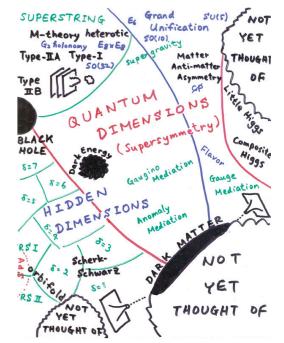
Hi!

Introducing SModelS - a tool for testing LHC results using simplified models


Suchita Kulkarni (LPSC, Grenoble)

based on:

work in progress with W. Waltenberger, U. Laa, A. Lessa, D. Proschofsky, S. Kraml
 arxiv:1308.3735 [hep-ph] (accepted PLB) with G. Belanger, G. Drieu La Rochelle,
 B. Dumont, R. Godbole, S. Kraml

PASCOS - 2013

The scene

- Hunt for BSM physics is strong from the smallest to largest scales
- Many new and interesting results from astrophysics and collider searches exist and they must be taken into account to test a BSM theory
- Many BSM theories and no conclusive evidence for any of them
- The LHC searches are carried out in many channels and for many BSM models, here we focus on SUSY
- How does the scene for SUSY at LHC look like?

Status: SUSY 2013

ATLA	S Preliminary
$\int \mathcal{L} dt = (4.6 - 22.9) \text{ fb}^{-1}$	$\sqrt{s} = 7, 8 \text{ TeV}$

$\int \mathcal{L} dt =$	(4.6 - 22.9) fb ⁻¹	$\sqrt{s} =$
-------------------------	-------------------------------	--------------

010								$\int \mathcal{L} dt = (4.6 - 22.9) \text{ ID}^{-2}$	$\gamma s = 7, o \text{ rev}$
	Model	e, μ, τ, γ	Jets	E ^{miss} T	∫£ dt[fb	b ⁻¹]	Mass limit		Reference
Inclusive Searches	$\begin{array}{l} MSUGRA/CMSSM \\ MSUGRA/CMSSM \\ MSUGRA/CMSSM \\ \widetilde{q}\widetilde{q}, \widetilde{q} \rightarrow q \widetilde{\chi}_1^0 \\ \widetilde{g}\widetilde{g}, \widetilde{g} \rightarrow q \widetilde{q} \widetilde{\chi}_1^0 \\ \widetilde{g}\widetilde{g}, \widetilde{g} \rightarrow q q \widetilde{\chi}_1^1 \rightarrow q q W^{\pm} \widetilde{\chi}_1^0 \\ \widetilde{g}\widetilde{g}, \widetilde{g} \rightarrow q q (\ell/(\ell v / v v) \widetilde{\chi}_1^0 \\ GMSB (\widetilde{\ell} \; NLSP) \\ GMSB (\widetilde{\ell} \; NLSP) \\ GGM (bino \; NLSP) \\ GGM (mino \; NLSP) \\ GGM (higgsino \; bino \; NLSP) \\ GGM (higgsino \; NLSP) \\ GFA (A \; A \; $	$\begin{array}{c} 0 \\ 1 \ e, \mu \\ 0 \\ 0 \\ 1 \ e, \mu \\ 2 \ e, \mu \\ 2 \ e, \mu \\ 1 - 2 \ \tau \\ 2 \ \gamma \\ 1 \ e, \mu + \gamma \\ \gamma \\ 2 \ e, \mu \left(Z \right) \\ 0 \end{array}$	2-6 jets 3-6 jets 2-6 jets 2-6 jets 3-6 jets 0-3 jets 0-2 jets 1 b 0-3 jets mono-jet	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 4.7 20.7 4.8 4.8 4.8 4.8 5.8 10.5	q. g g g g q g	1.7 TeV 1.2 TeV 1.2 TeV 1.1 TeV 740 GeV 1.3 TeV 1.3 TeV 1.18 TeV 1.12 TeV 1.12 TeV 1.24 TeV 1.24 TeV 1.4 TeV 1.07 TeV 619 GeV 900 GeV 690 GeV 645 GeV	$\begin{array}{l} m(\tilde{q}) = m(\tilde{g}) \\ \text{any } m(\tilde{q}) \\ \text{any } m(\tilde{q}) \\ m(\tilde{k}_{1}^{0}) = 0 \ \text{GeV} \\ m(\tilde{k}_{1}^{0}) = 0 \ \text{GeV} \\ m(\tilde{k}_{1}^{0}) < 200 \ \text{GeV}, m(\tilde{\chi}^{\pm}) = 0.5(m(\tilde{\chi}_{1}^{0}) + m(\tilde{g})) \\ m(\tilde{\chi}_{1}^{0}) = 0 \ \text{GeV} \\ \tan\beta < 15 \\ \tan\beta > 18 \\ m(\tilde{\chi}_{1}^{0}) > 50 \ \text{GeV} \\ m(\tilde{k}_{1}^{0}) > 50 \ \text{GeV} \\ m(\tilde{k}_{1}^{0}) > 220 \ \text{GeV} \\ m(\tilde{k}_{1}^{0}) > 200 \ \text{GeV} \\ m(\tilde{k}_{1}^{0}) > 10^{-4} \ \text{eV} \end{array}$	ATLAS-CONF-2013-047 ATLAS-CONF-2013-062 1308.1841 ATLAS-CONF-2013-047 ATLAS-CONF-2013-047 ATLAS-CONF-2013-062 ATLAS-CONF-2013-089 1208.4688 ATLAS-CONF-2013-026 1209.0753 ATLAS-CONF-2012-144 1211.1167 ATLAS-CONF-2012-152 ATLAS-CONF-2012-147
3 rd gen. ἒ med.	$\widetilde{g} \rightarrow b \overline{b} \widetilde{\chi}_{1}^{0}$ $\widetilde{g} \rightarrow t \overline{t} \widetilde{\chi}_{1}^{0}$ $\widetilde{g} \rightarrow t \overline{t} \widetilde{\chi}_{1}^{0}$ $\widetilde{g} \rightarrow b \overline{t} \widetilde{\chi}_{1}^{+}$	0 0-1 <i>e</i> ,μ 0-1 <i>e</i> ,μ	3 b 7-10 jets 3 b 3 b	Yes Yes Yes Yes	20.1 20.3 20.1 20.1	ğ ğ ğ	1.2 TeV 1.1 TeV 1.34 TeV 1.3 TeV	$m(\tilde{k}_{1}^{0}) < 600 \text{ GeV}$ $m(\tilde{k}_{1}^{0}) < 350 \text{ GeV}$ $m(\tilde{k}_{1}^{0}) < 400 \text{ GeV}$ $m(\tilde{k}_{1}^{0}) < 300 \text{ GeV}$	ATLAS-CONF-2013-061 1308.1841 ATLAS-CONF-2013-061 ATLAS-CONF-2013-061
3rd gen. squarks direct production	$ \begin{array}{l} \tilde{b}_{1}\tilde{b}_{1}, \ \tilde{b}_{1} \rightarrow b \tilde{\chi}_{1}^{0} \\ \tilde{b}_{1}\tilde{b}_{1}, \ \tilde{b}_{1} \rightarrow t \tilde{\chi}_{1}^{\pm} \\ \tilde{t}_{1}\tilde{t}_{1}(\text{light}), \ \tilde{t}_{1} \rightarrow b \tilde{\chi}_{1}^{\pm} \\ \tilde{t}_{1}\tilde{t}_{1}(\text{light}), \ \tilde{t}_{1} \rightarrow W b \tilde{\chi}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{1}(\text{medium}), \ \tilde{t}_{1} \rightarrow t \tilde{\chi}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{1}(\text{medium}), \ \tilde{t}_{1} \rightarrow t \tilde{\chi}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{1}(\text{heavy}), \ \tilde{t}_{1} \rightarrow t \tilde{\chi}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{1}(\text{heavy}), \ \tilde{t}_{1} \rightarrow t \tilde{\chi}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{1}(\text{heavy}), \ \tilde{t}_{1} \rightarrow t \tilde{\chi}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{2}, \ \tilde{t}_{2} \rightarrow \tilde{t}_{1} + Z \end{array} $	$\begin{array}{c} 0 \\ 2 \ e, \mu \ (\text{SS}) \\ 1-2 \ e, \mu \\ 2 \ e, \mu \\ 2 \ e, \mu \\ 0 \\ 1 \ e, \mu \\ 0 \\ 1 \ e, \mu \\ 0 \\ 3 \ e, \mu \ (Z) \end{array}$	2 b 0-3 b 1-2 b 0-2 jets 2 jets 2 b 1 b 2 b tono-jet/c-ta 1 b 1 b	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.1 20.7 4.7 20.3 20.3 20.1 20.7 20.5 20.3 20.7 20.7	$ \vec{b}_1 \\ \vec{b}_1 \\ \vec{t}_1 \\ \vec{t}_2 \\ \vec{t}_2 \\ $	100-620 GeV 275-430 GeV 110 <mark>-167 GeV</mark> 130-220 GeV 225-525 GeV 225-525 GeV 200-610 GeV 320-660 GeV 90-200 GeV 500 GeV 271-520 GeV	$\begin{array}{l} m(\tilde{k}_{1}^{0}) <\!\!90 \text{GeV} \\ m(\tilde{k}_{1}^{+}) =\!\!2 m(\tilde{k}_{1}^{0}) \\ m(\tilde{k}_{1}^{0}) =\!\!55 \text{GeV} \\ m(\tilde{k}_{1}^{0}) =\!\!55 \text{GeV} \\ m(\tilde{k}_{1}^{0}) =\!\!0 \text{GeV} \\ m(\tilde{k}_{1}^{0}) <\!\!200 \text{GeV} \\ m(\tilde{k}_{1}^{0}) <\!\!200 \text{GeV} \\ m(\tilde{k}_{1}^{0}) =\!\!0 \text{GeV} \\ m(\tilde{k}_{1}^{0}) =\!\!150 \text{GeV} \\ m(\tilde{k}_{1}^{0}) >\!\!150 \text{GeV} \\ m(\tilde{k}_{1}) =\!\!m(\tilde{k}_{1}^{0}) +\!\!180 \text{GeV} \\ \end{array}$	1308.2631 ATLAS-CONF-2013-007 1208.4305, 1209.2102 ATLAS-CONF-2013-048 ATLAS-CONF-2013-065 1308.2631 ATLAS-CONF-2013-037 ATLAS-CONF-2013-024 ATLAS-CONF-2013-025 ATLAS-CONF-2013-025
EW direct	$\begin{array}{l} \tilde{\ell}_{L,R} \tilde{\ell}_{L,R}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\ell} \nu (\ell \tilde{\nu}) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\tau} \nu (\tau \tilde{\nu}) \\ \tilde{\chi}_{1}^{\pm} \tilde{\chi}_{2}^{0} \rightarrow \tilde{\ell}_{L} \nu \tilde{\ell}_{L} \ell (\tilde{\nu} \nu), \ell \tilde{\nu} \tilde{\ell}_{L} \ell (\tilde{\nu} \nu) \\ \tilde{\chi}_{1}^{\pm} \tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} Z \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{\pm} \tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} h \tilde{\chi}_{1}^{0} \end{array}$	2 e,μ 2 e,μ 2 τ 3 e,μ 3 e,μ 1 e,μ	0 0 0 2 b	Yes Yes Yes Yes Yes Yes	20.3 20.3 20.7 20.7 20.7 20.7 20.3	$\vec{\ell} = \vec{\chi}_{1}^{0} + \vec{\chi}_{1}^{0} + \vec{\chi}_{2}^{0} + \vec{\chi}_{1}^{0} + \vec{\chi}_{1}^{0}$	85-315 GeV 125-450 GeV 180-330 GeV 600 GeV m(τ̃1) 315 GeV 285 GeV	$\begin{array}{l} m(\tilde{\chi}_{1}^{0}) {=} 0 \; GeV \\ m(\tilde{\chi}_{1}^{0}) {=} 0 \; GeV, m(\tilde{\ell}, \tilde{\nu}) {=} 0.5 (m(\tilde{\chi}_{1}^{+}) {+} m(\tilde{\chi}_{1}^{0})) \\ m(\tilde{\chi}_{1}^{0}) {=} 0 \; GeV, m(\tilde{\tau}, \tilde{\nu}) {=} 0.5 (m(\tilde{\chi}_{1}^{+}) {+} m(\tilde{\chi}_{1}^{0})) \\ {=} m(\tilde{\chi}_{2}^{0}), m(\tilde{\chi}_{1}^{0}) {=} 0, m(\tilde{\ell}, \tilde{\nu}) {=} 0.5 (m(\tilde{\chi}_{1}^{+}) {+} m(\tilde{\chi}_{1}^{0})) \\ m(\tilde{\chi}_{1}^{+}) {=} m(\tilde{\chi}_{2}^{0}), m(\tilde{\chi}_{1}^{0}) {=} 0, \text{ sleptons decoupled} \\ m(\tilde{\chi}_{1}^{+}) {=} m(\tilde{\chi}_{2}^{0}), m(\tilde{\chi}_{1}^{0}) {=} 0, \text{ sleptons decoupled} \end{array}$	ATLAS-CONF-2013-049 ATLAS-CONF-2013-049 ATLAS-CONF-2013-028 ATLAS-CONF-2013-035 ATLAS-CONF-2013-035 ATLAS-CONF-2013-093
Long-lived particles	Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^\pm$ Stable, stopped \tilde{g} R-hadron GMSB, stable $\tilde{\tau}, \tilde{\chi}_1^0 \rightarrow \tilde{\tau}(\tilde{e}, \tilde{\mu})_{\dagger} \tau(e$ GMSB, $\tilde{\chi}_1^0 \rightarrow \gamma \tilde{G}$, long-lived $\tilde{\chi}_1^0$ $\tilde{q}\tilde{q}, \tilde{\chi}_1^0 \rightarrow q q \mu$ (RPV)	Disapp. trk 0 e, μ) 1-2 μ 2 γ 1 μ, displ. vtx	1 jet 1-5 jets - -	Yes Yes Yes -	20.3 22.9 15.9 4.7 20.3		270 GeV 832 GeV 475 GeV 230 GeV 1.0 TeV	$\begin{array}{l} m(\tilde{\ell}_1^{\pm}){=}m(\tilde{\ell}_1^0){=}160 \; \mathrm{MeV}, \; r(\tilde{\ell}_1^{\pm}){=}0.2 \; \mathrm{ns} \\ m(\tilde{\ell}_1^0){=}100 \; \mathrm{GeV}, \; 10 \; \mu \mathrm{s}{<}r(\tilde{g}){<}1000 \; \mathrm{s} \\ 10{<}\mathrm{tan}\beta{<}50 \\ 0.4{<}r(\tilde{\ell}_1^0){<}2 \; \mathrm{ns} \\ 1.5 < c\tau{<}156 \; \mathrm{mm}, \; \mathrm{BR}(\mu){=}1, \; m(\tilde{\ell}_1^0){=}108 \; \mathrm{GeV} \end{array}$	ATLAS-CONF-2013-069 ATLAS-CONF-2013-057 ATLAS-CONF-2013-058 1304.6310 ATLAS-CONF-2013-092
RPV	$ \begin{array}{l} LFV \ pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e + \mu \\ LFV \ pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e(\mu) + \tau \\ Bilinear \ RPV \ CMSSM \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow W \tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow ee\tilde{v}_{\mu}, e\mu \tilde{v}_{\mu}, \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow W \tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow \tau \tau \tilde{v}_{e}, e\tau \tilde{v}_{\tau}, \\ \tilde{g} \rightarrow qqq \\ \tilde{g} \rightarrow \tilde{t}_{1} t, \ \tilde{t}_{1} \rightarrow bs \end{array} $		- 7 jets - 6-7 jets 0-3 b	- Yes Yes Yes - Yes	4.6 4.7 20.7 20.7 20.3 20.3	\bar{v}_r \bar{v}_r \bar{q}, \bar{g} $\bar{\chi}_{1}^{\pm}$ $\bar{\chi}_{1}^{\pm}$ \bar{g} \bar{g}	1.61 TeV 1.1 TeV 1.2 TeV 760 GeV 350 GeV 916 GeV 880 GeV	$\begin{array}{l} \lambda_{311}'=\!0.10,\lambda_{132}\!=\!0.05\\ \lambda_{311}'=\!0.10,\lambda_{1(2)33}\!=\!0.05\\ m(\tilde{q})\!=\!m(\tilde{g}),c\tau_{LSP}\!<\!1mm\\ m(\tilde{\chi}_1^0)\!\!>\!\!300\text{GeV},\lambda_{121}\!\!>\!0\\ m(\tilde{\chi}_1^0)\!\!>\!\!80\text{GeV},\lambda_{133}\!\!>\!0\\ \text{BR}(t)\!=\!\text{BR}(b)\!=\!\text{BR}(c)\!\!=\!\!0\% \end{array}$	1212.1272 1212.1272 ATLAS-CONF-2012-140 ATLAS-CONF-2013-036 ATLAS-CONF-2013-036 ATLAS-CONF-2013-091 ATLAS-CONF-2013-007
Other		0 2 e, µ (SS) 0 √s = 8 TeV		Yes Yes 8 TeV	4.6 14.3 10.5	sgluon sgluon M* scale	100-287 GeV 800 GeV 704 GeV 0 ⁻¹ 1	incl. limit from 1110.2693 m(χ)<80 GeV, limit of<687 GeV for D8	1210.4826 ATLAS-CONF-2013-051 ATLAS-CONF-2012-147
	full data	artial data	full c	lata			-	Mass scale [TeV]	

