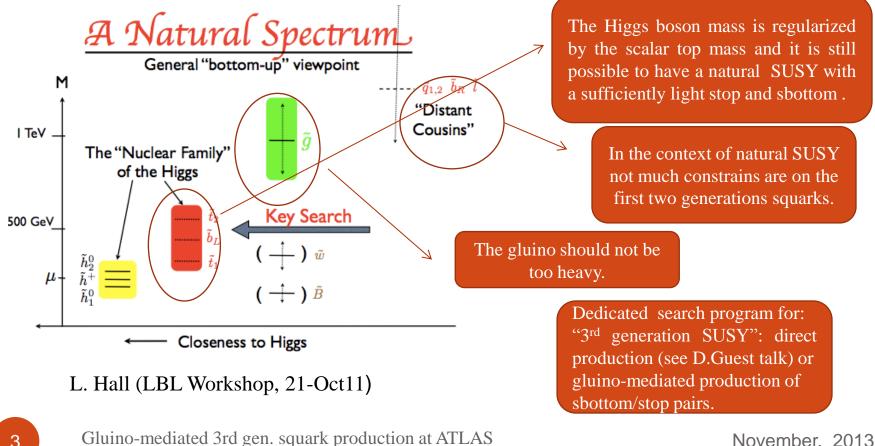


Searches for gluino-mediated production of third generation squarks with the ATLAS detector

Alexandra Tudorache on behalf of the ATLAS Collaboration

Horia Hulubei National Institute for Physics and Nuclear Engineering, IFIN-HH, Bucharest - Magurele, Romania 19th International Symposium on Particles, Strings and Cosmology, 20-26 November, Taipei, Taiwan


OUTLINE

- 1. 3rd generation searches and their motivations
- 2. Production and decay modes
- 3. Gluino-mediated production of 3rd generation squarks
 - 2 same-sign leptons, jets, MET
 - 0/11epton, 3bjets, MET
 - 0 lepton, [7-10] jets
 - 0 lepton, [2-6] jets, MET
- 4. Summary and conclusion

3rd generation searches and their motivations

 $SUSY \rightarrow$ is one of the most theoretically promising candidates to solve some of the open questions of the SM

One of the assets of SUSY is its ability to solve the *hierarchy* problem of the SM.

Production and decay modes

The focus of this talk is the ATLAS searches for gluino-mediated production of SUSY partners of top and bottom quarks (stop, sbottom).

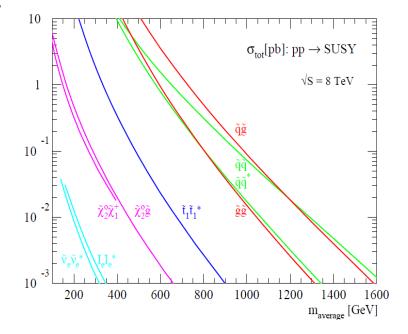
- \rightarrow Simplified models based on MSSM extension of SM are exploited
- → If R-parity is conserved → SUSY particles are produced in pairs and LSP is stable

If not \rightarrow LSP is not stable (e.g : $\tilde{\chi}_1^0 \rightarrow qqq$) OR is missing see J. Benitez talk

→ For all models $\tilde{g}\tilde{g}$ production is assumed

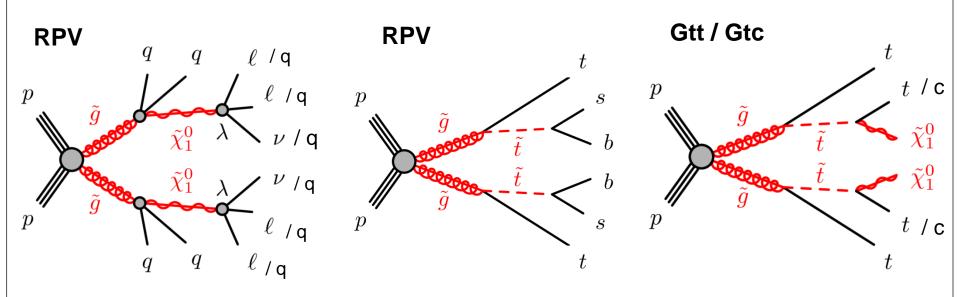
 \rightarrow Decays of gluinos via on-shell or off-shell stops and sbottoms

