sample
Data 2011+2012

=126.8 GeV)
H

Sig+Bkg Fit (m
Bkg (4th order polynomial)

 [GeV]aam
100 110 120 130 140 150 160Ev

en
ts

 - 
Fi

tte
d 

bk
g

-200
-100

0
100
200
300
400
500



Limits at ~5 fb-1

Buchmueller, Cavanaugh, Citron, De Roeck, Dolan, Ellis, 
Flacher, Heinemeyer, Isidori, Marrouche, Martinez Santos, 
Nakach, Olive, Rogerson, Ronga, de Vries, Weiglein

Δχ2 map of m0 - m1/2 plane
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Comparison of best fit 
points pre and post LHC

p-value of SM = 9% (32.7/23) - but note: does not include dark matter

Buchmueller, Cavanaugh, Citron, De Roeck, Dolan, Ellis, 
Flacher, Heinemeyer, Isidori, Marrouche, Martinez Santos, 
Nakach, Olive, Rogerson, Ronga, de Vries, Weiglein

3

Model Data set Minimum Prob- m0 m1/2 A0 tanβ

χ2/d.o.f. ability (GeV) (GeV) (GeV)

CMSSM pre-LHC 21.5/20 37 % 90 360 -400 15

LHC1/fb 31.0/23 12% 1120 1870 1220 46

ATLAS5/fb (low) 32.8/23 8.5% 300 910 1320 16

ATLAS5/fb (high) 33.0/23 8.0% 1070 1890 1020 45

NUHM1 pre-LHC 20.8/18 29 % 110 340 520 13

LHC1/fb 28.9/22 15% 270 920 1730 27

ATLAS5/fb (low) 31.3/22 9.1% 240 970 1860 16

ATLAS5/fb (high) 31.8/22 8.1% 1010 2810 2080 39

Table 2. The best-fit points found in global CMSSM and NUHM1 fits using the ATLAS 5/fb jets + /ET

constraint [?], the combination of the ATLAS [?], CDF [?], CMS [?] and LHCb [?] BR(Bs → µ+µ−) [?]
constraints and the updated values of MW and mt, compared with those found previously in global fits
based on the LHC1/fb data set. In both cases, we include a measurement of Mh = 125 ± 1.0 ± 1.5 GeV
and the new XENON100 constraint [?]. In the case of the CMSSM, we list the parameters of the best-fit
points in both the low- and high-mass ‘islands’ in Fig. ??, and we quote results for a high-mass NUHM1
point as well as the low-mass best-fit point in this model. We note that the overall likelihood function is
quite flat in bot the CMSSM and the NUHM1, so that the precise locations of the best-fit points are not
very significant, and we do not quote uncertainties. For completeness, we note that in the best NUHM1
fit m2

H ≡ m2
Hu

= m2
Hd

= −6.5× 106 GeV2, compared with −5.5× 106 GeV2 previously.



New Higgs Mass Calculations
2

In the original version of H3m, the transition of mt

from the on-shell to the dr scheme could su↵er from
large logarithms if superpartners masses or renormaliza-
tion scales µ are much larger than mt. Since null re-
sults from the LHC increasingly favor this possibility,
the program has been improved in the following way.
First, we calculate mt(µ) in five-flavor QCD in the ms
scheme using 4-loop running as implemented in the nu-
merical package RunDec [18]. This value is transferred
to the dr scheme via a finite renormalization at 3-loop
order [19, 20]. Finally, the transition from five-flavor
QCD to SUSY-QCD is performed using the 2-loop de-
coupling coe�cient of mt [21, 22]. This procedure is
faster, more robust, and more accurate than the old
code. The new version of H3m is publicly available at
http://www.ttp.kit.edu/Progdata/ttp10/ttp10-23.

Results as a Function of Weak-Scale Parameters. We
now present results for the Higgs boson mass, including
the 3-loop corrections described above, as functions of
weak-scale supersymmetry parameters. We set tan� =
20 so that the tree-level Higgs boson mass is within 1
GeV of its maximal value, and we consider nearly de-
generate, unmixed stops, with m

˜tL = m
˜tR and Xt = 0.

The dependence on other parameters is relatively mild;
we set µ = 200 GeV, assume gaugino mass unification
with mg̃ = 1.5 TeV, and set all other sfermion soft mass
parameters equal to m

˜tL,R
+1 TeV. For multi-TeV values

of the sfermion masses, these models have scalar masses
far heavier than gaugino and Higgsino masses.

The results are shown in Fig. 1. For m
˜t1 in the range

1–10 TeV, 1-loop corrections raise the Higgs mass by 18
to 31 GeV, and 2-loop corrections raise the mass fur-
ther by another 4 to 7 GeV. The experimental value of
mh is apparently obtained for m

˜t1 ⇠ 5 TeV. However,
the 3-loop e↵ects raise the Higgs mass by another 0.5
to 3 GeV. The magnitude of the corrections decreases
with increasing loop order, indicating a well-behaved, if
slowly converging, perturbative expansion, and the size of
the 3-loop corrections is consistent, within uncertainties,
with the NLL analysis of Ref. [23]. Clearly, however, the
3-loop corrections are still sizable, and they reduce the
required top squark mass to 3 to 4 TeV, a reduction with
potentially great significance for supersymmetry discov-
ery, as we discuss below.