Status: SUSY 2013

ATLAS Preliminary

 $\int \mathcal{L} dt = (4.6 - 22.9) \text{ fb}^{-1}$ $\sqrt{s} = 7, 8 \text{ TeV}$

	Model	e, μ, τ, γ	Jets	E_{T}^{miss}	∫£ dt[fb	-1]	Mass limit		J2 01 - (410 2210) 10	Reference
Inclusive Searches	$\begin{array}{l} MSUGRA/CMSSM \\ MSUGRA/CMSSM \\ MSUGRA/CMSSM \\ \widetilde{q}\widetilde{q}, \widetilde{q} \rightarrow q \widetilde{\chi}_{1}^{0} \\ \widetilde{g}\widetilde{g}, \widetilde{g} \rightarrow q q \widetilde{\chi}_{1}^{1} \rightarrow q q W^{\pm} \widetilde{\chi}_{1}^{0} \\ \widetilde{g}\widetilde{g}, \widetilde{g} \rightarrow q q \widetilde{\chi}_{1}^{\pm} \rightarrow q q W^{\pm} \widetilde{\chi}_{1}^{0} \\ \widetilde{g}\widetilde{g}, \widetilde{g} \rightarrow q q (\ell \ell / \ell \nu / \nu \nu) \widetilde{\chi}_{1}^{0} \\ GMSB (\widetilde{\ell} \ NLSP) \\ GMSB (\widetilde{\ell} \ NLSP) \\ GGM (bino \ NLSP) \\ GGM (mino \ NLSP) \\ GGM (higgsino-bino \ NLSP) \\ GGM (higgsino \ NLSP) \\ Gravitino \ LSP \end{array}$	$\begin{array}{c} 0 \\ 1 \ e, \mu \\ 0 \\ 0 \\ 0 \\ 1 \ e, \mu \\ 2 \ e, \mu \\ 2 \ e, \mu \\ 1 - 2 \ \tau \\ 2 \ \gamma \\ 1 \ e, \mu + \gamma \\ \gamma \\ 2 \ e, \mu (Z) \\ 0 \end{array}$	2-6 jets 3-6 jets 2-6 jets 2-6 jets 3-6 jets 3-6 jets 0-3 jets 0-2 jets - 1 b 0-3 jets mono-jet	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	q. g g. g g	1.1 T 740 GeV 1 1.18 1.12 T 1.24	3 TeV TeV V 4 TeV 1.4 TeV	$\begin{array}{l} m(\tilde{q}) = m(\tilde{g}) \\ \text{any } m(\tilde{q}) \\ \text{any } m(\tilde{q}) \\ m(\tilde{k}_{1}^{0}) = 0 \ \text{GeV} \\ \tan \beta < 15 \\ \tan \beta < 15 \\ \tan \beta > 18 \\ m(\tilde{k}_{1}^{0}) > 50 \ \text{GeV} \\ m(\tilde{k}_{1}^{0}) > 50 \ \text{GeV} \\ m(\tilde{k}_{1}^{0}) > 220 \ \text{GeV} \\ m(\tilde{k}_{1}^{0}) > 220 \ \text{GeV} \\ m(\tilde{k}_{1}^{0}) > 10^{-4} \ \text{eV} \end{array}$	ATLAS-CONF-2013-047 ATLAS-CONF-2013-062 1308.1841 ATLAS-CONF-2013-047 ATLAS-CONF-2013-047 ATLAS-CONF-2013-062 ATLAS-CONF-2013-089 1208.4688 ATLAS-CONF-2013-026 1209.0753 ATLAS-CONF-2012-144 1211.1167 ATLAS-CONF-2012-152 ATLAS-CONF-2012-152
3 rd gen. <i>ἒ med.</i>	$\begin{array}{l} \tilde{g} \rightarrow b \bar{b} \tilde{\chi}_{1}^{0} \\ \tilde{g} \rightarrow t \bar{t} \tilde{\chi}_{1}^{0} \\ \tilde{g} \rightarrow t \bar{t} \tilde{\chi}_{1}^{0} \\ \tilde{g} \rightarrow b \bar{t} \tilde{\chi}_{1}^{+} \end{array}$	0 0 0-1 e,μ 0-1 e,μ	3 b 7-10 jets 3 b 3 b	Yes Yes Yes Yes	20.1 20.3 20.1 20.1	700 700 700 700	1.1 Te 1	TeV eV 84 TeV _3 TeV	$\begin{array}{l} m(\tilde{\chi}_{1}^{0}) <\!\! 600 \mathrm{GeV} \\ m(\tilde{\chi}_{1}^{0}) <\!\! 350 \mathrm{GeV} \\ m(\tilde{\chi}_{1}^{0}) <\!\! 400 \mathrm{GeV} \\ m(\tilde{\chi}_{1}^{0}) <\!\! 300 \mathrm{GeV} \end{array}$	ATLAS-CONF-2013-061 1308.1841 ATLAS-CONF-2013-061 ATLAS-CONF-2013-061
3 rd gen. squarks direct production	$ \begin{array}{l} \tilde{b}_{1}\tilde{b}_{1}, \tilde{b}_{1} \rightarrow b \tilde{\ell}_{1}^{0} \\ \tilde{b}_{1}\tilde{b}_{1}, \tilde{b}_{1} \rightarrow t \tilde{\ell}_{1}^{\pm} \\ \tilde{t}_{1}\tilde{t}_{1}(\text{light}), \tilde{t}_{1} \rightarrow b \tilde{\ell}_{1}^{\pm} \\ \tilde{t}_{1}\tilde{t}_{1}(\text{light}), \tilde{t}_{1} \rightarrow b \tilde{\ell}_{1}^{\pm} \\ \tilde{t}_{1}\tilde{t}_{1}(\text{medium}), \tilde{t}_{1} \rightarrow t \tilde{\ell}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{1}(\text{medium}), \tilde{t}_{1} \rightarrow t \tilde{\ell}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{1}(\text{heavy}), \tilde{t}_{1} \rightarrow t \tilde{\ell}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{1}(\text{heavy}), \tilde{t}_{1} \rightarrow t \tilde{\ell}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{1}(\text{natural GMSB}) \\ \tilde{t}_{2}\tilde{t}_{2}, \tilde{t}_{2} \rightarrow \tilde{t}_{1} + Z \end{array} $	0 2 e, µ (SS) 1-2 e, µ 2 e, µ 0 1 e, µ 0 0 m 2 e, µ (Z) 3 e, µ (Z)	2 b 0-3 b 1-2 b 0-2 jets 2 jets 2 b 1 b 2 b 1 ono-jet/c-ta 1 b 1 b	Yes Yes Yes Yes Yes Yes Yes ag Yes Yes Yes	20.1 20.7 4.7 20.3 20.3 20.1 20.7 20.5 20.3 20.7 20.7	[¯] b ₁ [¯] b ₁ [¯] t ₂ [¯] t ₂ [¯] t ₂	100-620 GeV 275-430 GeV 110 <mark>-167 GeV</mark> 130-220 GeV 225-525 GeV 150-580 GeV 200-610 GeV 320-660 GeV 90-200 GeV 500 GeV 271-520 GeV		$\begin{array}{l} m(\tilde{k}_{1}^{0}) <\!\!90 \text{GeV} \\ m(\tilde{k}_{1}^{0}) =\!\!2 m(\tilde{k}_{1}^{0}) \\ m(\tilde{k}_{1}^{0}) =\!\!55 \text{GeV} \\ m(\tilde{k}_{1}^{0}) =\!\!m(\tilde{t}_{1}) \cdot m(W) \cdot\!50 \text{GeV}, m(\tilde{t}_{1}) <\!\!<\!\!m(\tilde{k}_{1}^{0}) \\ m(\tilde{k}_{1}^{0}) =\!\!0 \text{GeV} \\ m(\tilde{k}_{1}^{0}) <\!\!200 \text{GeV}, m(\tilde{k}_{1}^{1}) \cdot m(\tilde{k}_{1}^{0}) =\!\!5 \text{GeV} \\ m(\tilde{k}_{1}^{0}) =\!\!0 \text{GeV} \\ m(\tilde{k}_{1}^{0}) =\!\!0 \text{GeV} \\ m(\tilde{k}_{1}^{0}) =\!\!0 \text{GeV} \\ m(\tilde{k}_{1}^{0}) =\!\!0 \text{GeV} \\ m(\tilde{k}_{1}) =\!\!m(\tilde{k}_{1}^{0}) <\!\!85 \text{GeV} \\ m(\tilde{k}_{1}) =\!\!m(\tilde{k}_{1}^{0}) +\!\!180 \text{GeV} \\ \end{array}$	1308.2631 ATLAS-CONF-2013-007 1208.4305, 1209.2102 ATLAS-CONF-2013-048 ATLAS-CONF-2013-065 1308.2631 ATLAS-CONF-2013-037 ATLAS-CONF-2013-024 ATLAS-CONF-2013-025 ATLAS-CONF-2013-025
EW direct	$\begin{array}{l} \tilde{\ell}_{L,R}\tilde{\ell}_{L,R}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\ell}\nu(\ell \bar{\nu}) \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow \tau \nu(\tau \bar{\nu}) \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{2}^{0} \rightarrow \tilde{\ell}_{L}\nu \tilde{\ell}_{L}\ell(\bar{\nu}\nu), \ell \bar{\nu} \tilde{\ell}_{L}\ell(\bar{\nu}\nu) \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} Z \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} h \tilde{\chi}_{1}^{0} \end{array}$	2 e, μ 2 e, μ 2 τ 3 e, μ 3 e, μ 1 e, μ	0 0 0 0 2 b	Yes Yes Yes Yes Yes Yes	20.3 20.3 20.7 20.7 20.7 20.7 20.3	$\tilde{\ell}$ $\tilde{\chi}_{1}^{\pm}$ $\tilde{\chi}_{1}^{\pm}$ $\tilde{\chi}_{1}^{\pm}$ $\tilde{\chi}_{1}^{\pm}$ $\tilde{\chi}_{1}^{\pm}$ $\tilde{\chi}_{2}^{0}$ $\tilde{\chi}_{1}^{0}$	85-315 GeV 125-450 GeV 180-330 GeV 600 GeV 315 GeV 285 GeV	$m(\tilde{t}_1^*)$	$\begin{array}{l} m(\tilde{\chi}_{1}^{0}) = 0 \; \text{GeV} \\ m(\tilde{\chi}_{1}^{0}) = 0 \; \text{GeV}, \; m(\tilde{\ell}, \; \bar{\nu}) = 0.5 (m(\tilde{\chi}_{1}^{\pm}) + m(\tilde{\chi}_{1}^{0})) \\ m(\tilde{\chi}_{1}^{0}) = 0 \; \text{GeV}, \; m(\tilde{\tau}, \; \bar{\nu}) = 0.5 (m(\tilde{\chi}_{1}^{\pm}) + m(\tilde{\chi}_{1}^{0})) \\ m(\tilde{\chi}_{2}^{0}), \; m(\tilde{\chi}_{1}^{0}) = 0, \; m(\tilde{\ell}, \; \bar{\nu}) = 0.5 (m(\tilde{\chi}_{1}^{\pm}) + m(\tilde{\chi}_{1}^{0})) \\ m(\tilde{\chi}_{2}^{\pm}) = m(\tilde{\chi}_{1}^{0}) \; m(\tilde{\chi}_{1}^{0}) = 0 \; \text{ stentous decoupled} \end{array}$	ATLAS-CONF-2013-049 ATLAS-CONF-2013-049 ATLAS-CONF-2013-028 ATLAS-CONF-2013-035 ATLAS-CONF-2013-035 -2013-093
Long-lived particles	Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^\pm$ Stable, stopped \tilde{g} R-hadron GMSB, stable $\tilde{\tau}, \tilde{\chi}_1^0 \rightarrow \tilde{\tau}(\tilde{e}, \tilde{\mu})_+ \tau(\tilde{e}, \tilde{g})_+ \tau(\tilde{g})_+ \tau(\tilde{g})$	0	1 jet 1-5 jets - -	Yes Yes Yes -	20.3 22.9 15.9 4.7 20.3	$ \frac{\tilde{\chi}_{1}^{\pm}}{\tilde{\chi}_{1}^{0}} $ $ \frac{\tilde{\chi}_{1}^{0}}{\tilde{\chi}_{1}^{0}} $ $ \tilde{q} $	270 GeV 832 GeV 475 GeV 230 GeV 1.0 TeV		I TeV!!!	2013-069 2013-057 2013-058 110 2013-092
RPV	$ \begin{array}{l} LFV \ pp \rightarrow \widetilde{v}_{\tau} + X, \ \widetilde{v}_{\tau} \rightarrow e + \mu \\ LFV \ pp \rightarrow \widetilde{v}_{\tau} + X, \ \widetilde{v}_{\tau} \rightarrow e(\mu) + \tau \\ Bilinear \ RPV \ CMSSM \\ \widetilde{\chi}_{1}^{+} \widetilde{\chi}_{1}^{-}, \ \widetilde{\chi}_{1}^{+} \rightarrow W \widetilde{\chi}_{1}^{0}, \ \widetilde{\chi}_{1}^{0} \rightarrow ee \widetilde{v}_{\mu}, \ e\mu \widetilde{v} \\ \widetilde{\chi}_{1}^{+} \widetilde{\chi}_{1}^{-}, \ \widetilde{\chi}_{1}^{+} \rightarrow W \widetilde{\chi}_{1}^{0}, \ \widetilde{\chi}_{1}^{0} \rightarrow \tau \tau \widetilde{v}_{e}, \ er \widetilde{v}_{e} \\ \widetilde{g} \rightarrow qqq \\ \widetilde{g} \rightarrow \widetilde{t}_{1} t, \ \widetilde{t}_{1} \rightarrow bs \end{array} $	$\begin{array}{c} 2 \ e, \mu \\ 1 \ e, \mu + \tau \\ 1 \ e, \mu \\ \tau \\ e, \mu \\ \tau \\ 3 \ e, \mu + \tau \\ 0 \\ 2 \ e, \mu \ (\text{SS}) \end{array}$	- 7 jets - - 6-7 jets 0-3 b	- Yes Yes - Yes	4.6 4.7 20.7 20.7 20.3 20.7	ν̄r φ̄r φ̄.g 𝔅.t 𝔅.g 𝔅.g 𝔅.g 𝔅.g 𝔅.g 𝔅.g	1.1 T 1.2 760 GeV 350 GeV 916 GeV 880 GeV	1.61 T V TeV	$m(\vec{k}_1^0)>300 \text{ GeV}, \lambda_{121}>0$ $m(\vec{k}_1^0)>80 \text{ GeV}, \lambda_{133}>0$ BR(t)=BR(b)=BR(c)=0%	72 272 ATLAS CONF-2012-140 ATLAS-CONF-2013-036 ATLAS-CONF-2013-091 ATLAS-CONF-2013-091
Other	Scalar gluon pair, sgluon $\rightarrow q\bar{q}$ Scalar gluon pair, sgluon $\rightarrow t\bar{t}$ WIMP interaction (D5, Dirac χ)	0 2 e, µ (SS) 0	4 jets 1 b mono-jet		4.6 14.3 10.5	sgluon sgluon M* scale	100-287 GeV 800 GeV 704 GeV		incl. limit from 1110.2693 $m(\chi)$ <80 GeV, limit of<687 GeV for D8	1210.4826 ATLAS-CONF-2013-051 ATLAS-CONF-2012-147
		$\sqrt{s} = 8 \text{ TeV}$	√s = 8 full o	8 TeV data		1	0 ⁻¹	1	Mass scale [TeV]	-

