Measurements of $\bar{B} \to D^{(*)} \tau^- \bar{\nu}_{\tau}$ Decays and Implications for Charged Higgs Bosons

Phys. Rev. D 88, 031102(R) (2013) & arXiv:1303.0571 [hep-ex] (Accepted by PRD)

Florian Bernlochner

on behalf of the BABAR collaboration

University of Victoria, Canada

November, 2013

PASCOS 2013

Taipei, Taiwan

Talk Overview

- i Motivation
- ii BABAR detector & experimental methods
- iii Analyses overview
- iv Implications for Charged Higgs Bosons
- v Summary

i Motivation

$\ensuremath{\textbf{Flavor physics}}$ and physics beyond the Standard Model (SM):

* Precision measurements in Flavor sector

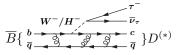
Constrain new physics O(500 GeV - 1 TeV)

* Directs where direct search are promising.

SM Semileptonic decays: Weak $b \rightarrow c$ transition moderated by a (virtual) *W* boson:

* $\mathcal{H}_{eff}^{SM} = \frac{4G_F V_{cb}}{\sqrt{2}} \left[(\bar{c} \gamma_{\mu} P_L b) (\bar{\tau} \gamma^{\mu} P_L \nu_{\tau}) \right]$ $P_L = \text{projection operators, h.c. term dropped}$

BSM Contributions: 2 Higgs Doublet Model (2HDM) type II or III

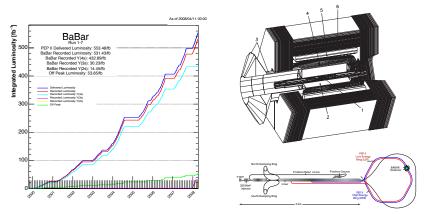

an extension of the Higgs mechanism necessary e.g. for $\ensuremath{\mathsf{SUSY}}$

*
$$\mathcal{H}_{\text{eff}}^{\text{SM}} + \frac{4G_F V_{cb}}{\sqrt{2}} \left[S_L \left(\bar{c} P_L b \right) \left(\bar{\tau} P_L \nu_\tau \right) + S_R \left(\bar{c} P_R b \right) \left(\bar{\tau} P_L \nu_\tau \right) \right]$$

in type II $S_L = 0$; in type III: $S_L \neq 0$

Beyond SM decay:

- → Charged Higgs mediator modifies decay rate
- \rightarrow Function of tan $\beta/m_{\mu\pm}$


Motivation

Use rate and final state kinematic to constrain parameter space of these models.

ii BABAR detector & experimental methods BABAR was a multipurpose experiment operated at the Pep-II B-Factory

colliding $e^+ e^-$ at the energy of the $\Upsilon(4S)$ resonance at $\sqrt{s} = 10.58$ GeV with the focus

CP violation, τ physics, ISR, b and c quark decays

(1) Silicon vertex tracker; (2) Drift chamber; (3) Cherenkov light detector; (4) Electromagnetic calorimeter; (5) superconducting coil; (6) Flux return & Muon detection **Recorded 432/fb or about 471 million** $\Upsilon(4S) \rightarrow B\bar{B}$ decays

all of them are used in this analysis.

Reconstruct $\bar{B} \to D^{(*)} \tau^- \bar{\nu}_{\tau}$ with $\tau^- \to \ell^- \bar{\nu}_{\ell}$

To reconstruct the *missing momentum* of the neutrino: try to fully reconstruct the $2^{nd} B$

\downarrow

- * $\Upsilon(4S) \rightarrow B\overline{B}$ decays are tagged by hadronic decays of one of the *B* mesons
- Semi-exclusive algorithm; constructing many 2nd B candidates per event
- $\label{eq:extra} \begin{array}{l} \rightarrow & \mbox{Select best candiate with lowest ${\rm E}_{\rm extra}$} \\ {\rm E}_{\rm extra} = \mbox{energy sum of all photons not associated with $B\bar{B}$ pair; minimal threshold 50 MeV. } \end{array}$

Hadronic reconstruction efficiency: ϵ_{tag} challenging to derive reliably

* Can be avoided with ratio of two branching fractions: $\begin{aligned} & \epsilon_{\rm tag}^{\rm decay\;1} / \epsilon_{\rm tag}^{\rm decay\;2} = 1 \\ & \text{when decays have the same final state topology} \end{aligned}$ iii.a Analysis overview