Ref. [23] observes partial cancellations between leading
logarithm terms of O(↵t↵2

s) and O(↵2

t↵s) in a particular
scenario. We advocate a full calculation at O(↵2

t↵s) to
investigate whether this behaviour is universal.

In Fig. 1, the width of the bands is determined by
the parametric uncertainty induced by the uncertainty
in the top quark mass and ↵s. It is dominated by the
uncertainty in the top mass. The top mass has been con-
strained by kinematic fits in combined analyses of Teva-
tron [24] and LHC [25] data, and may also be stringently
constrained in the future by cross section measurements
(see, e.g., Ref. [26]). For now, we consider the range
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FIG. 1. The Higgs boson mass mh from H3m at 1-, 2-,
and 3-loops for nearly degenerate (m

˜tL
= m

˜tR
), unmixed

(Xt = 0) top squarks, as a function of the physical mass
m

˜t1
. The renormalization scale is fixed to MS =

p
m

˜t1
m

˜t2
,

we set tan� = 20, µ = 200 GeV, all other sfermion soft
parameters equal to m

˜tL,R
+ 1 TeV, and assume gaugino

mass unification with mg̃ = 1.5 TeV. The bands indicate
the parametric uncertainty from mpole

t = 173.3 ± 1.8 GeV
and ↵s(mZ) = 0.1184 ± 0.0007. The horizontal bar is the
experimentally allowed range mh = 125.6± 0.4 GeV.

mpole

t = 173.3 ± 1.8 GeV. The resulting parametric un-
certainty is 0.5 to 2 GeV; it exceeds the experimental
uncertainty and is comparable to that expected from 4-
and higher-loop e↵ects in the theoretical prediction.

In Fig. 2, we compare our results to those of 2-loop
codes. The 2-loop results di↵er significantly from each
other, with di↵erences of up to 4 GeV for stop masses
in the 1 to 10 TeV range shown. The 3-loop results are
within this range for ⇠ TeV stop masses, as found in
Refs. [5, 6]. However, for multi-TeV stop masses, the
3-loop contributions may significantly enhance mh.

Some of the di↵erences between the 2-loop results can
be explained by di↵erent default choices for the renor-
malization scale. They also di↵er in how the running top
mass is extracted from its pole mass. This di↵erence is
formally of higher order [27]. The di↵erent treatment of
parameters also explains the di↵erence between H3m’s 2-
loop results and FeynHiggs. For example, FeynHiggs
uses 1-loop running for ↵s and mt, which is formally cor-
rect since the 2-loop results are leading order in ↵s.

Results for mSUGRA and Implications for Supersym-
metry at the LHC. To determine the implications of the
3-loop corrections for the LHC, we consider here the well-
known framework of minimal supergravity (mSUGRA),
defined in terms of GUT-scale parameters, for which de-
tailed collider studies have been carried out.

Feng, Kant, Profumo, Sanford

Includes dominant 
O(αt αs2)  corrections

FeynHiggs 2.10.0

to include next-to-leading
logs Log(mt/mt) to all orders~
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the theoretical uncertainty is both non-negligible
and non-universal.

2.4. The BR(Bs ! µ+µ�) and BR(Bd !
µ+µ�) Constraints

To date, the most precise measurements of
BR(Bs ! µ+µ�) and BR(Bd ! µ+µ�) have
been provided by the CMS Collaboration [19]:

BR(Bs ! µ+µ�) = (3.0+1.0
�0.9)⇥ 10�9 ,

BR(Bd ! µ+µ�) = (3.5+2.1
�1.8)⇥ 10�10 , (2)

and the LHCb Collaboration [20]:

BR(Bs ! µ+µ�) = (2.9+1.1
�1.0)⇥ 10�9 ,

BR(Bd ! µ+µ�) = (3.7+2.4
�2.1)⇥ 10�10 . (3)

These numbers correspond to time averaged (TA)
branching fractions, and are in good agreement
with the SM TA expectations [21] 2:

BR(Bs ! µ+µ�) = (3.56± 0.30)⇥ 10�9 , (4)

BR(Bd ! µ+µ�) = (1.07± 0.10)⇥ 10�10 . (5)

An o�cial combination of the CMS and LHCb
results can be found in the conference note [22]:

BR(Bs ! µ+µ�) = (2.9± 0.7)⇥ 10�9 , (6)

BR(Bd ! µ+µ�) = (3.6+1.6
�1.4)⇥ 10�10 . (7)

In our analysis, we combine BR(Bs ! µ+µ�)and
BR(Bd ! µ+µ�)into a single quantity, Rµµ =
(BR(Bs,d ! µ+µ�))NP /(BR(Bs,d ! µ+µ�))SM

using the following relation that holds in all mod-
els with minimal flavour violation (MFV), includ-
ing the CMSSM and the NUHM1:

✓
BR(Bs ! µ+µ�)

BR(Bd ! µ+µ�)

◆

MFV

= 30.35± 2.12 . (8)

We note that CMS has provided an estimate of
Rµµ = 1.01+0.31

�0.26 [?] from combining its mea-
surements. Here we construct a joint likelihood
for the four measurements (2, 3) using correla-
tion coe�cients between BR(Bs ! µ+µ�)and

2The results from the ATLAS [?], CDF [?] and D0 [?]
Collaborations are not considered in our study, as they
have less precision than the results of CMS and LHCb.