Status: SUSY 2013

ATLA	S Preliminary
$\int \mathcal{L} dt = (4.6 - 22.9) \text{ fb}^{-1}$	$\sqrt{s} = 7, 8 \text{ TeV}$

$\int \mathcal{L} dt =$	(4.6 - 22.9) fb ⁻¹	$\sqrt{s} =$
-------------------------	-------------------------------	--------------

010								$\int \mathcal{L} dt = (4.6 - 22.9) \text{ ID}^{-2}$	$\gamma s = 7, o \text{ rev}$
	Model	e, μ, τ, γ	Jets	E ^{miss} T	∫£ dt[fb	b ⁻¹]	Mass limit		Reference
Inclusive Searches	$\begin{array}{l} MSUGRA/CMSSM \\ MSUGRA/CMSSM \\ MSUGRA/CMSSM \\ \widetilde{q}\widetilde{q}, \widetilde{q} \rightarrow q \widetilde{\chi}_1^0 \\ \widetilde{g}\widetilde{g}, \widetilde{g} \rightarrow q \widetilde{q} \widetilde{\chi}_1^0 \\ \widetilde{g}\widetilde{g}, \widetilde{g} \rightarrow q q \widetilde{\chi}_1^1 \rightarrow q q W^{\pm} \widetilde{\chi}_1^0 \\ \widetilde{g}\widetilde{g}, \widetilde{g} \rightarrow q q (\ell/(\ell v / v v) \widetilde{\chi}_1^0 \\ GMSB (\widetilde{\ell} \; NLSP) \\ GMSB (\widetilde{\ell} \; NLSP) \\ GGM (bino \; NLSP) \\ GGM (mino \; NLSP) \\ GGM (higgsino \; bino \; NLSP) \\ GGM (higgsino \; NLSP) \\ GFA (A \; A \; $	$\begin{array}{c} 0 \\ 1 \ e, \mu \\ 0 \\ 0 \\ 1 \ e, \mu \\ 2 \ e, \mu \\ 2 \ e, \mu \\ 1 - 2 \ \tau \\ 2 \ \gamma \\ 1 \ e, \mu + \gamma \\ \gamma \\ 2 \ e, \mu \left(Z \right) \\ 0 \end{array}$	2-6 jets 3-6 jets 2-6 jets 2-6 jets 3-6 jets 0-3 jets 0-2 jets 1 b 0-3 jets mono-jet	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 4.7 20.7 4.8 4.8 4.8 4.8 5.8 10.5	q. g g g g q g	1.7 TeV 1.2 TeV 1.2 TeV 1.1 TeV 740 GeV 1.3 TeV 1.3 TeV 1.18 TeV 1.12 TeV 1.12 TeV 1.24 TeV 1.24 TeV 1.4 TeV 1.07 TeV 619 GeV 900 GeV 690 GeV 645 GeV	$\begin{array}{l} m(\tilde{q}) = m(\tilde{g}) \\ \text{any } m(\tilde{q}) \\ \text{any } m(\tilde{q}) \\ m(\tilde{k}_{1}^{0}) = 0 \ \text{GeV} \\ m(\tilde{k}_{1}^{0}) = 0 \ \text{GeV} \\ m(\tilde{k}_{1}^{0}) < 200 \ \text{GeV}, m(\tilde{\chi}^{\pm}) = 0.5(m(\tilde{\chi}_{1}^{0}) + m(\tilde{g})) \\ m(\tilde{\chi}_{1}^{0}) = 0 \ \text{GeV} \\ \tan\beta < 15 \\ \tan\beta > 18 \\ m(\tilde{\chi}_{1}^{0}) > 50 \ \text{GeV} \\ m(\tilde{k}_{1}^{0}) > 50 \ \text{GeV} \\ m(\tilde{k}_{1}^{0}) > 220 \ \text{GeV} \\ m(\tilde{k}_{1}^{0}) > 200 \ \text{GeV} \\ m(\tilde{k}_{1}^{0}) > 10^{-4} \ \text{eV} \end{array}$	ATLAS-CONF-2013-047 ATLAS-CONF-2013-062 1308.1841 ATLAS-CONF-2013-047 ATLAS-CONF-2013-047 ATLAS-CONF-2013-062 ATLAS-CONF-2013-089 1208.4688 ATLAS-CONF-2013-026 1209.0753 ATLAS-CONF-2012-144 1211.1167 ATLAS-CONF-2012-152 ATLAS-CONF-2012-147
3 rd gen. ἒ med.	$\widetilde{g} \rightarrow b \overline{b} \widetilde{\chi}_{1}^{0}$ $\widetilde{g} \rightarrow t \overline{t} \widetilde{\chi}_{1}^{0}$ $\widetilde{g} \rightarrow t \overline{t} \widetilde{\chi}_{1}^{0}$ $\widetilde{g} \rightarrow b \overline{t} \widetilde{\chi}_{1}^{+}$	0 0-1 <i>e</i> ,μ 0-1 <i>e</i> ,μ	3 b 7-10 jets 3 b 3 b	Yes Yes Yes Yes	20.1 20.3 20.1 20.1	ğ ğ ğ	1.2 TeV 1.1 TeV 1.34 TeV 1.3 TeV	$m(\tilde{k}_{1}^{0}) < 600 \text{ GeV}$ $m(\tilde{k}_{1}^{0}) < 350 \text{ GeV}$ $m(\tilde{k}_{1}^{0}) < 400 \text{ GeV}$ $m(\tilde{k}_{1}^{0}) < 300 \text{ GeV}$	ATLAS-CONF-2013-061 1308.1841 ATLAS-CONF-2013-061 ATLAS-CONF-2013-061
3rd gen. squarks direct production	$ \begin{array}{l} \tilde{b}_{1}\tilde{b}_{1}, \ \tilde{b}_{1} \rightarrow b \tilde{\chi}_{1}^{0} \\ \tilde{b}_{1}\tilde{b}_{1}, \ \tilde{b}_{1} \rightarrow t \tilde{\chi}_{1}^{\pm} \\ \tilde{t}_{1}\tilde{t}_{1}(\text{light}), \ \tilde{t}_{1} \rightarrow b \tilde{\chi}_{1}^{\pm} \\ \tilde{t}_{1}\tilde{t}_{1}(\text{light}), \ \tilde{t}_{1} \rightarrow W b \tilde{\chi}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{1}(\text{medium}), \ \tilde{t}_{1} \rightarrow t \tilde{\chi}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{1}(\text{medium}), \ \tilde{t}_{1} \rightarrow t \tilde{\chi}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{1}(\text{heavy}), \ \tilde{t}_{1} \rightarrow t \tilde{\chi}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{1}(\text{heavy}), \ \tilde{t}_{1} \rightarrow t \tilde{\chi}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{1}(\text{heavy}), \ \tilde{t}_{1} \rightarrow t \tilde{\chi}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{2}, \ \tilde{t}_{2} \rightarrow \tilde{t}_{1} + Z \end{array} $	$\begin{array}{c} 0 \\ 2 \ e, \mu \ (\text{SS}) \\ 1-2 \ e, \mu \\ 2 \ e, \mu \\ 2 \ e, \mu \\ 0 \\ 1 \ e, \mu \\ 0 \\ 1 \ e, \mu \\ 0 \\ 3 \ e, \mu \ (Z) \end{array}$	2 b 0-3 b 1-2 b 0-2 jets 2 jets 2 b 1 b 2 b tono-jet/c-ta 1 b 1 b	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.1 20.7 4.7 20.3 20.3 20.1 20.7 20.5 20.3 20.7 20.7	$ \vec{b}_1 \\ \vec{b}_1 \\ \vec{t}_1 \\ \vec{t}_2 \\ \vec{t}_2 \\ $	100-620 GeV 275-430 GeV 110 <mark>-167 GeV</mark> 130-220 GeV 225-525 GeV 225-525 GeV 200-610 GeV 320-660 GeV 90-200 GeV 500 GeV 271-520 GeV	$\begin{array}{l} m(\tilde{k}_{1}^{0}) <\!\!90 \text{GeV} \\ m(\tilde{k}_{1}^{+}) =\!\!2 m(\tilde{k}_{1}^{0}) \\ m(\tilde{k}_{1}^{0}) =\!\!55 \text{GeV} \\ m(\tilde{k}_{1}^{0}) =\!\!55 \text{GeV} \\ m(\tilde{k}_{1}^{0}) =\!\!0 \text{GeV} \\ m(\tilde{k}_{1}^{0}) <\!\!200 \text{GeV} \\ m(\tilde{k}_{1}^{0}) <\!\!200 \text{GeV} \\ m(\tilde{k}_{1}^{0}) =\!\!0 \text{GeV} \\ m(\tilde{k}_{1}^{0}) =\!\!150 \text{GeV} \\ m(\tilde{k}_{1}^{0}) >\!\!150 \text{GeV} \\ m(\tilde{k}_{1}) =\!\!m(\tilde{k}_{1}^{0}) +\!\!180 \text{GeV} \\ \end{array}$	1308.2631 ATLAS-CONF-2013-007 1208.4305, 1209.2102 ATLAS-CONF-2013-048 ATLAS-CONF-2013-065 1308.2631 ATLAS-CONF-2013-037 ATLAS-CONF-2013-024 ATLAS-CONF-2013-025 ATLAS-CONF-2013-025
EW direct	$\begin{array}{l} \tilde{\ell}_{L,R} \tilde{\ell}_{L,R}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\ell} \nu (\ell \tilde{\nu}) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\tau} \nu (\tau \tilde{\nu}) \\ \tilde{\chi}_{1}^{\pm} \tilde{\chi}_{2}^{0} \rightarrow \tilde{\ell}_{L} \nu \tilde{\ell}_{L} \ell (\tilde{\nu} \nu), \ell \tilde{\nu} \tilde{\ell}_{L} \ell (\tilde{\nu} \nu) \\ \tilde{\chi}_{1}^{\pm} \tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} Z \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{\pm} \tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} h \tilde{\chi}_{1}^{0} \end{array}$	2 e,μ 2 e,μ 2 τ 3 e,μ 3 e,μ 1 e,μ	0 0 0 2 b	Yes Yes Yes Yes Yes Yes	20.3 20.3 20.7 20.7 20.7 20.7 20.3	$\vec{\ell} = \vec{\chi}_{1}^{0} + \vec{\chi}_{1}^{0} + \vec{\chi}_{2}^{0} + \vec{\chi}_{1}^{0} + \vec{\chi}_{1}^{0}$	85-315 GeV 125-450 GeV 180-330 GeV 600 GeV m(τ̃1) 315 GeV 285 GeV	$\begin{array}{l} m(\tilde{\chi}_{1}^{0}) {=} 0 \; GeV \\ m(\tilde{\chi}_{1}^{0}) {=} 0 \; GeV, m(\tilde{\ell}, \tilde{\nu}) {=} 0.5 (m(\tilde{\chi}_{1}^{+}) {+} m(\tilde{\chi}_{1}^{0})) \\ m(\tilde{\chi}_{1}^{0}) {=} 0 \; GeV, m(\tilde{\tau}, \tilde{\nu}) {=} 0.5 (m(\tilde{\chi}_{1}^{+}) {+} m(\tilde{\chi}_{1}^{0})) \\ {=} m(\tilde{\chi}_{2}^{0}), m(\tilde{\chi}_{1}^{0}) {=} 0, m(\tilde{\ell}, \tilde{\nu}) {=} 0.5 (m(\tilde{\chi}_{1}^{+}) {+} m(\tilde{\chi}_{1}^{0})) \\ m(\tilde{\chi}_{1}^{+}) {=} m(\tilde{\chi}_{2}^{0}), m(\tilde{\chi}_{1}^{0}) {=} 0, \text{ sleptons decoupled} \\ m(\tilde{\chi}_{1}^{+}) {=} m(\tilde{\chi}_{2}^{0}), m(\tilde{\chi}_{1}^{0}) {=} 0, \text{ sleptons decoupled} \end{array}$	ATLAS-CONF-2013-049 ATLAS-CONF-2013-049 ATLAS-CONF-2013-028 ATLAS-CONF-2013-035 ATLAS-CONF-2013-035 ATLAS-CONF-2013-093
Long-lived particles	Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^\pm$ Stable, stopped \tilde{g} R-hadron GMSB, stable $\tilde{\tau}, \tilde{\chi}_1^0 \rightarrow \tilde{\tau}(\tilde{e}, \tilde{\mu})_{\dagger} \tau(e$ GMSB, $\tilde{\chi}_1^0 \rightarrow \gamma \tilde{G}$, long-lived $\tilde{\chi}_1^0$ $\tilde{q}\tilde{q}, \tilde{\chi}_1^0 \rightarrow q q \mu$ (RPV)	Disapp. trk 0 e, μ) 1-2 μ 2 γ 1 μ, displ. vtx	1 jet 1-5 jets - -	Yes Yes Yes -	20.3 22.9 15.9 4.7 20.3		270 GeV 832 GeV 475 GeV 230 GeV 1.0 TeV	$\begin{array}{l} m(\tilde{\ell}_1^{\pm}){=}m(\tilde{\ell}_1^0){=}160 \; \mathrm{MeV}, \; r(\tilde{\ell}_1^{\pm}){=}0.2 \; \mathrm{ns} \\ m(\tilde{\ell}_1^0){=}100 \; \mathrm{GeV}, \; 10 \; \mu \mathrm{s}{<}r(\tilde{g}){<}1000 \; \mathrm{s} \\ 10{<}\mathrm{tan}\beta{<}50 \\ 0.4{<}r(\tilde{\ell}_1^0){<}2 \; \mathrm{ns} \\ 1.5 < c\tau{<}156 \; \mathrm{mm}, \; \mathrm{BR}(\mu){=}1, \; m(\tilde{\ell}_1^0){=}108 \; \mathrm{GeV} \end{array}$	ATLAS-CONF-2013-069 ATLAS-CONF-2013-057 ATLAS-CONF-2013-058 1304.6310 ATLAS-CONF-2013-092
RPV	$ \begin{array}{l} LFV \ pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e + \mu \\ LFV \ pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e(\mu) + \tau \\ Bilinear \ RPV \ CMSSM \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow W \tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow ee\tilde{v}_{\mu}, e\mu \tilde{v}_{\mu}, \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow W \tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow \tau \tau \tilde{v}_{e}, e\tau \tilde{v}_{\tau}, \\ \tilde{g} \rightarrow qqq \\ \tilde{g} \rightarrow \tilde{t}_{1} t, \ \tilde{t}_{1} \rightarrow bs \end{array} $		- 7 jets - 6-7 jets 0-3 b	- Yes Yes Yes - Yes	4.6 4.7 20.7 20.7 20.3 20.3	\bar{v}_r \bar{v}_r \bar{q}, \bar{g} $\bar{\chi}_{1}^{\pm}$ $\bar{\chi}_{1}^{\pm}$ \bar{g} \bar{g}	1.61 TeV 1.1 TeV 1.2 TeV 760 GeV 350 GeV 916 GeV 880 GeV	$\begin{array}{l} \lambda_{311}'=\!0.10,\lambda_{132}\!=\!0.05\\ \lambda_{311}'=\!0.10,\lambda_{1(2)33}\!=\!0.05\\ m(\tilde{q})\!=\!m(\tilde{g}),c\tau_{LSP}\!<\!1mm\\ m(\tilde{\chi}_1^0)\!\!>\!\!300\text{GeV},\lambda_{121}\!\!>\!0\\ m(\tilde{\chi}_1^0)\!\!>\!\!80\text{GeV},\lambda_{133}\!\!>\!0\\ \text{BR}(t)\!=\!\text{BR}(b)\!=\!\text{BR}(c)\!\!=\!\!0\% \end{array}$	1212.1272 1212.1272 ATLAS-CONF-2012-140 ATLAS-CONF-2013-036 ATLAS-CONF-2013-036 ATLAS-CONF-2013-091 ATLAS-CONF-2013-007
Other		0 2 e, µ (SS) 0 √s = 8 TeV		Yes Yes 8 TeV	4.6 14.3 10.5	sgluon sgluon M* scale	100-287 GeV 800 GeV 704 GeV 0 ⁻¹ 1	incl. limit from 1110.2693 m(χ)<80 GeV, limit of<687 GeV for D8	1210.4826 ATLAS-CONF-2013-051 ATLAS-CONF-2012-147
	full data P	artial data	full c	lata			-	Mass scale [TeV]	