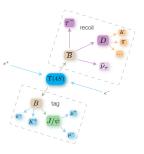
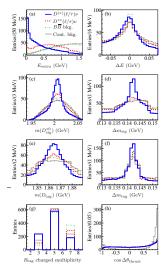


Illustration of hadronic 'tag' and 'recoil' B

$$\begin{split} & \textbf{Measurement Goal} \\ & \textbf{R}(D^*) = \frac{\mathcal{B}(\bar{B} \rightarrow D^{(*)}\tau\bar{\nu}_{\tau})}{\mathcal{B}(\bar{B} \rightarrow D^{(*)}\ell\bar{\nu}_{\ell})} \\ & \textbf{Benefits: Dependency on } |V_{cb}| \\ & \text{drop out, QCD form factor uncertainties correlated, } \epsilon_{tag} \text{ drops out.} \end{split}$$


After initial selection $\bar{B} \rightarrow D^{(*)}(\tau/\ell) \bar{\nu}$ account only for 2% of the total events

Kinematic cut on $q^2 = (p_B - p_{D^*})^2$ rejects most semileptonic background $q_{min}^2 = m_\ell^2$

Boosted Decision Tree to separate semileptonic decays with $q^2 > 4 \text{ GeV}^2$ from other background

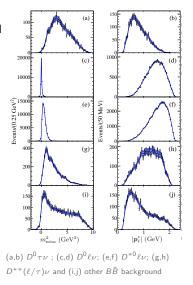
* Trained with **8** variables on simulated signal and background

After BDT selection $\bar{B} \to D^{(*)}(\tau/\ell) \ \bar{\nu}$ purity increases to 39%

8 input variables of the BDT

Signal and Background separation: unbinned extended maximum likelihood fit in 2D

* Lepton 3-momentum in *B* meson rest frame: $|p_{\ell}^*|$


 $B \to D^{(*)} \tau \bar{\nu}_\tau$ signal: Lepton from $\tau \to \ell \, \bar{\nu}_\ell$ decay

* Missing mass squared: m_{miss}^2 = $m_{\nu}^2 = (p_{B^{\text{tag}}} - p_{D^{(*)}} - p_{\ell})^2$

Signal & Background PDFs:

2D Gaussian kernel estimators with appropriate smoothing from simulated signal and background decays

Statistical uncertainty on shape introduced as nuisance parameter in fit.

iii.d Fit result for 4 final states: $D^0 \ell$, $D^{*0} \ell$, $D^+ \ell$, $D^{*+} \ell$

Fit results:

isospin uncon. fit 2D projections

Results for $\mathcal{R}(D^{(*)})$:

Decay	$N_{\rm sig}$	$N_{\rm norm}$	$\varepsilon_{\rm sig}/\varepsilon_{\rm norm}$	$R(D^{(*)})$	$\mathcal{B}(B \rightarrow D^{(*)}\tau\nu)$ (%)	$\Sigma_{\rm stat}$	$\Sigma_{\rm tot}$
$B^- \rightarrow D^0 \tau^- \overline{\nu}_{\tau}$	314 ± 60	1995 ± 55	0.367 ± 0.011	$0.429\pm0.082\pm0.052$	$0.99\pm0.19\pm0.12\pm0.04$	5.5	4.7
$B^- \rightarrow D^{*0} \tau^- \overline{\nu}_{\tau}$	639 ± 62	8766 ± 104	0.227 ± 0.004	$0.322\pm0.032\pm0.022$	$1.71\pm0.17\pm0.11\pm0.06$	11.3	9.4
$\overline{B}^0 \rightarrow D^+ \tau^- \overline{\nu}_{\tau}$	177 ± 31	986 ± 35	0.384 ± 0.014	$0.469\pm0.084\pm0.053$	$1.01\pm0.18\pm0.11\pm0.04$	6.1	5.2
$\overline{B}{}^{0} \rightarrow D^{*+} \tau^{-} \overline{\nu}_{\tau}$	245 ± 27	3186 ± 61	0.217 ± 0.005	$0.355\pm0.039\pm0.021$	$1.74 \pm 0.19 \pm 0.10 \pm 0.06$	11.6	10.4
$\overline{B} \rightarrow D\tau^- \overline{\nu}_{\tau}$	489 ± 63	2981 ± 65	0.372 ± 0.010	$0.440\pm0.058\pm0.042$	$1.02 \pm 0.13 \pm 0.10 \pm 0.04$	8.4	6.8
$\overline{B} \rightarrow D^* \tau^- \overline{\nu}_{\tau}$	888 ± 63	11953 ± 122	0.224 ± 0.004	$0.332\pm0.024\pm0.018$	$1.76 \pm 0.13 \pm 0.10 \pm 0.06$	16.4	13.2