BR(Bd ! µ+µ�)of �50% in CMS and +3%
in LHCb [24]. The log-likelihoods of quantities
with asymmetric errors are approximated using a
treatment equivalent to formula (4) in [25]. We
assume the ratio of hadronization fractions of the
b quark, fd/fs = P (b ! B0

s )/P (b ! B0
d) to be

the same in both experiments.

Our final estimate after profiling on the theory
uncertainties and fd/fs is:

✓
BR(Bs,d ! µ+µ�)EXP

BR(Bs,d ! µ+µ�)SM

◆

TA

= 0.94+0.22
�0.21 .

We have checked that our approach reproduces
with good accuracy both the results in (6) and the
CMS Rµµ value, giving us confidence in our ap-
proximate treatment. The contribution this func-
tion makes to the global �2 function is shown as
the green line in Fig. 2, where it is compared with
the contribution calculated previously on the ba-
sis of the data made available in November 2012.

2.5. The Dark Matter Constraints

There are two important dark matter con-
straints on the CMSSM and NUHM1 parame-
ter spaces. One is the cosmological relic den-
sity ⌦�h

2 and the other is the upper limit on the
spin-independent elastic cold dark matter scatter-
ing cross section �SI . Upper limits on the spin-
dependent cross section do not impinge on the
parameter spaces of the models we study.

Previously, we used Micromegas 2.4.5 to cal-
culate ⌦�h

2, which we checked gave results simi-
lar to the independent SSARD code in the regions
of interest. Here we use Micromegas 3.2. The
recent results from the Planck satellite [?] refine
the previous observational estimate of ⌦�h

2, but
this does not alter significantly the implications
for other observables.

There are important uncertainties in the calcu-
lation of �SI that we incorporate in the present
analysis. The spin-independent matrix element
for �-nucleon scattering is proportional to a pa-
rameter fN that can be written as

fN
mN

=
X

q=u,d,s

f
(N)
Tq

↵3q

mq
+

2

27
f
(N)
TG

X

q=c,b,t

↵3q

mq
, (9)
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of interest. Here we use Micromegas 3.2. The
recent results from the Planck satellite [?] refine
the previous observational estimate of ⌦�h

2, but
this does not alter significantly the implications
for other observables.

There are important uncertainties in the calcu-
lation of �SI that we incorporate in the present
analysis. The spin-independent matrix element
for �-nucleon scattering is proportional to a pa-
rameter fN that can be written as

fN
mN

=
X

q=u,d,s

f
(N)
Tq

↵3q

mq
+

2

27
f
(N)
TG

X

q=c,b,t

↵3q

mq
, (9)

Combined:
Buchmuller et al.
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MCMC technique to sample efficiently the 
SUSY parameter space, and thereby 
construct the χ2 probability function

Combines SoftSusy, FeynHiggs, SuperFla, 
SuperIso, MicrOmegas, and SSARD

Purely frequentist approach (no priors) and 
relies only on the value of χ2  at the point 
sampled and not on the distribution of 
sampled points.

70 million points sampled (CMSSM)

Mastercode - MCMC

Buchmueller, Cavanaugh, Colling, De Roeck, Dolan, Ellis, 
Flacher, Heinemeyer, Olive, Rogerson, Ronga, Weiglein

Long list of observables to
constrain CMSSM parameter space
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in Section 6.1 the implications of removing the (g − 2)µ

constraint. We also discuss the predictions of our fits for
BR(b → sγ), Ωχh2 and Mh, presenting the likelihood
functions for each of these observables without their own
contributions. None of these observables exhibits any sig-
nificant tension with the others.

2 Description of the Frequentist Statistical
Method Employed

We define a global χ2 likelihood function, which combines
all theoretical predictions with experimental constraints:

χ2 =
N

∑

i

(Ci − Pi)2

σ(Ci)2 + σ(Pi)2

+ χ2(Mh) + χ2(BR(Bs → µµ))

+ χ2(SUSY search limits)

+
M
∑

i

(fobs
SMi

− ffit
SMi

)2

σ(fSMi
)2

(1)

Here N is the number of observables studied, Ci repre-
sents an experimentally measured value (constraint) and
each Pi defines a prediction for the corresponding con-
straint that depends on the supersymmetric parameters.
The experimental uncertainty, σ(Ci), of each measure-
ment is taken to be both statistically and systematically
independent of the corresponding theoretical uncertainty,
σ(Pi), in its prediction. We denote by χ2(Mh) and
χ2(BR(Bs → µµ)) the χ2 contributions from the two mea-
surements for which only one-sided bounds are available
so far, as discussed below. Furthermore we include the
lower limits from the direct searches for SUSY particles
at LEP [64] as one-sided limits, denoted by “χ2(SUSY
search limits)” in eq. (1).

We stress that, as in [4,53], the three standard model
parameters fSM = {∆αhad, mt, MZ} are included as fit
parameters and allowed to vary with their current exper-
imental resolutions σ(fSM). We do not include αs as a fit
parameter, which would have only a minor impact on the
analysis.