Status: SUSY 2013

ATLAS Preliminary

 $\int \mathcal{L} dt = (4.6 - 22.9) \text{ fb}^{-1}$ $\sqrt{s} = 7, 8 \text{ TeV}$

	Model	e, μ, τ, γ	Jets	E ^{miss}	∫£ dt[fb	D ⁻¹] Mass limit	Reference
Inclusive Searches	$\begin{array}{l} MSUGRA/CMSSM \\ MSUGRA/CMSSM \\ MSUGRA/CMSSM \\ \tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{\tilde{x}}_1^0 \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q \bar{q} \tilde{\tilde{x}}_1^0 \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q \tilde{\tilde{x}}_1^0 \rightarrow q q W^{\pm} \tilde{\chi}_1^0 \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q (\ell \ell / \ell \nu / \nu \nu) \tilde{\chi}_1^0 \\ GMSB (\tilde{\ell} \ NLSP) \\ GMSB (\tilde{\ell} \ NLSP) \\ GGM (bino \ NLSP) \\ GGM (mino \ NLSP) \\ GGM (higgsino \ bino \ NLSP) \\ GGM (higgsino \ NLSP) \\ Gravitino \ LSP \end{array}$	$\begin{array}{c} 0 \\ 1 \ e, \mu \\ 0 \\ 0 \\ 1 \ e, \mu \\ 2 \ e, \mu \\ 2 \ e, \mu \\ 1 \cdot 2 \ \tau \\ 2 \ \gamma \\ 1 \ e, \mu + \gamma \\ \gamma \\ 2 \ e, \mu \left(Z \right) \\ 0 \end{array}$	2-6 jets 3-6 jets 2-6 jets 2-6 jets 3-6 jets 0-3 jets 0-2 jets 1 b 0-3 jets mono-jet	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 4.7 20.7 4.8 4.8 4.8 4.8 5.8 10.5	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ATLAS-CONF-2013-047 ATLAS-CONF-2013-062 1308.1841 ATLAS-CONF-2013-047 ATLAS-CONF-2013-047 ATLAS-CONF-2013-062 ATLAS-CONF-2013-069 1208.4688 ATLAS-CONF-2013-026 1209.0753 ATLAS-CONF-2012-144 1211.1167 ATLAS-CONF-2012-147
3 rd gen. <i>ἒ</i> med.	$\begin{array}{l} \tilde{g} \rightarrow b \tilde{b} \tilde{\chi}_{1}^{0} \\ \tilde{g} \rightarrow t \tilde{t} \tilde{\chi}_{1}^{0} \\ \tilde{g} \rightarrow t \tilde{t} \tilde{\chi}_{1}^{0} \\ \tilde{g} \rightarrow b \tilde{t} \tilde{\chi}_{1}^{+} \end{array}$	0 0 0-1 <i>e</i> ,μ 0-1 <i>e</i> ,μ	3 b 7-10 jets 3 b 3 b	Yes Yes Yes Yes	20.1 20.3 20.1 20.1	ĝ 1.2 TeV m(k̃1)<600 GeV ĝ 11 TeV m(k̃1)<350 GeV	ATLAS-CONF-2013-061 1308.1841 ATLAS-CONF-2013-061 ATLAS-CONF-2013-061
3 rd gen. squarks direct production	$ \begin{array}{l} \tilde{b}_1 \tilde{b}_1, \ \tilde{b}_1 \rightarrow b \tilde{\chi}_1^0 \\ \tilde{b}_1 \tilde{b}_1, \ \tilde{b}_1 \rightarrow t \tilde{\chi}_1^\pm \\ \tilde{t}_1 \tilde{t}_1 (\text{light}), \ \tilde{t}_1 \rightarrow b \tilde{\chi}_1^\pm \\ \tilde{t}_1 \tilde{t}_1 (\text{light}), \ \tilde{t}_1 \rightarrow W b \tilde{\chi}_1^0 \\ \tilde{t}_1 \tilde{t}_1 (\text{medium}), \ \tilde{t}_1 \rightarrow W b \tilde{\chi}_1^0 \\ \tilde{t}_1 \tilde{t}_1 (\text{medium}), \ \tilde{t}_1 \rightarrow t \tilde{\chi}_1^0 \\ \tilde{t}_1 \tilde{t}_1 (\text{heavy}), \ \tilde{t}_1 \rightarrow t \tilde{\chi}_1^0 \\ \tilde{t}_1 \tilde{t}_1 (\text{heavy}), \ \tilde{t}_1 \rightarrow t \tilde{\chi}_1^0 \\ \tilde{t}_1 \tilde{t}_1 (\text{heavy}), \ \tilde{t}_1 \rightarrow t \tilde{\chi}_1^0 \\ \tilde{t}_1 \tilde{t}_1, \ \tilde{t}_1 \rightarrow c \tilde{\chi}_1^0 \\ \tilde{t}_1 \tilde{t}_1 (\text{natural GMSB}) \\ \tilde{t}_2 \tilde{t}_2, \ \tilde{t}_2 \rightarrow \tilde{t}_1 + Z \end{array} $	$\begin{array}{c} 0 \\ 2 \ e, \mu \ (\text{SS}) \\ 1-2 \ e, \mu \\ 2 \ e, \mu \\ 2 \ e, \mu \\ 0 \\ 1 \ e, \mu \\ 0 \\ 1 \ e, \mu \\ 0 \\ 3 \ e, \mu \ (Z) \end{array}$	2 b 0-3 b 1-2 b 0-2 jets 2 jets 2 b 1 b 2 b ono-jet/c-ta 1 b 1 b	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.1 20.7 4.7 20.3 20.3 20.1 20.7 20.5 20.3 20.7 20.7	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1308.2631 ATLAS-CONF-2013-007 1208.4305, 1209.2102 ATLAS-CONF-2013-048 ATLAS-CONF-2013-065 1308.2631 ATLAS-CONF-2013-037 ATLAS-CONF-2013-024 ATLAS-CONF-2013-025 ATLAS-CONF-2013-025
EW direct	$\begin{array}{l} \tilde{\ell}_{L,R}\tilde{\ell}_{L,R}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\ell}\nu(\ell \tilde{\nu}) \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\tau}\nu(\tau \tilde{\nu}) \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{2}^{0} \rightarrow \tilde{\ell}_{L}\nu \tilde{\ell}_{L}\ell(\tilde{\nu}\nu), \ell \tilde{\nu} \tilde{\ell}_{L}\ell(\tilde{\nu}\nu) \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} Z \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} h \tilde{\chi}_{1}^{0} \end{array}$	2 e,μ 2 e,μ 2 τ 3 e,μ 3 e,μ 1 e,μ	0 0 - 0 2 b	Yes Yes Yes Yes Yes Yes	20.3 29/3 20.7 20.7 20.7 20.7 20.3	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ATLAS-CONF-2013-049 ATLAS-CONF-2013-049 ATLAS-CONF-2013-028 ATLAS-CONF-2013-035 ATLAS-CONF-2013-035 ATLAS-CONF-2013-093
Long-lived particles	Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^\pm$ Stable, stopped \tilde{g} R-hadron GMSB, stable $\tilde{\tau}, \tilde{\chi}_1^0 \rightarrow \tilde{\tau}(\tilde{e}, \tilde{\mu})_+ \tau(e$ GMSB, $\tilde{\chi}_1^0 \rightarrow \gamma \tilde{G}$, long-lived $\tilde{\chi}_1^0$ $\tilde{q}\tilde{q}, \tilde{\chi}_1^0 \rightarrow q q \mu$ (RPV)	Disapp. trk 0 e, μ) 1-2 μ 2 γ 1 μ, displ. vtx	1 jet 1-5 jets - -	Yes Yes - Yes -	20.3 22.9 15.9 4.7 20.3	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ATLAS-CONF-2013-069 ATLAS-CONF-2013-057 ATLAS-CONF-2013-058 1304.6310 / ATLAS-CONF-2013-092
RPV	$ \begin{array}{l} LFV \ pp \rightarrow \tilde{v}_{\tau} + X, \ \tilde{v}_{\tau} \rightarrow e + \mu \\ LFV \ pp \rightarrow \tilde{v}_{\tau} + X, \ \tilde{v}_{\tau} \rightarrow e(\mu) + \tau \\ Bilinear \ RPV \ CMSSM \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}, \ \tilde{\chi}_{1}^{+} \rightarrow W \tilde{\chi}_{1}^{0}, \ \tilde{\chi}_{1}^{0} \rightarrow ee \tilde{v}_{\mu}, e \mu \tilde{v}, \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}, \ \tilde{\chi}_{1}^{+} \rightarrow W \tilde{\chi}_{1}^{0}, \ \tilde{\chi}_{1}^{0} \rightarrow \tau \tau \tilde{v}_{e}, e \tau \tilde{v}, \\ \tilde{g} \rightarrow q q \\ \tilde{g} \rightarrow \tilde{t}_{1} t, \ \tilde{t}_{1} \rightarrow bs \end{array} $		- 7 jets - 6-7 jets 0-3 b	- Yes Yes - Yes	4.6 4.7 20.7 20.7 20.3 20.7	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1212.1272 1212.1272 ATLAS-CONF-2012-140 ATLAS-CONF-2013-036 ATLAS-CONF-2013-036 ATLAS-CONF-2013-091 ATLAS-CONF-2013-007
Other	Scalar gluon pair, sgluon $\rightarrow q\bar{q}$ Scalar gluon pair, sgluon $\rightarrow t\bar{t}$ WIMP interaction (D5, Dirac χ)	0 2 e, µ (SS) 0	4 jets 1 <i>b</i> mono-jet	- Yes Yes	4.6 14.3 10.5	sgluon 100-287 GeV incl. limit from 1110.2693 sgluon 800 GeV m(χ)<80 GeV, limit of <687 GeV for D8	1210.4826 ATLAS-CONF-2013-051 ATLAS-CONF-2012-147
		√s = 8 TeV artial data	√s = 8 full d			10 ⁻¹ 1 Mass scale [TeV]	-

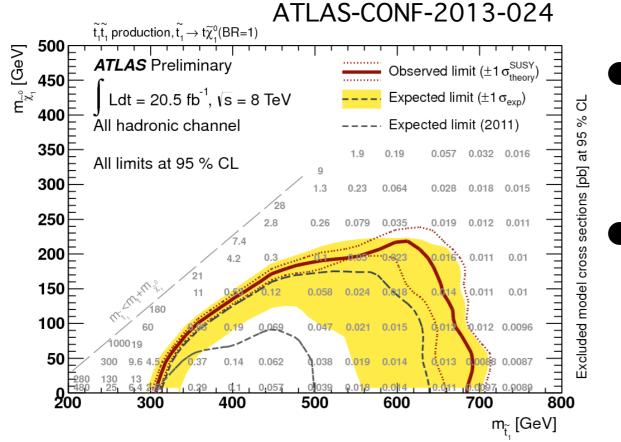
Behind the scene

Behind the scene

 Results based on several assumptions and are the best limits -should be taken with a grain of salt for a generic model