Full set of systematic uncertainties is evaluated:

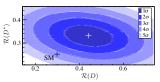
	Fractional uncertainty (%)				Correlation				
Source of uncertainty	$\mathcal{R}(D^0)$	$\mathcal{R}(D^{*0})$	$\mathcal{R}(D^+)$	$R(D^{*+})^{'}$	$\mathcal{R}(D)$	$\mathcal{R}(D^*)$	D^0/D^{*0} 1	D^{+}/D^{*+}	D/D^*
Additive uncertainties									
PDFs									
MC statistics	6.5	2.9	5.7	2.7	4.4	2.0	-0.70	-0.34	-0.56
$\overline{B} \rightarrow D^{(*)}(\tau^{-}/\ell^{-})\overline{\nu}$ FFs	0.3	0.2	0.2	0.1	0.2	0.2	-0.52	-0.13	-0.35
$D^{**} \rightarrow D^{(*)}(\pi^0/\pi^{\pm})$	0.7	0.5	0.7	0.5	0.7	0.5	0.22	0.40	0.53
$\mathcal{B}(\overline{B} \rightarrow D^{**}\ell^-\overline{\nu}_\ell)$	1.0	0.4	1.0	0.4	0.8	0.3	-0.63	-0.68	-0.58
$B(\overline{B} \rightarrow D^{**}\tau^-\overline{\nu}_{\tau})$	1.2	2.0	2.1	1.6	1.8	1.7	1.00	1.00	1.00
$D^{**} \rightarrow D^{(*)}\pi\pi$	2.1	2.6	2.1	2.6	2.1	2.6	0.22	0.40	0.53
Cross-feed constraints									
MC statistics	2.6	0.9	2.1	0.9	2.4	1.5	0.02	-0.02	-0.16
$f_{D^{**}}$	6.2	2.6	5.3	1.8	5.0	2.0	0.22	0.40	0.53
Feed-up/feed-down	1.9	0.5	1.6	0.2	1.3	0.4	0.29	0.51	0.47
Isospin constraints	-	-	-	-	1.2	0.3	-	-	-0.60
Fixed backgrounds									
MC statistics	4.3	2.3	4.3	1.8	3.1	1.5	-0.48	-0.05	-0.30
Efficiency corrections	4.8	3.0	4.5	2.3	3.9	2.3	-0.53	0.20	-0.28
Multiplicative uncertainties									
MC statistics	2.3	1.4	3.0	2.2	1.8	1.2	0.00	0.00	0.00
$\overline{B} \rightarrow D^{(*)}(\tau^{-}/\ell^{-})\overline{\nu}$ FFs	1.6	0.4	1.6	0.3	1.6	0.4	0.00	0.00	0.00
Lepton PID	0.9	0.9	0.9	0.8	0.9	0.9	1.00	1.00	1.00
π^0/π^{\pm} from $D^* \rightarrow D\pi$	0.1	0.1	0.0	0.0	0.1	0.1	1.00	1.00	1.00
Detection/Reconstruction	0.7	0.7	0.7	0.7	0.7	0.7	1.00	1.00	1.00
$B(\tau^- \rightarrow \ell^- \bar{\nu}_\ell \nu_\tau)$	0.2	0.2	0.2	0.2	0.2	0.2	1.00	1.00	1.00
Total syst. uncertainty	12.2	6.7	11.4	6.0	9.6	5.6	-0.21	0.10	0.05
Total stat. uncertainty	19.2	9.8	18.0	11.0	13.1	7.1	-0.59	-0.23	-0.45
Total uncertainty	22.8	11.9	21.3	12.5	16.2	9.0	-0.48	-0.15	-0.27

iv.a Results and Implications for the Standard Model

Compatibility of the result with the SM:

	$\mathcal{R}(D)$	$\mathcal{R}(D^*)$
This Analysis	0.440 ± 0.072	0.332 ± 0.030
Standard Model Prediction	0.297 ± 0.017	0.252 ± 0.003

SM prediction uses the latest world averages for the QCD form factors from HFAG.