Formulating the fit in this fashion has the advantage
that the χ2 probability, P (χ2, Ndof), properly accounts
for the number of degrees of freedom, Ndof , in the fit and
thus represents a quantitative and meaningful measure for
the “goodness-of-fit.” In previous studies [53], P (χ2, Ndof)
has been verified to have a flat distribution, thus yielding
a reliable estimate of the confidence level for any par-
ticular point in parameter space. Further, an important
aspect of the formulation is that all model parameters
are varied simultaneously in the MCMC sampling, and
care is exercised to fully explore the multi-dimensional
space, including possible interdependencies between pa-
rameters. All confidence levels for selected model param-
eters are performed by scanning over the desired parame-
ters while minimizing the χ2 function with respect to all

other model parameters. That is, in order to determine
the function χ2(x) for some model parameter x, all the
remaining free parameters are set to values corresponding
to a new χ2 minimum determined for fixed x. The function
values where χ2(x) is found to be equal to χ2

min +∆χ2 de-
termine the confidence level contour. For two-dimensional
parameter scans we use ∆χ2 = 2.28(5.99) to determine
the 68%(95%) confidence level contours.

Only experimental constraints are imposed when de-
riving confidence level contours, without any arbitrary
or direct constraints placed on model parameters them-
selves.3 This leads to robust and statistically meaning-
ful estimates of the total 68% and 95% confidence levels,
which may be composed of multiple separated contours.
Finally, the sensitivity of the global fit to different con-
straint scenarios can be studied by removing one of the
experimental constraints or by rescaling one of the exper-
imental uncertainties, as discussed in Sect. 3 in [4]. Stud-
ies of such scenarios are particularly helpful in identifying
which experimental data are most useful in constraining
the theoretical model and hence in precisely studying how
hyper-volumes in parameter space become more tightly
constrained (either now or in the future).

Since each new scenario in which a parameter is re-
moved or an uncertainty re-scaled represents, fundamen-
tally, a new χ2 function which must be minimized, mul-
tiple re-samplings of the full multi-dimensional param-
eter space are, in principle, required to determine the
most probable fit regions for each scenario. However, these
would be computationally too expensive. To avoid this dif-
ficulty, we exploit the fact that independent χ2 functions
are additive and result in a well defined χ2 probability.
Hence, we define “loose” χ2 functions, χ2

loose, in which the
term representing some constraint, e.g., ΩCDM, is removed
from the global χ2 function. The χ2

loose function represents
the likelihood that a particular set of model parameter val-
ues is compatible with a sub-set of the experimental data
constraints, without any experimental knowledge of the
removed constraint.

An exhaustive, and computationally expensive, 25 mil-
lion point pre-sampling of the χ2

loose function is then per-
formed in the full multi-dimensional model parameter
space using a MCMC. Constraint terms representing the
various experimental scenarios are then re-instated or re-
moved to form different χ2 functions, one for each scenario
studied. If the scenario requires an additional constraint
to be removed from the χ2

loose function, the density of
points pre-sampled for the χ2

loose function was carefully
tested and verified to also be an unbiased and sufficiently
complete sampling of the studied model parameter space
for the full χ2 function by using dedicated MCMC sam-
ples of approximately one million sampling points each,
where the particular constraint in question was removed.

3 For reasons of stability of higher-order contributions, we
limit the range of tanβ to values below tanβ = 60. As ex-
plained in Section 3 below, we furthermore impose a cut on
parameter regions where the higher-order corrections relating
the running mass to the on-shell mass of the pseudo-scalar
Higgs boson get unacceptably large.
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in Section 6.1 the implications of removing the (g − 2)µ

constraint. We also discuss the predictions of our fits for
BR(b → sγ), Ωχh2 and Mh, presenting the likelihood
functions for each of these observables without their own
contributions. None of these observables exhibits any sig-
nificant tension with the others.

2 Description of the Frequentist Statistical
Method Employed

We define a global χ2 likelihood function, which combines
all theoretical predictions with experimental constraints:

χ2 =
N

∑

i

(Ci − Pi)2

σ(Ci)2 + σ(Pi)2

+ χ2(Mh) + χ2(BR(Bs → µµ))

+ χ2(SUSY search limits)

+
M
∑

i

(fobs
SMi

− ffit
SMi

)2

σ(fSMi
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Here N is the number of observables studied, Ci repre-
sents an experimentally measured value (constraint) and
each Pi defines a prediction for the corresponding con-
straint that depends on the supersymmetric parameters.
The experimental uncertainty, σ(Ci), of each measure-
ment is taken to be both statistically and systematically
independent of the corresponding theoretical uncertainty,
σ(Pi), in its prediction. We denote by χ2(Mh) and
χ2(BR(Bs → µµ)) the χ2 contributions from the two mea-
surements for which only one-sided bounds are available
so far, as discussed below. Furthermore we include the
lower limits from the direct searches for SUSY particles
at LEP [64] as one-sided limits, denoted by “χ2(SUSY
search limits)” in eq. (1).

We stress that, as in [4,53], the three standard model
parameters fSM = {∆αhad, mt, MZ} are included as fit
parameters and allowed to vary with their current exper-
imental resolutions σ(fSM). We do not include αs as a fit
parameter, which would have only a minor impact on the
analysis.