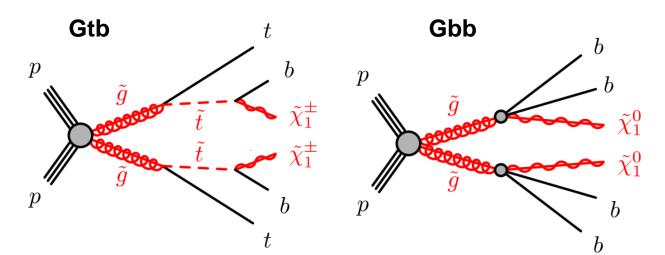
$$\widetilde{g} \to t \widetilde{t}, b \widetilde{b}$$
 with $\widetilde{t} \to t \ \widetilde{\chi}_1^0, \widetilde{t} \to c \ \widetilde{\chi}_1^0, \widetilde{t} \to b \widetilde{\chi}_1^{\pm}, \widetilde{b} \to b \ \widetilde{\chi}_1^0$


→ Each scenario a 100% BR is assumed

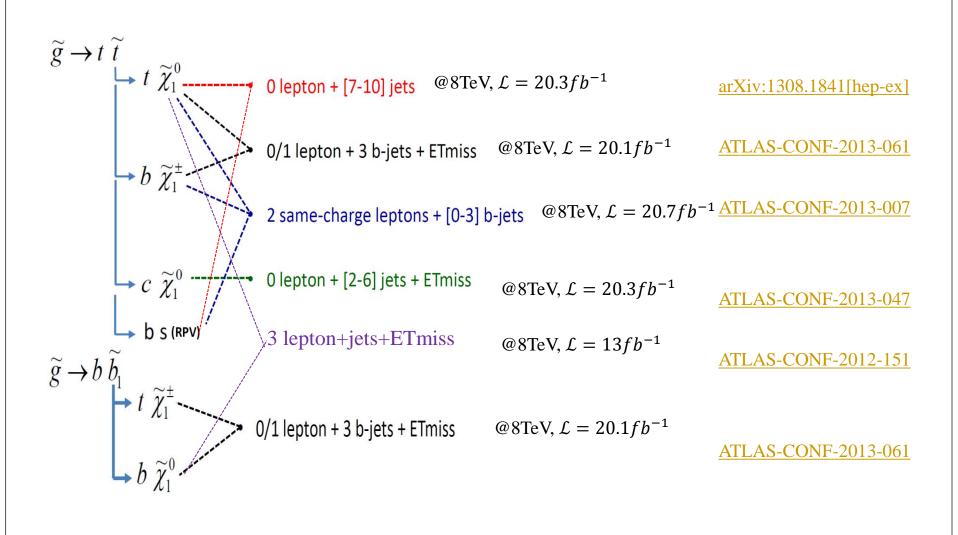
 \rightarrow Final state: Large missing transverse momentum due to LSP

Multiple jets / b-jets


Multiple leptons, possible same-sign pairs


 \rightarrow Wide range of signatures allows for several analyses covering the same topic

Gluino-mediated 3rd gen. squark production at ATLAS


Production and decay modes

Gluino-mediated 3rd gen. squark production at ATLAS

3rd generation gluino-mediates squark searches

Gluino-mediated 3rd gen. squark production at ATLAS

2 same-sign leptons+[0-3] b-jets

Gluino-mediated 3rd gen. squark production at ATLAS

2 same-sign leptons + [0-3] b-jets

ATLAS-CONF-2013-007

Target:

- \rightarrow 2 SS lepton pairs (ee, e μ , $\mu\mu$), jets, b-jets and MET
- \rightarrow Same-sign lepton pairs: gluino mediated top squarks production leads to 4 top quarks in the final state
- \rightarrow Searches in events with two same-sign leptons are characterized by very low background

Strategy:

Preselection:

Baseline: Select at least 2 same-sign isolated leptons (e,µ) with $p_T > 20$ GeV Triggers: combination of E_T^{miss} or 1 lepton or 2 leptons (b-jet with $p_T > 20$ GeV, jets with $p_T > 40$ GeV and $\eta < |2.8|$)

Signal Region-3 signal regions built to provide sensitivity to various scenarios.

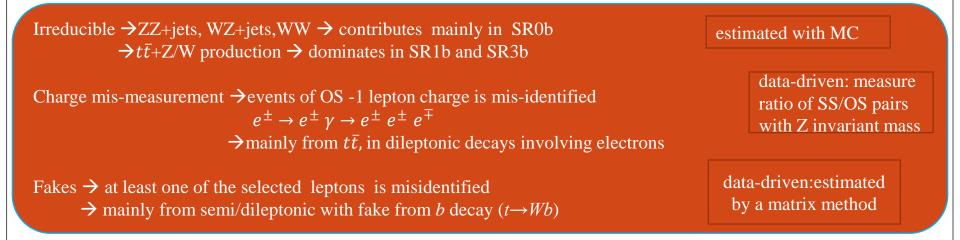
Kinematical variables:

$$m_{eff} = E_T^{miss} + \sum_{i=1,2} lep_i p_T + \sum_j jet_j p_T; m_T = \sqrt{2p_T^l E_T^{miss} (1 - \cos[\Delta \phi(l, E_T^{miss})])}; E_T^{miss}$$