Status: SUSY 2013

ATLA	S Preliminary
$\int \mathcal{L} dt = (4.6 - 22.9) \text{ fb}^{-1}$	$\sqrt{s} = 7, 8 \text{ TeV}$

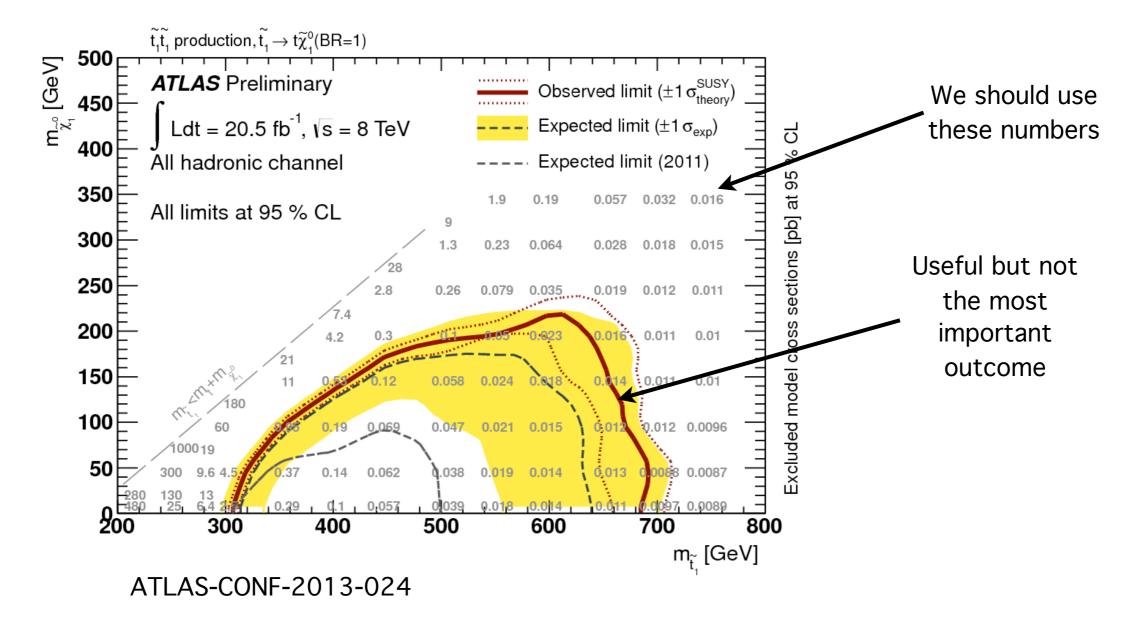

$\int \mathcal{L} dt =$	(4.6 - 22.9) fb ⁻¹	$\sqrt{s} =$
-------------------------	-------------------------------	--------------

010								$\int \mathcal{L} dt = (4.6 - 22.9) \text{ ID}^{-2}$	$\gamma s = 7, o \text{ rev}$
	Model	e, μ, τ, γ	Jets	E ^{miss} T	∫£ dt[fb	b ⁻¹]	Mass limit		Reference
Inclusive Searches	$\begin{array}{l} MSUGRA/CMSSM \\ MSUGRA/CMSSM \\ MSUGRA/CMSSM \\ \widetilde{q}\widetilde{q}, \widetilde{q} \rightarrow q \widetilde{\chi}_1^0 \\ \widetilde{g}\widetilde{g}, \widetilde{g} \rightarrow q \widetilde{q} \widetilde{\chi}_1^0 \\ \widetilde{g}\widetilde{g}, \widetilde{g} \rightarrow q q \widetilde{\chi}_1^1 \rightarrow q q W^{\pm} \widetilde{\chi}_1^0 \\ \widetilde{g}\widetilde{g}, \widetilde{g} \rightarrow q q (\ell/(\ell v / v v) \widetilde{\chi}_1^0 \\ GMSB (\widetilde{\ell} \; NLSP) \\ GMSB (\widetilde{\ell} \; NLSP) \\ GGM (bino \; NLSP) \\ GGM (mino \; NLSP) \\ GGM (higgsino \; bino \; NLSP) \\ GGM (higgsino \; NLSP) \\ GFA (A \; A \; $	$\begin{array}{c} 0 \\ 1 \ e, \mu \\ 0 \\ 0 \\ 1 \ e, \mu \\ 2 \ e, \mu \\ 2 \ e, \mu \\ 1 - 2 \ \tau \\ 2 \ \gamma \\ 1 \ e, \mu + \gamma \\ \gamma \\ 2 \ e, \mu \left(Z \right) \\ 0 \end{array}$	2-6 jets 3-6 jets 2-6 jets 2-6 jets 3-6 jets 0-3 jets 0-2 jets 1 b 0-3 jets mono-jet	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 4.7 20.7 4.8 4.8 4.8 4.8 5.8 10.5	q. g g g g q g	1.7 TeV 1.2 TeV 1.2 TeV 1.1 TeV 740 GeV 1.3 TeV 1.3 TeV 1.18 TeV 1.12 TeV 1.12 TeV 1.24 TeV 1.24 TeV 1.4 TeV 1.07 TeV 619 GeV 900 GeV 690 GeV 645 GeV	$\begin{array}{l} m(\tilde{q}) = m(\tilde{g}) \\ \text{any } m(\tilde{q}) \\ \text{any } m(\tilde{q}) \\ m(\tilde{k}_{1}^{0}) = 0 \ \text{GeV} \\ m(\tilde{k}_{1}^{0}) = 0 \ \text{GeV} \\ m(\tilde{k}_{1}^{0}) < 200 \ \text{GeV}, m(\tilde{\chi}^{\pm}) = 0.5(m(\tilde{\chi}_{1}^{0}) + m(\tilde{g})) \\ m(\tilde{\chi}_{1}^{0}) = 0 \ \text{GeV} \\ \tan\beta < 15 \\ \tan\beta > 18 \\ m(\tilde{\chi}_{1}^{0}) > 50 \ \text{GeV} \\ m(\tilde{k}_{1}^{0}) > 50 \ \text{GeV} \\ m(\tilde{k}_{1}^{0}) > 220 \ \text{GeV} \\ m(\tilde{k}_{1}^{0}) > 200 \ \text{GeV} \\ m(\tilde{k}_{1}^{0}) > 10^{-4} \ \text{eV} \end{array}$	ATLAS-CONF-2013-047 ATLAS-CONF-2013-062 1308.1841 ATLAS-CONF-2013-047 ATLAS-CONF-2013-047 ATLAS-CONF-2013-062 ATLAS-CONF-2013-089 1208.4688 ATLAS-CONF-2013-026 1209.0753 ATLAS-CONF-2012-144 1211.1167 ATLAS-CONF-2012-152 ATLAS-CONF-2012-147
3 rd gen. ἒ med.	$\widetilde{g} \rightarrow b \overline{b} \widetilde{\chi}_{1}^{0}$ $\widetilde{g} \rightarrow t \overline{t} \widetilde{\chi}_{1}^{0}$ $\widetilde{g} \rightarrow t \overline{t} \widetilde{\chi}_{1}^{0}$ $\widetilde{g} \rightarrow b \overline{t} \widetilde{\chi}_{1}^{+}$	0 0-1 <i>e</i> ,μ 0-1 <i>e</i> ,μ	3 b 7-10 jets 3 b 3 b	Yes Yes Yes Yes	20.1 20.3 20.1 20.1	ğ ğ ğ	1.2 TeV 1.1 TeV 1.34 TeV 1.3 TeV	$m(\tilde{k}_{1}^{0}) < 600 \text{ GeV}$ $m(\tilde{k}_{1}^{0}) < 350 \text{ GeV}$ $m(\tilde{k}_{1}^{0}) < 400 \text{ GeV}$ $m(\tilde{k}_{1}^{0}) < 300 \text{ GeV}$	ATLAS-CONF-2013-061 1308.1841 ATLAS-CONF-2013-061 ATLAS-CONF-2013-061
3rd gen. squarks direct production	$ \begin{array}{l} \tilde{b}_{1}\tilde{b}_{1}, \ \tilde{b}_{1} \rightarrow b \tilde{\chi}_{1}^{0} \\ \tilde{b}_{1}\tilde{b}_{1}, \ \tilde{b}_{1} \rightarrow t \tilde{\chi}_{1}^{\pm} \\ \tilde{t}_{1}\tilde{t}_{1}(\text{light}), \ \tilde{t}_{1} \rightarrow b \tilde{\chi}_{1}^{\pm} \\ \tilde{t}_{1}\tilde{t}_{1}(\text{light}), \ \tilde{t}_{1} \rightarrow W b \tilde{\chi}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{1}(\text{medium}), \ \tilde{t}_{1} \rightarrow t \tilde{\chi}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{1}(\text{medium}), \ \tilde{t}_{1} \rightarrow t \tilde{\chi}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{1}(\text{heavy}), \ \tilde{t}_{1} \rightarrow t \tilde{\chi}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{1}(\text{heavy}), \ \tilde{t}_{1} \rightarrow t \tilde{\chi}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{1}(\text{heavy}), \ \tilde{t}_{1} \rightarrow t \tilde{\chi}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{2}, \ \tilde{t}_{2} \rightarrow \tilde{t}_{1} + Z \end{array} $	$\begin{array}{c} 0 \\ 2 \ e, \mu \ (\text{SS}) \\ 1-2 \ e, \mu \\ 2 \ e, \mu \\ 2 \ e, \mu \\ 0 \\ 1 \ e, \mu \\ 0 \\ 1 \ e, \mu \\ 0 \\ 3 \ e, \mu \ (Z) \end{array}$	2 b 0-3 b 1-2 b 0-2 jets 2 jets 2 b 1 b 2 b tono-jet/c-ta 1 b 1 b	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.1 20.7 4.7 20.3 20.3 20.1 20.7 20.5 20.3 20.7 20.7	$ \vec{b}_1 \\ \vec{b}_1 \\ \vec{t}_1 \\ \vec{t}_2 \\ \vec{t}_2 \\ $	100-620 GeV 275-430 GeV 110 <mark>-167 GeV</mark> 130-220 GeV 225-525 GeV 225-525 GeV 200-610 GeV 320-660 GeV 90-200 GeV 500 GeV 271-520 GeV	$\begin{array}{l} m(\tilde{k}_{1}^{0}) <\!\!90 \text{GeV} \\ m(\tilde{k}_{1}^{+}) =\!\!2 m(\tilde{k}_{1}^{0}) \\ m(\tilde{k}_{1}^{0}) =\!\!55 \text{GeV} \\ m(\tilde{k}_{1}^{0}) =\!\!55 \text{GeV} \\ m(\tilde{k}_{1}^{0}) =\!\!0 \text{GeV} \\ m(\tilde{k}_{1}^{0}) <\!\!200 \text{GeV} \\ m(\tilde{k}_{1}^{0}) <\!\!200 \text{GeV} \\ m(\tilde{k}_{1}^{0}) =\!\!0 \text{GeV} \\ m(\tilde{k}_{1}^{0}) =\!\!150 \text{GeV} \\ m(\tilde{k}_{1}^{0}) >\!\!150 \text{GeV} \\ m(\tilde{k}_{1}) =\!\!m(\tilde{k}_{1}^{0}) +\!\!180 \text{GeV} \\ \end{array}$	1308.2631 ATLAS-CONF-2013-007 1208.4305, 1209.2102 ATLAS-CONF-2013-048 ATLAS-CONF-2013-065 1308.2631 ATLAS-CONF-2013-037 ATLAS-CONF-2013-024 ATLAS-CONF-2013-025 ATLAS-CONF-2013-025
EW direct	$\begin{array}{l} \tilde{\ell}_{L,R} \tilde{\ell}_{L,R}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\ell} \nu (\ell \tilde{\nu}) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\tau} \nu (\tau \tilde{\nu}) \\ \tilde{\chi}_{1}^{\pm} \tilde{\chi}_{2}^{0} \rightarrow \tilde{\ell}_{L} \nu \tilde{\ell}_{L} \ell (\tilde{\nu} \nu), \ell \tilde{\nu} \tilde{\ell}_{L} \ell (\tilde{\nu} \nu) \\ \tilde{\chi}_{1}^{\pm} \tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} Z \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{\pm} \tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} h \tilde{\chi}_{1}^{0} \end{array}$	2 e,μ 2 e,μ 2 τ 3 e,μ 3 e,μ 1 e,μ	0 0 0 2 b	Yes Yes Yes Yes Yes Yes	20.3 20.3 20.7 20.7 20.7 20.7 20.3	$\vec{\ell} = \vec{\chi}_{1}^{0} + \vec{\chi}_{1}^{0} + \vec{\chi}_{2}^{0} + \vec{\chi}_{1}^{0} + \vec{\chi}_{1}^{0}$	85-315 GeV 125-450 GeV 180-330 GeV 600 GeV m(τ̃1) 315 GeV 285 GeV	$\begin{array}{l} m(\tilde{\chi}_{1}^{0}) {=} 0 \; GeV \\ m(\tilde{\chi}_{1}^{0}) {=} 0 \; GeV, m(\tilde{\ell}, \tilde{\nu}) {=} 0.5 (m(\tilde{\chi}_{1}^{+}) {+} m(\tilde{\chi}_{1}^{0})) \\ m(\tilde{\chi}_{1}^{0}) {=} 0 \; GeV, m(\tilde{\tau}, \tilde{\nu}) {=} 0.5 (m(\tilde{\chi}_{1}^{+}) {+} m(\tilde{\chi}_{1}^{0})) \\ {=} m(\tilde{\chi}_{2}^{0}), m(\tilde{\chi}_{1}^{0}) {=} 0, m(\tilde{\ell}, \tilde{\nu}) {=} 0.5 (m(\tilde{\chi}_{1}^{+}) {+} m(\tilde{\chi}_{1}^{0})) \\ m(\tilde{\chi}_{1}^{+}) {=} m(\tilde{\chi}_{2}^{0}), m(\tilde{\chi}_{1}^{0}) {=} 0, \text{ sleptons decoupled} \\ m(\tilde{\chi}_{1}^{+}) {=} m(\tilde{\chi}_{2}^{0}), m(\tilde{\chi}_{1}^{0}) {=} 0, \text{ sleptons decoupled} \end{array}$	ATLAS-CONF-2013-049 ATLAS-CONF-2013-049 ATLAS-CONF-2013-028 ATLAS-CONF-2013-035 ATLAS-CONF-2013-035 ATLAS-CONF-2013-093
Long-lived particles	Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^\pm$ Stable, stopped \tilde{g} R-hadron GMSB, stable $\tilde{\tau}, \tilde{\chi}_1^0 \rightarrow \tilde{\tau}(\tilde{e}, \tilde{\mu})_{\dagger} \tau(e$ GMSB, $\tilde{\chi}_1^0 \rightarrow \gamma \tilde{G}$, long-lived $\tilde{\chi}_1^0$ $\tilde{q}\tilde{q}, \tilde{\chi}_1^0 \rightarrow q q \mu$ (RPV)	Disapp. trk 0 e, μ) 1-2 μ 2 γ 1 μ, displ. vtx	1 jet 1-5 jets - -	Yes Yes Yes -	20.3 22.9 15.9 4.7 20.3		270 GeV 832 GeV 475 GeV 230 GeV 1.0 TeV	$\begin{array}{l} m(\tilde{\ell}_1^{\pm}){=}m(\tilde{\ell}_1^0){=}160 \; \mathrm{MeV}, \; r(\tilde{\ell}_1^{\pm}){=}0.2 \; \mathrm{ns} \\ m(\tilde{\ell}_1^0){=}100 \; \mathrm{GeV}, \; 10 \; \mu \mathrm{s}{<}r(\tilde{g}){<}1000 \; \mathrm{s} \\ 10{<}\mathrm{tan}\beta{<}50 \\ 0.4{<}r(\tilde{\ell}_1^0){<}2 \; \mathrm{ns} \\ 1.5 < c\tau{<}156 \; \mathrm{mm}, \; \mathrm{BR}(\mu){=}1, \; m(\tilde{\ell}_1^0){=}108 \; \mathrm{GeV} \end{array}$	ATLAS-CONF-2013-069 ATLAS-CONF-2013-057 ATLAS-CONF-2013-058 1304.6310 ATLAS-CONF-2013-092
RPV	$ \begin{array}{l} LFV \ pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e + \mu \\ LFV \ pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e(\mu) + \tau \\ Bilinear \ RPV \ CMSSM \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow W \tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow ee\tilde{v}_{\mu}, e\mu \tilde{v}_{\mu}, \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow W \tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow \tau \tau \tilde{v}_{e}, e\tau \tilde{v}_{\tau}, \\ \tilde{g} \rightarrow qqq \\ \tilde{g} \rightarrow \tilde{t}_{1} t, \ \tilde{t}_{1} \rightarrow bs \end{array} $		- 7 jets - 6-7 jets 0-3 b	- Yes Yes Yes - Yes	4.6 4.7 20.7 20.7 20.3 20.3	\bar{v}_r \bar{v}_r \bar{q}, \bar{g} $\bar{\chi}_{1}^{\pm}$ $\bar{\chi}_{1}^{\pm}$ \bar{g} \bar{g}	1.61 TeV 1.1 TeV 1.2 TeV 760 GeV 350 GeV 916 GeV 880 GeV	$\begin{array}{l} \lambda_{311}'=\!0.10,\lambda_{132}\!=\!0.05\\ \lambda_{311}'=\!0.10,\lambda_{1(2)33}\!=\!0.05\\ m(\tilde{q})\!=\!m(\tilde{g}),c\tau_{LSP}\!<\!1mm\\ m(\tilde{\chi}_1^0)\!\!>\!\!300\text{GeV},\lambda_{121}\!\!>\!0\\ m(\tilde{\chi}_1^0)\!\!>\!\!80\text{GeV},\lambda_{133}\!\!>\!0\\ \text{BR}(t)\!=\!\text{BR}(b)\!=\!\text{BR}(c)\!\!=\!\!0\% \end{array}$	1212.1272 1212.1272 ATLAS-CONF-2012-140 ATLAS-CONF-2013-036 ATLAS-CONF-2013-036 ATLAS-CONF-2013-091 ATLAS-CONF-2013-007
Other		0 2 e, µ (SS) 0 √s = 8 TeV		Yes Yes 8 TeV	4.6 14.3 10.5	sgluon sgluon M* scale	100-287 GeV 800 GeV 704 GeV 0 ⁻¹ 1	incl. limit from 1110.2693 m(χ)<80 GeV, limit of<687 GeV for D8	1210.4826 ATLAS-CONF-2013-051 ATLAS-CONF-2012-147
	full data P	artial data	full c	lata			-	Mass scale [TeV]	