Formulating the fit in this fashion has the advantage
that the χ2 probability, P (χ2, Ndof), properly accounts
for the number of degrees of freedom, Ndof , in the fit and
thus represents a quantitative and meaningful measure for
the “goodness-of-fit.” In previous studies [53], P (χ2, Ndof)
has been verified to have a flat distribution, thus yielding
a reliable estimate of the confidence level for any par-
ticular point in parameter space. Further, an important
aspect of the formulation is that all model parameters
are varied simultaneously in the MCMC sampling, and
care is exercised to fully explore the multi-dimensional
space, including possible interdependencies between pa-
rameters. All confidence levels for selected model param-
eters are performed by scanning over the desired parame-
ters while minimizing the χ2 function with respect to all

other model parameters. That is, in order to determine
the function χ2(x) for some model parameter x, all the
remaining free parameters are set to values corresponding
to a new χ2 minimum determined for fixed x. The function
values where χ2(x) is found to be equal to χ2

min +∆χ2 de-
termine the confidence level contour. For two-dimensional
parameter scans we use ∆χ2 = 2.28(5.99) to determine
the 68%(95%) confidence level contours.

Only experimental constraints are imposed when de-
riving confidence level contours, without any arbitrary
or direct constraints placed on model parameters them-
selves.3 This leads to robust and statistically meaning-
ful estimates of the total 68% and 95% confidence levels,
which may be composed of multiple separated contours.
Finally, the sensitivity of the global fit to different con-
straint scenarios can be studied by removing one of the
experimental constraints or by rescaling one of the exper-
imental uncertainties, as discussed in Sect. 3 in [4]. Stud-
ies of such scenarios are particularly helpful in identifying
which experimental data are most useful in constraining
the theoretical model and hence in precisely studying how
hyper-volumes in parameter space become more tightly
constrained (either now or in the future).

Since each new scenario in which a parameter is re-
moved or an uncertainty re-scaled represents, fundamen-
tally, a new χ2 function which must be minimized, mul-
tiple re-samplings of the full multi-dimensional param-
eter space are, in principle, required to determine the
most probable fit regions for each scenario. However, these
would be computationally too expensive. To avoid this dif-
ficulty, we exploit the fact that independent χ2 functions
are additive and result in a well defined χ2 probability.
Hence, we define “loose” χ2 functions, χ2

loose, in which the
term representing some constraint, e.g., ΩCDM, is removed
from the global χ2 function. The χ2

loose function represents
the likelihood that a particular set of model parameter val-
ues is compatible with a sub-set of the experimental data
constraints, without any experimental knowledge of the
removed constraint.

An exhaustive, and computationally expensive, 25 mil-
lion point pre-sampling of the χ2

loose function is then per-
formed in the full multi-dimensional model parameter
space using a MCMC. Constraint terms representing the
various experimental scenarios are then re-instated or re-
moved to form different χ2 functions, one for each scenario
studied. If the scenario requires an additional constraint
to be removed from the χ2

loose function, the density of
points pre-sampled for the χ2

loose function was carefully
tested and verified to also be an unbiased and sufficiently
complete sampling of the studied model parameter space
for the full χ2 function by using dedicated MCMC sam-
ples of approximately one million sampling points each,
where the particular constraint in question was removed.

3 For reasons of stability of higher-order contributions, we
limit the range of tanβ to values below tanβ = 60. As ex-
plained in Section 3 below, we furthermore impose a cut on
parameter regions where the higher-order corrections relating
the running mass to the on-shell mass of the pseudo-scalar
Higgs boson get unacceptably large.

Mastercode - MultiNest

MCMC technique to sample efficiently the 
SUSY parameter space, and thereby 
construct the χ2 probability function

Combines SoftSusy, FeynHiggs, SuperFla, 
SuperIso, MicrOmegas, and SSARD

Purely frequentist approach (no priors) and 
relies only on the value of χ2  at the point 
sampled and not on the distribution of 
sampled points.

12 million points sampled (CMSSM)
Buchmueller, Cavanaugh, De Roeck, Dolan, Ellis, Flacher, 
Heinemeyer, Isidori, Marrouche, Martinez Santos, Olive, 
Rogerson, Ronga, de Vries, Weiglein
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Comparison of best fit 
points pre and post LHC 11

Model Data set Minimum Prob- m0 m1/2 A0 tan�

�2/d.o.f. ability (GeV) (GeV) (GeV)