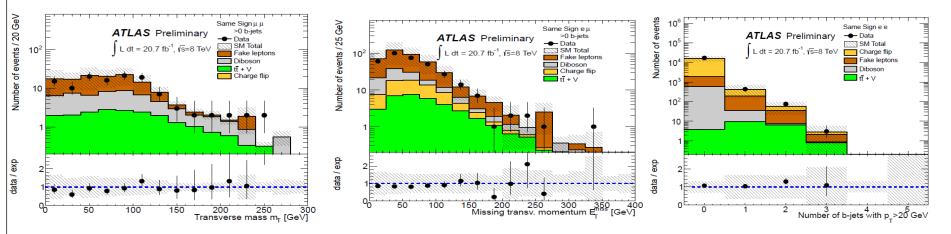
Gluino-mediated 3rd gen. squark production at ATLAS

Baseline kinematic selection: at least 3 jets, $E_T^{miss} > 150 \text{GeV}, m_T > 100 \text{GeV}$

Signal region	N _{b-jets}	Signal cuts (discovery case)	Signal cuts (exclusion case)
SR0b	0	$N_{ m jets} \ge$ 3, $E_{ m T}^{ m miss}$ > 150 GeV	$N_{\rm jets} \ge 3, E_{\rm T}^{\rm miss} > 150 { m GeV}, m_{\rm T} > 100 { m GeV},$
		<i>m</i> _T > 100 GeV, <i>m</i> _{eff} > 400 GeV	binned shape fit in m_{eff} for $m_{\text{eff}} > 300 \text{ GeV}$
SR1b	≥1	N _{jets} ≥3, E _T ^{miss} > 150 GeV	$N_{\rm jets} \ge 3, E_{\rm T}^{\rm miss} > 150 { m GeV}, m_{\rm T} > 100 { m GeV},$
		<i>m</i> _T >100 GeV, <i>m</i> _{eff} >700 GeV	binned shape fit in <i>m</i> eff for <i>m</i> eff>300 GeV
SR3b	≥3	$N_{\rm jets} \ge 4$	$N_{\rm jets} \ge 5$,
		-	$E_{\rm T}^{\rm miss}$ < 150 GeV or $m_{ m T}$ < 100 GeV


SR0b -sensitive to gluino / squark pair production and no b-jets in the final state (gluino decays via 1st and 2nd generation involving W / Z in the decay chain)

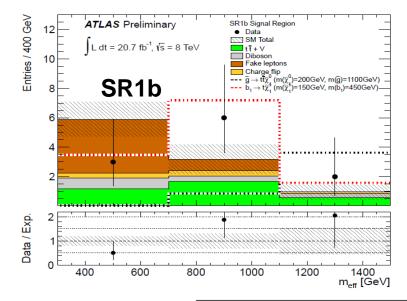
SR1b -b-jet in the final stateSR3b -built to increase the sensitivity to scenarios characterized by the presence of 4 b-jets


Important for gluino-mediated stop

Backgrounds

Due to rareness of same-sign events in SM processes low background expectation:

Backgrounds checked in validation regions for all same-sign channels (ee , $e\mu$, $\mu\mu$) separately



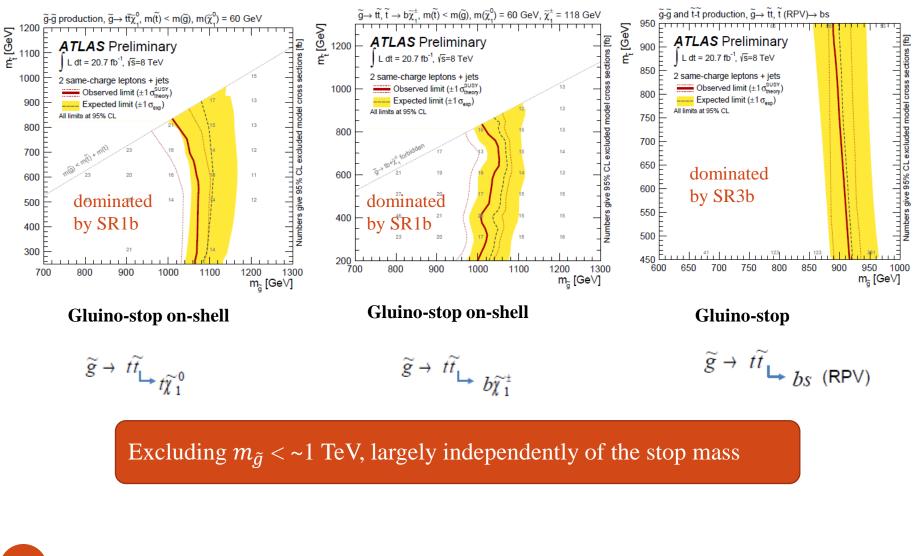
Good agreement within uncertainties between data and background estimation

Gluino-mediated 3rd gen. squark production at ATLAS

November, 2013

Results

→ perform simultaneous fit across SR using binned m_{eff}


- \rightarrow fakes contribute at low m_{eff}
- \rightarrow no significant excess observed
- → SR1b: the largest background contribution and uncertainty is expected from $t\bar{t}$ +V events.