Behind the scene

- Results based on several assumptions and are the best limits -should be taken with a grain of salt for a generic model
- Simplified Model Spectra (SMS) are a good way to represent a more generic picture
- The alternative to SMS is to re-implement the relevant analyses to test the SUSY scenario - typically time consuming, demands huge computing power but more accurate
- We take the simpler approach and stick to SMS results here

What is a SMS result?



Note: the grid numbers on the plot are more important than the exclusion lines

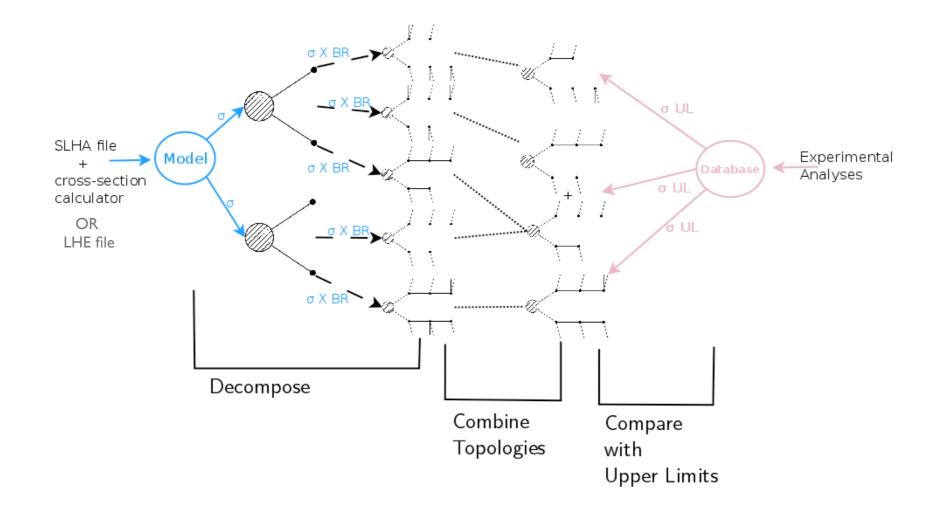
- SMS are an effective-Lagrangian description of BSM involving a limited set of new particles.
- Every SMS interpretation is based on a set of assumptions and is applicable for specific topologies e.g. ttbar + MET

 A generic point in e.g. SUSY parameter space contains many topologies and is sensitive to more than one SMS interpretation e.g. ttbar + MET, bbar + MET

How to read an SMS result

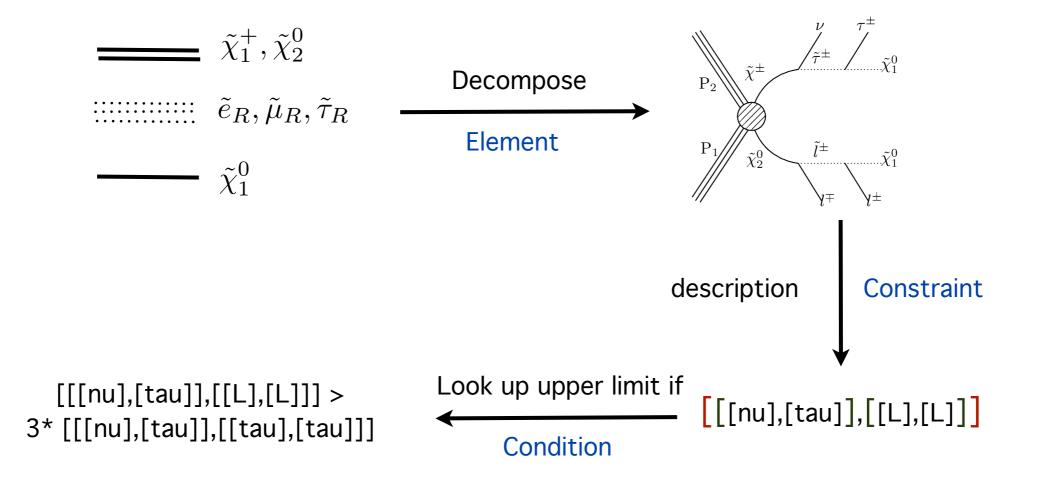
 95% CL UL is the unfolded maximum amount of cross-section allowed for a specific decay chain and a mass combination

Is sigmaXBR(ttbar + MET) of your model for a given mass > the number on the plot? -- Yes, point excluded; No, point allowed


Can we have a centralized database of all the SMS results to check a given SUSY point in parameter space by decomposing it into SMS topologies?

Central concept of

SModelS framework

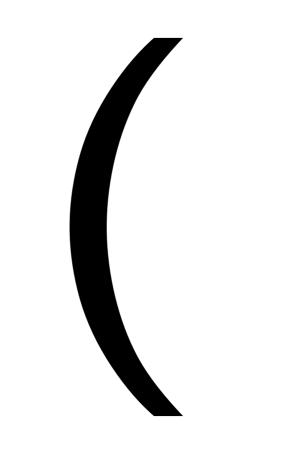

 It assumes, for most experimental searches, the BSM model can be approximated by a sum over effective simplified models

Current implementation assumes R-parity is conserved

SModelS framework

Consider:

 The framework does not depend on characteristics of SUSY particles, can also be applied to decompose any BSM spectra of arbitrary complexity


SModelS language

A real life application

Do LHC results on the SUSY particles, Higgs signal strengths and constraints on DM from direct and indirect detection experiments rule out light neutralino DM?

Already many studies exist in literature, I'll not list them here

based on: arxiv:1308.3735 [hep-ph] (published PLB)

 $Ht\bar{t}$ coupling, leading to a strong correlation with the ttH process, this need not be the case in models with suppressed $Ht\bar{t}$ coupling and/or enhanced $Hb\bar{b}$ coupling and most especially in models with BSM loops.

The final states in which the Higgs is observed include $\gamma\gamma$, $ZZ^{(*)}_{Q}WW^{(*)}$, $b\bar{b}$ and $\tau\tau$. However, they do not all scale independently. In particular, custodial symmetry implies that the branching fractions into $ZZ^{(*)}$ and $WW^{(*)}$ are rescaled by the same factor with respect to the SM. We are then left with two independent production modes (VBF+VH) and (cgF+ttH), and four independent final states $\gamma\gamma$, $W^{(*)}$, $b\bar{b}$, $\tau\tau$. In addition, in many models there is a common coupling to Four tindependent final states for the $b\bar{b}$ and $\tau\tau$ final states.

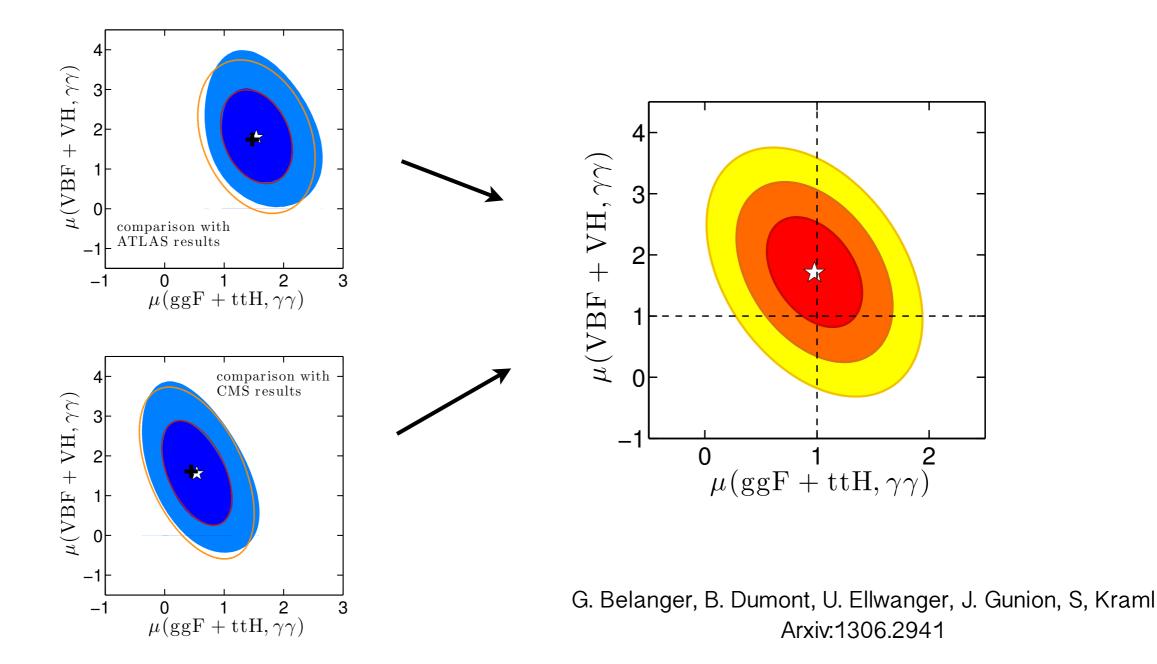
- Four for oduction in original to the store of the vertice of the matter of the degree of the store of the entire of the entin entire of the entire of the entire of the entine of the en
 - Experimentally we get information or here signal strengths $\lambda_i = a_i(\mu_i^{\text{seg}}) \mu_i^{\text{seg}}$ ($\mu_i^{\text{seg}} \mu_i^{\text{seg}}) \mu_i^{\text{seg}}$) ($\mu_i^{\text{seg}} \mu_i^{\text{seg}}) + c_i(\mu_i^{\text{seg}} \mu_i^{\text{seg}})^2$, (1)

where the upper indices ggF #nd=VBF tBR) for $(\phi ggFBR)^{SM}$ and (VBF+VH), respectively, the lower index *i* stands for $\gamma\gamma$, $VV^{(*)}$, $b\bar{b}$ and $\tau\tau$ (or $b\bar{b} = \tau\tau$), and $\hat{\mu}_i^{ggF}$ and $\hat{\mu}_i^{VBF}$ denote the best-fit points obtained from the measurements. We thus obtain "combined likelihood ellipses", which can be used in a simple, generic way to constrain non-standard Higgs sectors and new contributions to the loop-induced processes, provided they have the same Lagrangian structure as the SM.

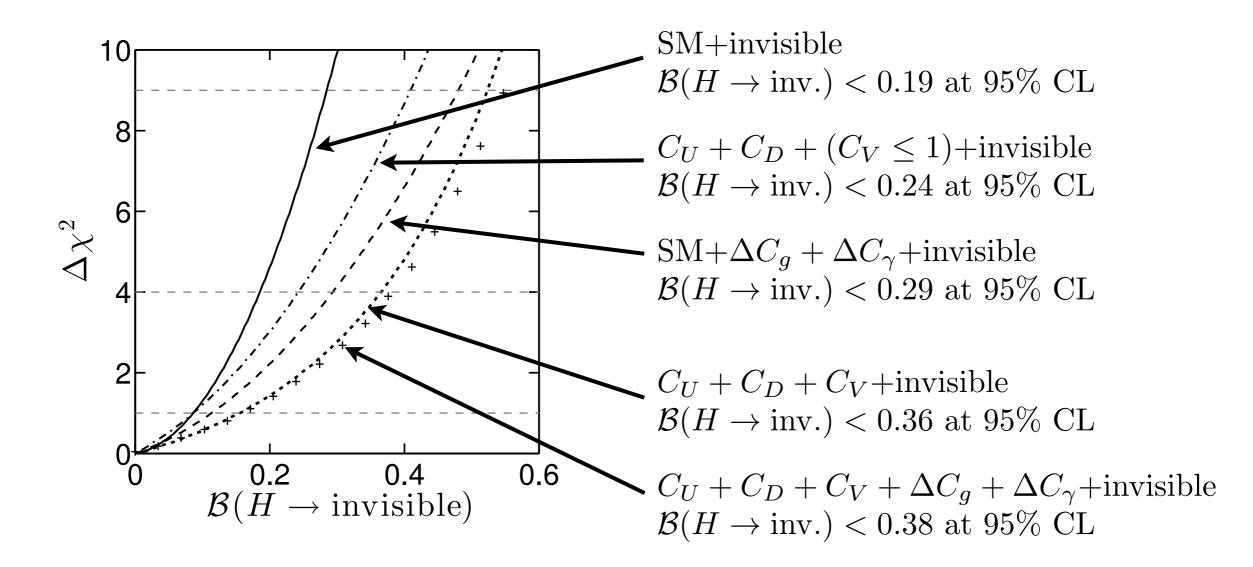
In particular, these likelihoods can be used to derive constraints on a model-dependent choice of generalized Higgs couplings, the implications of which we study subsequently for several well-motivated models. The choice of models is far from exhaustive, but we present our

 $Ht\bar{t}$ coupling, leading to a strong correlation with the ttH process, this need not be the case in models with suppressed $Ht\bar{t}$ coupling and/or enhanced $Hb\bar{b}$ coupling and most especially in models with BSM loops.