CMSSM ATLAS 7 TeV 32.6/23 8.8% 340 910 2670 12

µ > 0 ATLAS20/fb (low) 35.6/23 4.5% 710 1070 3580 21

ATLAS20/fb (high) 34.9/23 5.3% 3310 2180 -1490 51

CMSSM ATLAS20/fb (low) 37.8/23 2.7% 2100 660 4930 11

µ < 0 ATLAS20/fb (high) 36.9/23 3.3% 6490 2430 -3300 36

NUHM1 ATLAS 7 TeV 30.4/22 10.9% 360 1080 4990 9

µ > 0 ATLAS20/fb (low) 33.1/22 6.0% 470 1270 5700 11

ATLAS20/fb (high) 32.7/22 6.6% 1380 3420 -3140 39

“SM” ATLAS20/fb (high) 36.5/24 5.0% - - - -

Table 1. The best-fit points found in global CMSSM fits for both signs of µ and an NUHM1 fit with µ > 0,
using the ATLAS 20/fb jets + /ET constraint [4], and the combination of the CMS [2] and LHCb [3]
constraints on BR(Bs,d ! µ+µ�) [48], as well as an update of the FeynHiggs calculation of Mh and a
more conservative treatment of the hadronic matrix element uncertainties in �SI

p , as discussed in the text.
The results for the CMSSM with µ > 0 and the NUHM1 are compared with those found previously in global
fits based on the ATLAS 7-TeV /ET data and the previous experimental constraint on BR(Bs,d ! µ+µ�),
and with a current SM fit made using the procedure discussed in the text. We list the parameters of the
best-fit points in both the low- and high-mass ‘islands’ in Figs. 4, 9 and 13. We note that the overall
likelihood function is quite flat in both the CMSSM and the NUHM1, so that the precise locations of
the best-fit points are not very significant, and we do not quote uncertainties. For completeness, we
note that in the best NUHM1 fits m2

H ⌘ m2
Hu

= m2
Hd

= �2.54 ⇥ 107 GeV2 at the low-mass point and

m2
H ⌘= 1.33⇥ 107 GeV2 at the high-mass point. KJ: these are the most up to date numbers. Note that

A0 quoted here follows Keiths convention which has the opposite sing of that from SoftSUSY. Also, I took
the dof of SM to be dofcMSSM + npar,cMSSM � nnuisance � nN/A = 23 + 7� 4� 3 = 23. Here nN/A are
the non applicable constraints from lux, atlas, MA-tanb, and Oh2

gies with leptons and/or b jets could have impact
when m1/2

>⇠ 500 GeV, depending in particular
on the value of tan� and/or A0. We have not at-
tempted to model these limits, but note that they
would not a↵ect the 68% CL region displayed.

Finally, the lower right panel of Fig. 4 displays
the (MA, tan�) plane of the CMSSM. We see that
in the low-mass coannihilation ‘island’ typical val-
ues of MA ⇠ 1500 to 2500 GeV. The best-fit
point has a similar value of MA, but with a much
larger value of tan�. The band at large tan�
corresponds to the rapid-annihilation funnel re-

gion. It is clear that the larger values of m0 seen
in the other panels correspond to large values of
MA ⇠ 2500 GeV and more.

KJ: would it be an idea to show depict with
the solid contours the new sampling , but old
constraints & implementations. This way we can
truly see the di↵erence in codes only John: OK! In
order to analyze the e↵ects of the updates in our
phenomenological evaluations/codes, we compare
in Fig. 5 the results obtained with our current
implementations of the constraints used in [18]
and resampling using MultiNest (solid lines and

Buchmueller, Cavanaugh, De Roeck, Dolan, Ellis, Flacher, 
Heinemeyer, Isidori, Marrouche, Martinez Santos, Olive, Rogerson, 
Ronga, de Vries, Weiglein

Preliminary



Effective four-fermion Lagrangian

As a simplification, we neglect CP violation in this paper, so that γf = 0 and there are no

CP-violating phases in the neutralino mass matrix, either. We treat m1/2, m0, A and tanβ

as free parameters, and µ and the pseudoscalar Higgs mass mA as dependent parameters

specified by the electroweak vacuum conditions, which we calculate using mt = 175 GeV 1.

The MSSM Lagrangian leads to the following low-energy effective four-fermi Lagrangian

suitable for describing elastic χ-nucleon scattering [16]:

L = χ̄γµγ5χq̄iγµ(α1i + α2iγ
5)qi + α3iχ̄χq̄iqi +α4iχ̄γ5χq̄iγ

5qi + α5iχ̄χq̄iγ
5qi +α6iχ̄γ5χq̄iqi (3)

This Lagrangian is to be summed over the quark generations, and the subscript i labels up-

type quarks (i = 1) and down-type quarks (i = 2). The terms with coefficients α1i, α4i, α5i

and α6i make contributions to the elastic scattering cross section that are velocity-dependent,

and may be neglected for our purposes. In fact, if the CP violating phases are absent as

assumed here, α5 = α6 = 0 [17]. The coefficients relevant for our discussion are:

α2i =
1

4(m2
1i − m2

χ)

[

|Yi|2 + |Xi|2
]

+
1

4(m2
2i − m2

χ)

[

|Vi|2 + |Wi|2
]

−
g2

4m2
Z cos2 θW

[

|Zχ3
|2 − |Zχ4

|2
] T3i

2
(4)

and

α3i = −
1

2(m2
1i − m2

χ)
Re [(Xi) (Yi)

∗] −
1

2(m2
2i − m2

χ)
Re [(Wi) (Vi)

∗]

−
gmqi

4mWBi

[

Re (δ1i[gZχ2 − g′Zχ1])DiCi

(

−
1

m2
H1

+
1

m2
H2

)

+ Re (δ2i[gZχ2 − g′Zχ1])

(

D2
i

m2
H2

+
C2

i

m2
H1

)]