 \rightarrow **Excess** of 2σ & 2.7 σ in $\mathcal{R}(D)$ & $\mathcal{R}(D^*)$

Experimental values are correlated:

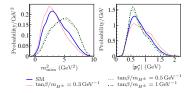
Can make a stronger statement

In the 2D plane of $\mathcal{R}(D)$ - $\mathcal{R}(D^*)$ the observed combination of both has a $\chi^2 = 14.6$

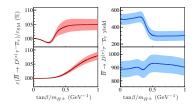
 \rightarrow SM probability is 6.9 \times 10⁻⁴ (or SM expectation 3.4 σ away)

2D correlation plot for $\mathcal{R}(D)$ & $\mathcal{R}(D^*)$

$$\chi^2 = (\Delta, \Delta^*) \begin{pmatrix} \sigma^2_{\exp} + \sigma^2_{th} & \rho \, \sigma_{\exp} \, \sigma^*_{\exp} \\ \rho \, \sigma_{\exp} \, \sigma^*_{\exp} \, \sigma^{*2}_{\exp} + \sigma^{*2}_{th} \end{pmatrix}^{-1} \begin{pmatrix} \Delta \\ \Delta^* \end{pmatrix},$$


 χ^2 definition; theory uncertainties are assumed uncorrelated.

The compatibility of the result with a charged Higgs Boson 2HDM type II can also be tested


Presence of additional scalar mediator for weak decay changes decay rate and lepton momentum of $\bar{B} \rightarrow D^{(*)} \tau \bar{\nu}_{\tau}$

Signal PDF shape and efficiency change.

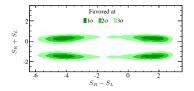
Can redetermine $\mathcal{R}(D^{(*)})$ for various points of $\tan \beta/m_{H^{\pm}}$ what scans the coupling and mass of a 2HDM type II charged Higgs boson.

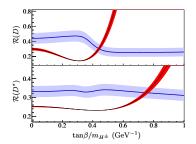
Change in missing mass squared and lepton momentum for various $\tan \beta / m_{\mu+}$ points and SM.

Efficiency and predicted yields for \bar{B} \rightarrow $D^{(*)}$ τ $\bar{\nu}_{\tau}$

iv.c Results and Implications for Charged Higgs Bosons

Compatibility with 2HDM type II:

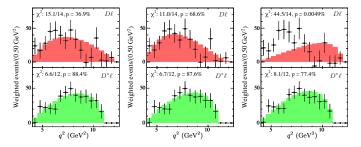

 $\begin{array}{c} \tan\beta/m_{H^{\pm}} & \tan\beta/m_{H^{\pm}} \\ 0.44 \pm 0.02 \ {\rm GeV}^{-1} & 0.75 \pm 0.04 \ {\rm GeV}^{-1} \end{array}$


Observed values for $\mathcal{R}(D)$ & $\mathcal{R}(D^*)$ impose strong limits on 2HDM type II parameter space.

The full $\tan \beta - m_{H^{\pm}}$ parameter space is excluded by 3σ ; certain areas up to 5σ .

Compatibility with 2HDM type III:

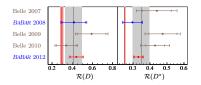
Type III Model has one degree of freedom more to accommodate the observed difference:



Comparison of result (blue) with the predicted values for $\mathcal{R}(D^{(*)})$ in the 2HDM type II model.

Exclusion plot for $\tan \beta / m_{\mu\pm}$ parameter space

The $q^2 = \left(p_B - p_D^{(*)}\right)^2$ spectrum can be used to further test the compatibilities of the type III configurations:


efficiency corrected q^2 spectra for (left) SM, (center) $S_L + S_R \sim 0.4$, (right) $S_L + S_R \sim -1.5$; uncertainties are statistical + systematics.

Based on the observed q^2 spectrum the solution with $S_L+S_R \backsim -1.5$ can be excluded with 2.9 $\sigma.$

v. Summary

Measurement of the ratio of $\bar{B} \to D^{(*)} \tau^- \bar{\nu}_{\tau}$ and $\bar{B} \to D^{(*)} \ell \bar{\nu}_{\ell}$ using the full *BABAR* dataset.

Observe tension of 3.4 σ in the measured ratio of $\overline{B} \to D^{(*)} \tau^- \overline{\nu}_{\tau}$ and $\overline{B} \to D^{(*)} \ell \overline{\nu}_{\ell}$ decays and the SM expectation. The result is compatible with earlier measurements and the previous world average:

Measured ratio excludes together with $B \rightarrow X_{\rm s} \gamma$ the full 2HDM type II parameter space.

Measured ratio can be accommodated by certain configurations of type III models, i.e. $|{\it S_R}+{\it S_L}|<1.4$