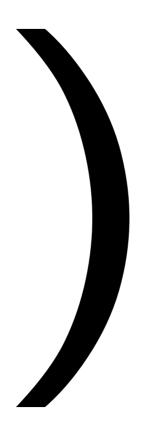
The final states in which the Higgs is observed include $\gamma\gamma$, $ZZ^{(*)}_{Q}WW^{(*)}$, $b\bar{b}$ and $\tau\tau$. However, they do not all scale independently. In particular, custodial symmetry implies that the branching fractions into $ZZ^{(*)}$ and $WW^{(*)}$ are rescaled by the same factor with respect to the SM. We are then left with two independent production modes (VBF+VH) and (ggF+ttH), and four independent final states $\gamma\gamma$, $VV^{(*)}$, $b\bar{b}$, $\tau\tau$. In addition, in many indefes there is a common coupling to Fourtindependent production modes for the $b\bar{b}$ and $\tau\tau$ final states. The first purpose of the present paper and ψ and ψ and $\tau\tau$ final states.


$$\mathcal{L} = g \left[C_V \left(M_W W_\mu W^\mu + \frac{M_Z}{\cos \theta_W} Z_\mu Z^\mu \right) - C_U \frac{m_t}{2M_W} \bar{t}t - C_D \frac{m_b}{2M_W} \bar{b}b - C_D \frac{m_\tau}{2M_W} \bar{\tau}\tau \right] H.$$

C's scale couplings relative to SM ones; $C_U=C_D=C_V=1$ is SM.


• Loop induced ggF production and $\gamma\gamma$ final state are susceptible where the upper indices ggF and VBF stand for ($\gamma\gamma$ final state are susceptible of BSM contributions $\gamma\gamma$, $VV^{(*)}$, bb and $\tau\tau$ (or $bb = \tau\tau$), and μ_i^{sB} and μ_i^{vBF} denote the bestfit **Contribution** the measurements. We thus obtain "combined likelihood ellipses", which can be used in a simple, generic way to constrain non-standard Higgs sectors and new contributions to the loop-induced processes, provided they have the same Lagrangian structure as the SM.

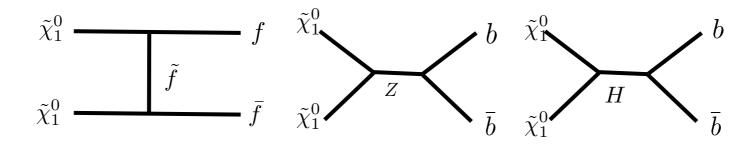
In particular, these likelihoods can be used to derive constraints on a model-dependent choice of generalized Higgs couplings, the implications of which we study subsequently for several well-motivated models. The choice of models is far from exhaustive, but we present our


 A combined likelihood in (ggF+ttH) and (VBF+VH) planes was derived using ATLAS, CMS and Tevatron results

• How much invisible Higgs decay is allowed?

G. Belanger, B. Dumont, U. Ellwanger, J. Gunion, S, Kraml Arxiv:1306.2941

A real life application


Do LHC results on the SUSY particles, Higgs signal strengths and constraints on DM from direct and indirect detection experiments rule out light neutralino DM?

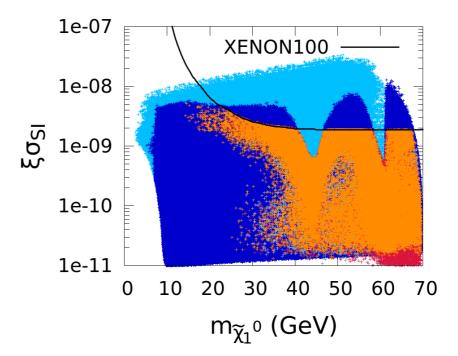
Already many studies exist in literature, I'll not list them here

based on: arxiv:1308.3735 [hep-ph] (published PLB)

How light is light?

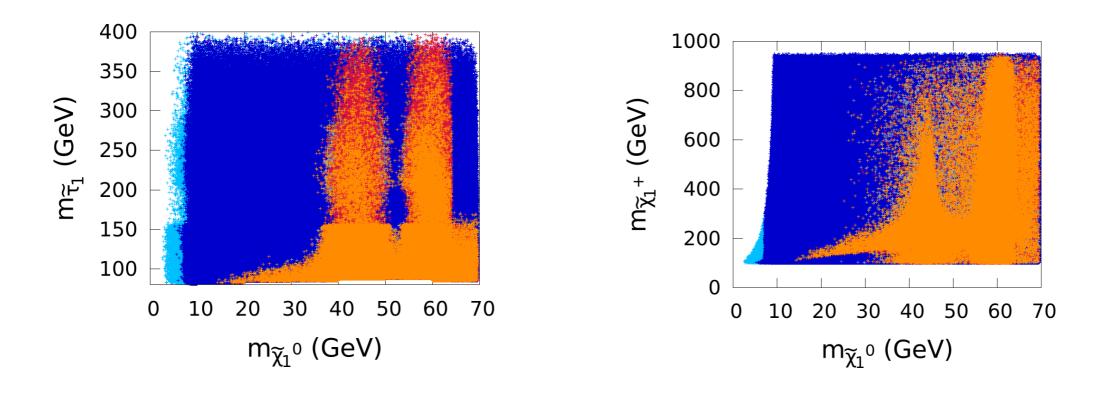
- Motivated by hints of light dark matter ~ 8-10 GeV
- Relaxing gaugino universality: few collider constraints
 - Z width, LEP bounds, invisible Higgs decays
- Cosmology constraints:

- Region of interest: $m_{\tilde{\chi}_1^0} < m_h/2$ Z and H exchange not effective, slepton exchange channel has collider constraints from LHC searches
- Light slepton exchange of interest to us here

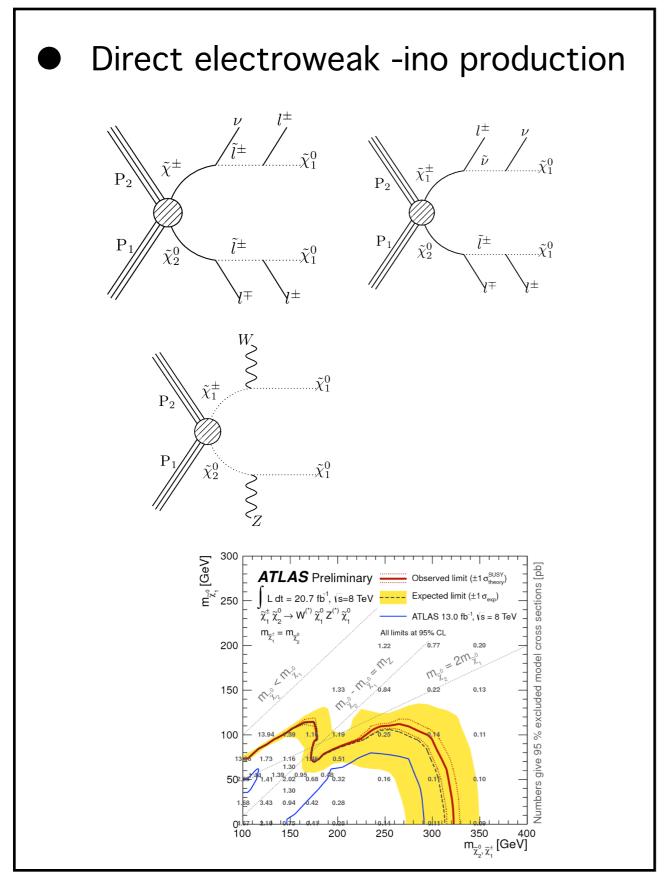

How light is light?

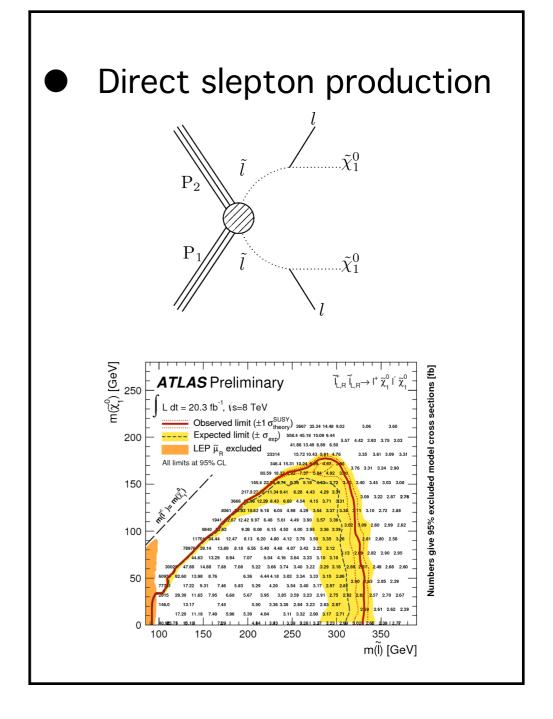
- pMSSM scan over relevant parameters pMSSM scan over 11 parameters $M_1, M_2, \mu, \tan\beta, M_A, A_t, M_{IL}, M_{IR}, M_{3L}, M_{3R}, A_\tau$

 - $-M_{L} \neq P$, $H_{1} \neq S$, $H_{2} \neq S$, $H_{2} = M_{2} = M_{2$
 - LEPHHILS, 2 width, By Higgs, Alges, Alges, Alges, Alges, heavy Higgs searches @LHC, Xenon100

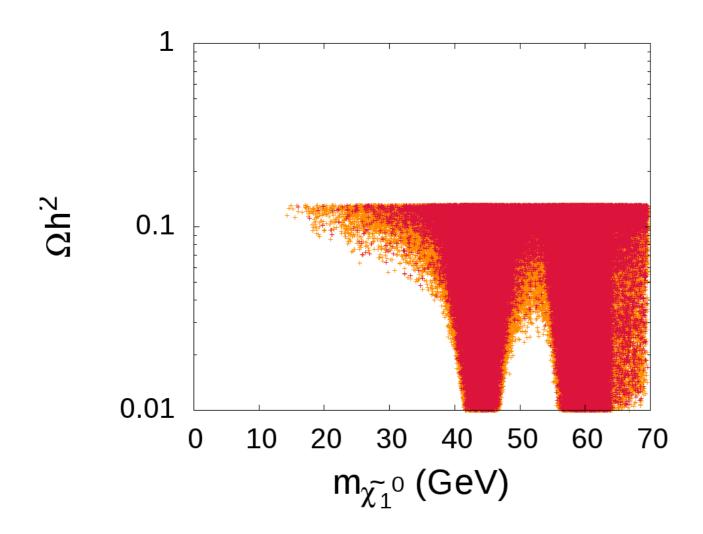

Basic constraints Higgs couplings fits

LHC results + upper limit of relic LHC results + exact relic

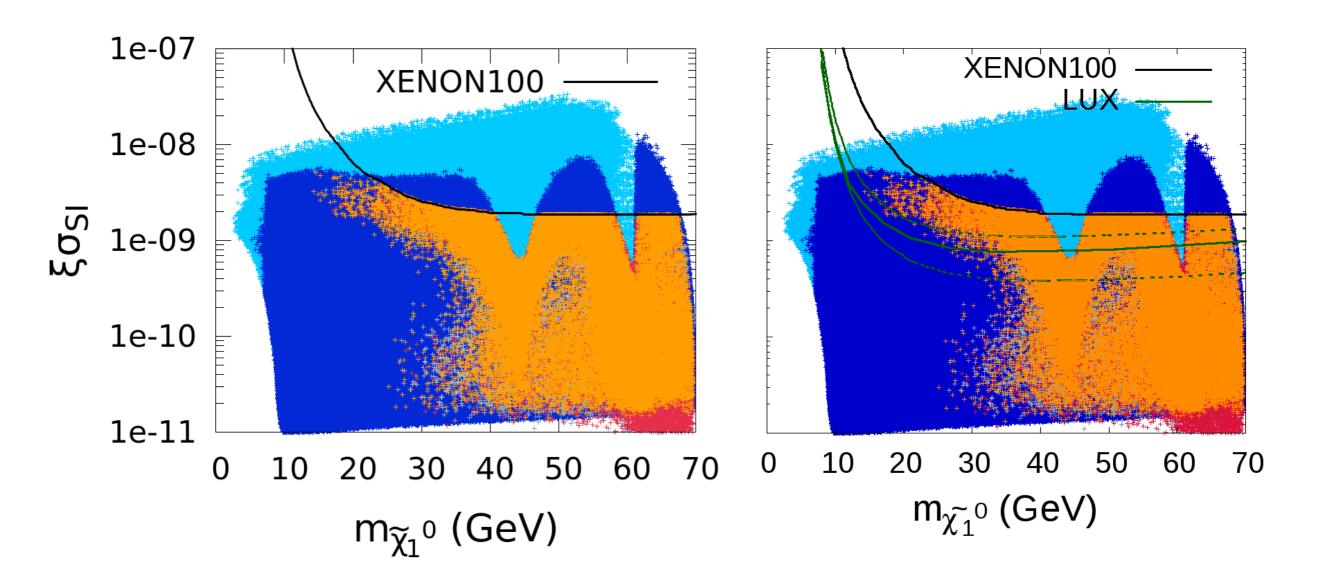

How light is light?