(5)

where

Xi ≡ η∗

11

gmqi
Z∗

χ5−i

2mWBi
− η∗

12eig
′Z∗

χ1

Yi ≡ η∗

11

(

yi

2
g′Zχ1 + gT3iZχ2

)

+ η∗

12

gmqi
Zχ5−i

2mW Bi

Wi ≡ η∗

21

gmqi
Z∗

χ5−i

2mWBi
− η∗

22eig
′Z∗

χ1

Vi ≡ η∗

22

gmqi
Zχ5−i

2mWBi
+ η∗

21

(

yi

2
g′Zχ1 + gT3iZχ2

)

(6)

1We have checked that varying mt by ±5 GeV has a negligible effect on our results.
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3

The terms proportional to α1, α4, α5, α6, 
lead to velocity-dependent cross sections

Remaining terms:

α2: Spin-dependent cross section 
α3: Spin-independent cross section



The scalar cross section

where

and

determined by

Uncertainties from hadronic matrix elements

where

Xi ≡ η∗11
gmqi

Z∗

χ5−i

2mW Bi
− η∗12eig

′Z∗

χ1,

Yi ≡ η∗11

(
yi

2
g′Zχ1 + gT3iZχ2

)

+ η∗12
gmqi

Zχ5−i

2mW Bi
,

Wi ≡ η∗21
gmqi

Z∗

χ5−i

2mW Bi
− η∗22eig

′Z∗

χ1,

Vi ≡ η∗22
gmqi

Zχ5−i

2mW Bi
+ η∗21

(
yi

2
g′Zχ1 + gT3iZχ2

)

, (4)

with yi, T3i denoting hypercharge and isospin, and

δ1i = Zχ3(Zχ4), δ2i = Zχ4, (−Zχ3) (5)

Bi = sin β(cosβ), Ci = sinα(cosα), Di = cosα(− sinα), (6)

for up (down) type quarks. We denote by mH2
< mH1

the two scalar Higgs masses, and α

denotes the Higgs mixing angle. Finally, we note that the factors ηij arise from the diagonal-
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Figure 1. TODO KJ: correct label and legend The contribution to the global �2 function of the ATLAS
and CMS measurements of Mh, as calculated using the central value and theoretical uncertainty esti-
mate provided by FeynHiggs 2.10.0, compared with the contribution calculated assuming a theoretical
uncertainty of 1.5 GeV, as in [?].

our treatment. The contribution this function
makes to the global �2 function is shown as the
green line in Fig. ??, where it is compared with
the contribution calculated previously on the ba-
sis of the data made available in November 2012.

2.6. The Dark Matter Constraints

There are two important dark matter con-
straints on the CMSSM and NUHM1 parame-
ter spaces. One is the cosmological dark matter
density ⌦�h

2 = 0.1198 ± 0.0026 estimated from
Planck data [?], and the other is the upper limit
on the spin-independent elastic cold dark matter
scattering cross section �SI

p from the LUX exper-
iment [?], which is stronger by a factor ⇠ 2 than
the XENON100 experiment [?] in the range of
neutralino masses relevant to this study. Upper
limits on the spin-dependent cross section do not
impinge on the parameter spaces of the models
we study.

Previously, we used Micromegas 2.4.5 to cal-
culate ⌦�h

2, which we checked gave results simi-
lar to the independent SSARD code in the regions
of interest. Here we use Micromegas 3.2 [?]. The
recent results from the Planck satellite [?] refine

the previous observational estimate of ⌦�h
2, but

this does not alter significantly the implications
for other observables.

We compute the elastic scattering cross sec-
tion, �SI

p using [?]. There are, however, impor-
tant uncertainties in the calculation of �SI

p and
these are now incorporated in the present analy-
sis also computed using [?]. There are two major
sources for these uncertainties which we review
here briefly. The first is the uncertainty is related
to the shift in the nucleon mass due to finite quark
masses, �0 = 36 ± 7 MeV. The second is due to
the uncertainty in the ⇡-nucleon sigma term, ⌃⇡N ,
which we take here as 50± 7 MeV.

The spin-independent matrix element for �̃0
1-

nucleon scattering is proportional to a parameter
fN that can be written as

fN
mN

=
X

q=u,d,s

f
(N)
Tq

↵3q

mq
+

2

27
f
(N)
TG

X

q=c,b,t

↵3q

mq
, (9)

where the parameters f (N)
Tq

are defined by

mNf
(N)
Tq

⌘ hN |mq q̄q|Ni , (10)

fTu,d / ⌃⇡N fTs / ⌃⇡Ny
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Figure 2. The contribution to the global �2 function of the LHCb and CMS measurements of BR(Bs !
µ+µ�) and BR(Bd ! µ+µ�) reported in (??, ??), as calculated using the prescription described in
the text (green line) compared with the contribution calculated previously on the basis of the data made
available in November 2012 (blue line). KJ: Please note that the blue curve is the �2 penalty from HCP
2012, which came after mc8. At the time we featured the impact of the ”first evidence” of the decay on
our website. Are we happy with this? John: Keith and I think we compare with the actual penalty used
in [?].

with [?,?]

f
(N)
TG = 1�

X

q=u,d,s

f
(N)
Tq

. (11)

An expression for ↵3q in terms of supersymmet-
ric model parameters is given in [?]: it does not
contribute significantly to the uncertainty in the
calculation of the cross section, which is domi-
nated by uncertainties in hadronic parameters.

These matrix elements are all directly propor-
tional to ⌃⇡N . It is well known that the elastic
cross section is very sensitive to the strange scalar
density in the nucleon,

y = 1� �0/⌃⇡N (12)

Indeed, fTs is proportional to ⌃⇡Ny, and hence
the uncertainties in both ⌃⇡N and �0 enter.
Our calculation of the uncertainty in the elastic

cross section propagates the independent uncer-
tainties in ⌃⇡N , �0 as well as uncertainties in the
quark mass ratios md/mu and ms/md, though

the latter two are much smaller than the former
two. For a more complete discussion of these un-
certainies, see [?]. Thus, while the uncertainty
in �p is often attributed to the uncertainty in
⌃⇡N , there is an almost equally large contribu-
tion to the uncertainty in �SI

p coming from �0,
particularly in the determination of the impor-
tant strangeness contribution, fTs .

We display in Fig. ?? the contribution to the
global �2 function that we calculate on the ba-
sis of the LUX 90% CL upper limit on the spin-
independent cross section �SI

p [?], without (red
points) and with (blue points) taking into ac-
count the uncertainty in the calculation of �SI

p .
The error bars on the blue points illustrate this
uncertainty.
JE: Are we happy with the current version of

Fig. ???

⌃⇡N = 50± 7 MeV �0 = 36± 7MeV



Uncertainties due to ΣπN
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May require more general models
which are concordant with LHC MET; 
Higgs; and Bs →μ+μ-; and Dark Matter



Other Possibilities

NUHM1,2:  m12 = m22 ≠ m02, m12 ≠ m22 ≠ m02

μ and/or mA free

subGUT models: Min < MGUT

with or without mSUGRA

May require more general models
which are concordant with LHC MET; 
Higgs; and Bs →μ+μ-; and Dark Matter



Ellis, Luo, Olive, Sandick

NUHM1 models with μ or mA free
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Moving beyond the CMSSM-like models



Moving beyond the CMSSM-like models

Models with 
Strongly Stabilized Moduli;

Pure Gravity Mediation (PGM)



Moving beyond the CMSSM-like models

Models with 
Strongly Stabilized Moduli;

Pure Gravity Mediation (PGM)
Usually ignored in phenomenological studies of the 
MSSM

In general, many moduli:

Volume Modulus: destabilization

Polonyi-like fields: cosmological entropy production; 
gravitino production; LSP production....



Consider a Polonyi-like modulus
	 but with a non-minimal kinetic term

K = ZZ̄ � (ZZ̄)2

⇤2

and Polonyi superpotential

W = µ2(Z + ⌫)

Dine et al,
Kitano

Z =
1p
2
(z + i�)where

hziMin '
⇤2

p
6

, h�i = 0 , ⌫ ' 1p
3



Impact on Phenomenology

Soft scalar masses
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Impact on Phenomenology

Soft scalar masses

A terms A0 '
1
2
m3/2⇤2

m3/2 = heK/2W i ' µ2/
p

3

m2
z,� '

12 m2
3/2

⇤2
� m2

3/2

Massive scalar sector as in split 
susy, with anomaly mediation for 

A-terms and gaugino masses

m2
0 = m2

3/2

+ anomalies
gaugino masses anomalies



Pure Gravity Mediation
Two parameter model!

m0 = m3/2; tan β 

gaugino masses (and A-terms) generated through 
loops

⇒ Push towards very large masses

M1 =
33
5

g2
1

16⇡2
m3/2 ,

M2 =
g2
2

16⇡2
m3/2 ,

M3 = �3
g2
3

16⇡2
m3/2 .

Evans,Ibe,Olive,Yanagida



The sfermion and  gravitino have masses O(100) TeV.

The higgsino and the heavier Higgs boson also have 
masses O(100) TeV.

The gaugino masses are in the range of  hundreds to 
thousands of GeV.

The LSP is the neutral wino which is nearly degenerate 
with the charged wino.

The lightest Higgs boson mass is consistent with the 
observed Higgs-like boson, i.e. mh ~ 125 - 126 GeV.

Pure Gravity Mediation



Phenomenological Aspects

Higgs Mass Neutralino mass
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Somewhat more freedom with 
non-universal Higgs masses
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Phenomenological Aspects

gluino Mass chargino mass
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Dark Matter

•Dark matter is something else (axion) 

•LSPs from gravitino or moduli (Z) decay

•m3/2 ~ 650 TeV, and Ωh2 ~ 0.11

⌦�h2 =
m�

m3/2
⌦3/2h

2 = 0.4(
m�

TeV
)(

TR

1010GeV
)



Other Phenomenological Aspects

Dark Matter:
 LSP is a wino
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dark matter from Fermi/HESS 
(Fan + Reese; 
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Summary

LHC susy and Higgs searchs have pushed CMSSM-like 
models to “corners”

Though many phenomenological solutions are still viable

Models with strong moduli stabilization:

easier for inflation, 

no cosmological problems

interesting phenomenology

Heavy scalar spectrum with anomaly mediated gaugino 
masses

Challenge lies in detection strategies