DM < 35 GeV associated with light stau + light chargino

- LHC searches put constraints on light electroweak -ino and DMIEpt35 product associated with light sparticles : light stau + light chargino
- ATLAS and CNS have started to proble electroweakino and sleptons


LHC searches

Reading just exclusion curve tells us, nothing from the presented scenario can survive


Applying SModelS

All points passing relic density upper limits Points excluded by the LHC limits

- SMS results used from ATLAS-CONF-2013-049, CMS-PAS-SUS-12-022, ATLAS-CONF-2013-035
- Density of points reduced LHC does rule out some scenarios
- In general light neutralino still possible

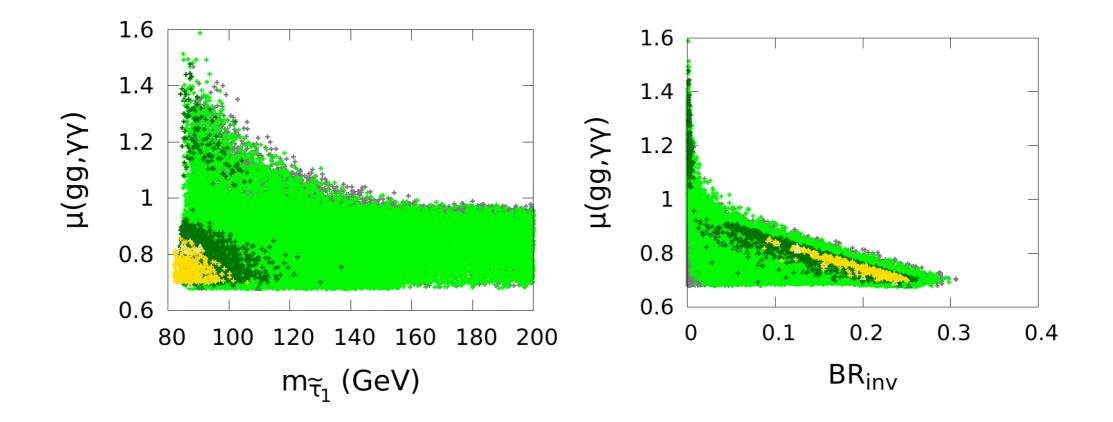
More recently...

 LUX disfavors the light neutralino DM region we had identified to be viable

> Basic constraints Higgs couplings fits

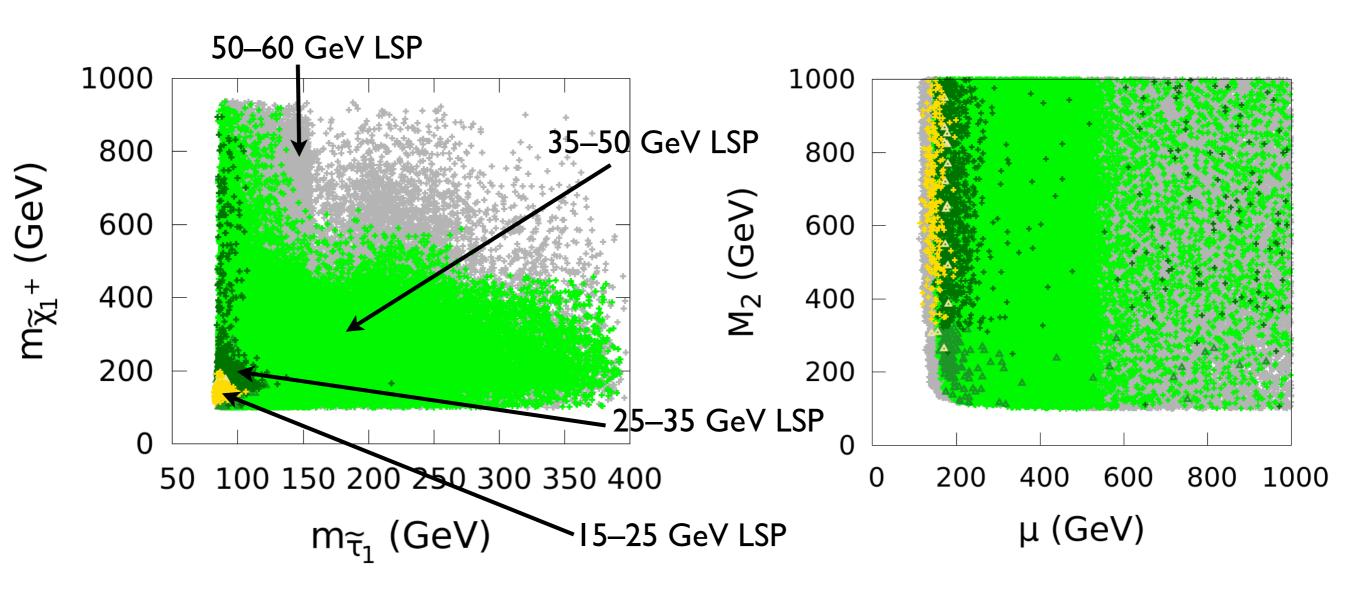
LHC results + upper limit of relic LHC results + exact relic

A note of caution

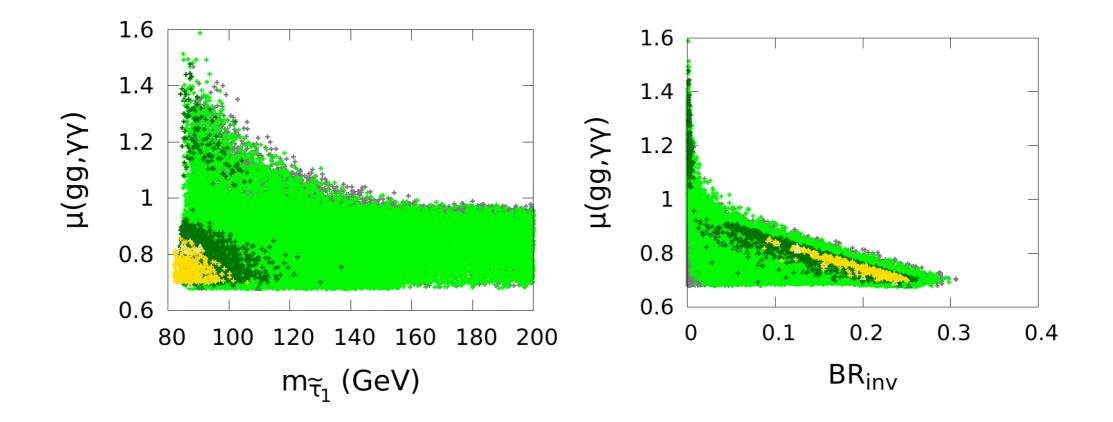

- SMS approach is not perfect yet
- Not all SMS topologies are present
- SModelS does not combine the results obtained from different analyses
- No statistical interpretation of the results is possible at the moment
- Likelihood information is missing which can be used to combine different SMS results, in addition efficiency maps should be built
- Many groups are looking at improving this approach further

Conclusions

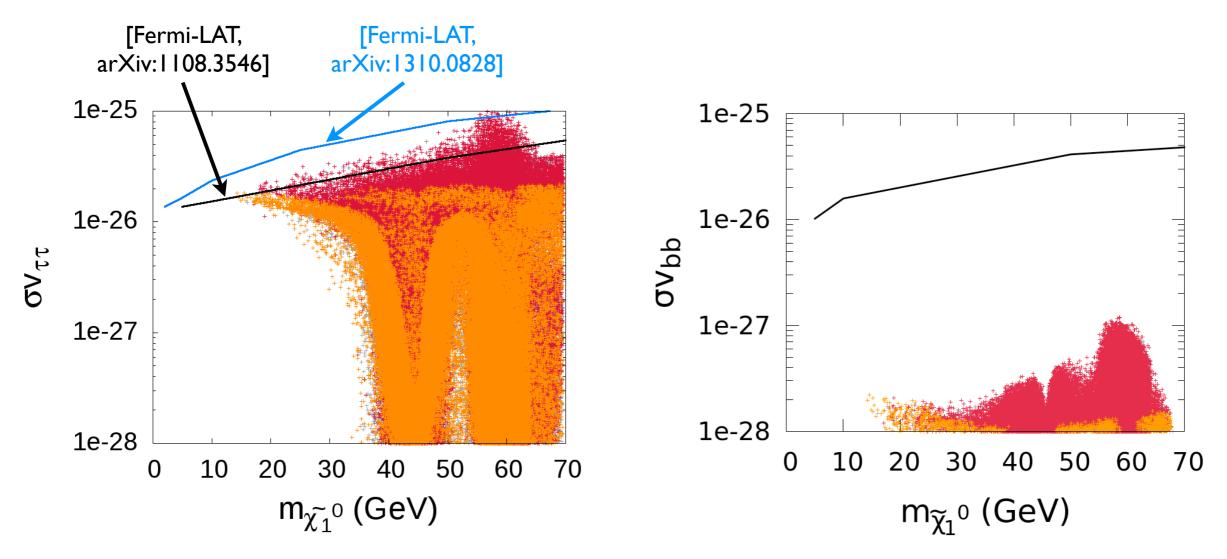
- SMS results are a good way to test BSM theories and can have a good constraining power
- SModelS is designed to utilize this power and constrain BSM scenarios
- The formalism in generic and can be applied to any BSM spectra for which SMS results are applicable
- Light neutralino dark matter was compatible with all the direct, indirect detection constraints and LHC searches (LHC searches tested by SModelS) until LUX results
- There is still room for improvement for SModelS
- Stay tuned, applying LHC results to your BSM model is being made simple!



Higgs signal strengths


- Lightest neutralino associated with some invisible Higgs decays
- At 14 TeV with ZH -> invisible, better sensitivity expected

Applying SModelS


- light chargino (< 200 GeV)possible only for light staus (< 100 GeV), this is relaxed for higher masses, specially above Z resonance
- Light chargino and neutralino2 mostly higgsino like, not ruled out by LHC searches

Higgs signal strengths

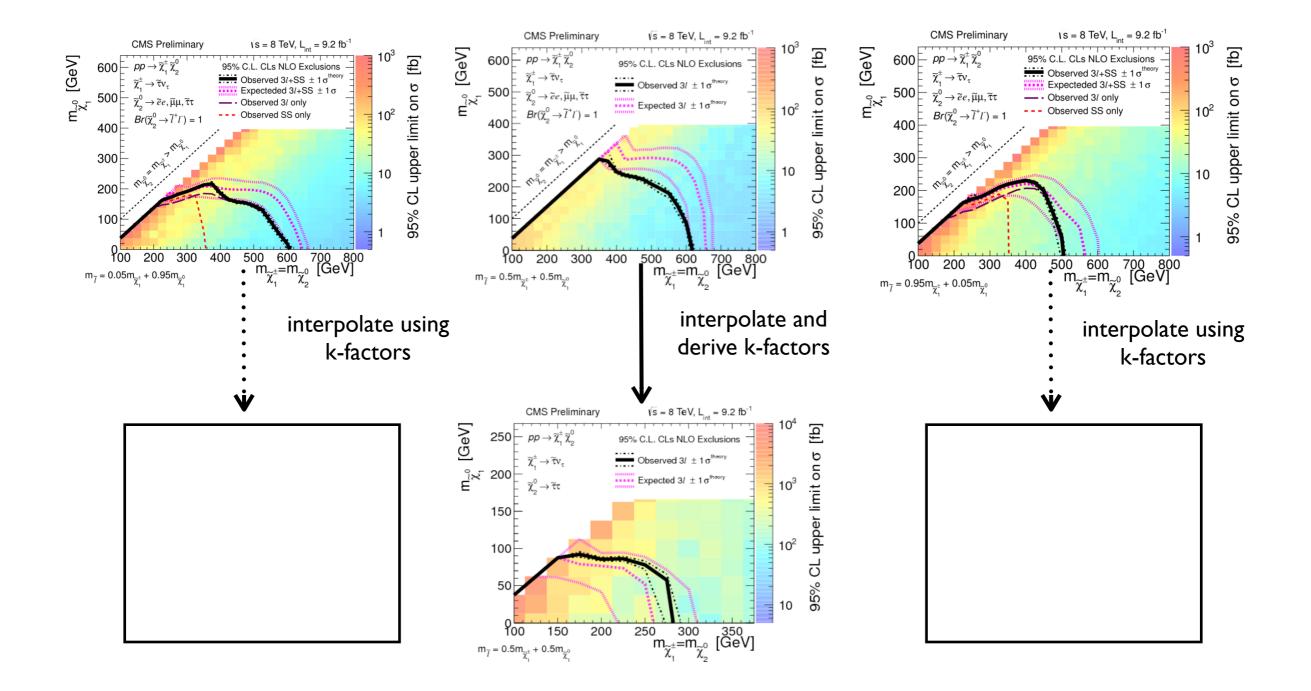
- Lightest neutralino associated with some invisible Higgs decays
- Most of this region corresponds to light maximally mixed staus

Indirect detection limits

- We test for FERMI-LAT limits photons produced from DM annihilation in dwarf spheroidal galaxies in bbar or tautau channel
- Update on FERMI-LAT limits result to weaker constraints (excess mainly driven by ultra-faint dwarf galaxies)
- Large fraction of LSP < 30 GeV points are several orders of magnitude below the limit

Why not use monojet channel?

- Direct LSP production probed via monojet signature at the LHC
- Limits given on the spin-independent interactions of DM
- Limits applicable for models involving heavy mediators
- Not applicable for MSSM since the mediators are not heavy enough


Scan details

$ aneta\ M_{A^0}\ M_1$	$[5, 50] \\ [100, 1000] \\ [10, 70]$	$\begin{vmatrix} M_{L_3} \\ M_{R_3} \\ A_{\tau} \end{vmatrix}$	$[70, 500] \\ [70, 500] \\ [-1000, 1000]$
M_1 M_2 μ	$[10, 10] \\ [100, 1000] \\ [100, 1000]$	$\begin{array}{c c} & M_{\tau} \\ & M_{L_1} \\ & M_{R_1} \end{array}$	$[100, 500] \\ [100, 500] \\ [100, 500]$

LEP limits	$m_{\tilde{\chi}_1^{\pm}} > 100 { m ~GeV}$
	$m_{\tilde{\tau}_1} > 84 - 88 \text{ GeV} (\text{depending on } m_{\tilde{\chi}_1^0})$
	$\sigma(e^+e^- \to \tilde{\chi}^0_{2,3}\tilde{\chi}^0_1 \to Z^{(*)}(\to q\bar{q})\tilde{\chi}^0_1) \lesssim 0.05 \text{ pb}$
invisible Z decay	$\Gamma_{Z \to \tilde{\chi}_1^0 \tilde{\chi}_1^0} < 3 \text{ MeV}$
μ magnetic moment	$\Delta a_{\mu} < 4.5 \times 10^{-9}$
flavor constraints	$\mathrm{BR}(b\to s\gamma)\in[3.03,4.07]\times10^{-4}$
	$BR(B_s \to \mu^+ \mu^-) \in [1.5, 4.3] \times 10^{-9}$
Higgs mass	$m_{h^0} \in [122.5, 128.5] \text{ GeV}$
$A^0, H^0 \to \tau^+ \tau^-$	CMS results for $\mathcal{L} = 17 \text{ fb}^{-1}$, m_h^{max} scenario
Higgs couplings	ATLAS, CMS and Tevatron global fit, see text
relic density	$\Omega h^2 < 0.131 \text{ or } \Omega h^2 \in [0.107, 0.131]$
direct detection	XENON100 upper limit
indirect detection	Fermi-LAT bound on gamma rays from dSphs
$pp \to \tilde{\chi}_2^0 \tilde{\chi}_1^\pm$	Simplified Models Spectra approach, see text
$pp \to \tilde{\ell}^+ \tilde{\ell}^-$	

Tau dominated scenario

 For topologies involving an intermediate particles, three mass slices are given. We interpolate over these slices