B) Exclusion case	SR0b	SR1b	SR3b
Observed events	5	11	1
Expected background events	7.5 ± 3.2	10.1 ± 3.9	1.8 ± 1.3
Expected $t\bar{t} + V$ events	0.5 ± 0.4	3.4 ± 1.5	0.6 ± 0.4
Expected diboson events	3.4 ± 1.1	1.4 ± 0.7	< 0.1
Expected fake lepton events	3.4 ± 2.9	4.4 ± 3.1	1.0 ± 1.1
Expected charge mis-measurement events	0.2 ± 0.1	0.8 ± 0.3	0.1 ± 0.1

Background errors include statistical and systematic uncertainties

Gluino-mediated 3rd gen. squark production at ATLAS

Interpretation

Gluino-mediated 3rd gen. squark production at ATLAS

0/1 lepton + 3 b-jets + E_T^{miss}

ATLAS-CONF-2013-061

Gluino-mediated 3rd gen. squark production at ATLAS

0/1 lepton+3 b-jets+E^{miss}_T

ATLAS-CONF-2013-061

Strategy

Preselection:

Triggers: fully efficient E_T^{miss} Leading jet with $p_T > 90$ GeV $E_T^{miss} > 150$ GeV At least 4 jets with $p_T > 30$ GeV ; At least 3 b-tagged jets with $p_T > 30$ GeV

Split sample in two:

At least 1 tight isolated lepton (e, μ) with $p_T > 20$ GeV Lepton veto

Subdivide the two samples in optimized signal regions, using these variables:

 $m_{eff}^{incl} \rightarrow$ the scalar sum of E_T^{miss} and the p_T of all selected jets and leptons (if any) $m_{eff}^{4j} \rightarrow$ the scalar sum of E_T^{miss} and the p_T of the four leading jets $\Delta \phi_{min}^{4j} \rightarrow$ the minimum azimuthal angle between E_T^{miss} and any of the four leading jets Transverse mass $\rightarrow m_T = \sqrt{2p_T^l E_T^{miss} (1 - \cos[\Delta \phi(l, E_T^{miss})])}$

Gluino-mediated 3rd gen. squark production at ATLAS

Signal regions

To enhance the sensitivity to the various models

0 lepton channel:

		$= \gamma_{\min} \neq \beta_{\min} \neq \beta_{1}$					
0- ℓ region	N jets	p_T jets [GeV]	$E_{\rm T}^{\rm miss}$ [GeV]	$m_{\rm eff}$ [GeV]	$E_{\mathrm{T}}^{\mathrm{miss}}/\sqrt{H_{\mathrm{T}}^{\mathrm{4j}}} [\mathrm{GeV}^{\frac{1}{2}}]$		
SR-01-4j-A	≥ 4	> 30	> 200	$m_{\rm eff}^{4_{\rm J}} > 1000$	> 16		
SR-01-4j-B	≥ 4	> 50	> 350	$m_{\mathrm{eff}}^{\mathrm{4j}} > 1100$	-		
SR-01-4j-C	≥ 4	> 50	> 250	$m_{\rm eff}^{\rm 4j} > 1300$	-		
SR-01-7j-A	≥ 7	> 30	> 200	$m_{\rm eff}^{\rm incl} > 1000$	-		
SR-01-7j-B	≥ 7	> 30	> 350	$m_{\rm eff}^{\rm incl} > 1000$	-		
SR-01-7j-C	≥ 7	> 30	> 250	$m_{ m eff}^{ m incl} > 1500$	-		

baseline selection: baseline lepton veto, $p_T^{j_1} > 90$ GeV, $E_T^{\text{miss}} > 150$ GeV, ≥ 4 jets with $p_T > 30$ GeV, $\Delta \phi_{\min}^{4j} > 0.5$, $E_T^{\text{miss}}/m_{\text{off}}^{4j} > 0.2$, ≥ 3 *b*-jets with $p_T > 30$ GeV

1 lepton channel:

baseline selection: ≥ 1 signal lepton (*e*, μ), $p_T^{j_1} > 90$ GeV, $E_T^{\text{miss}} > 150$ GeV,

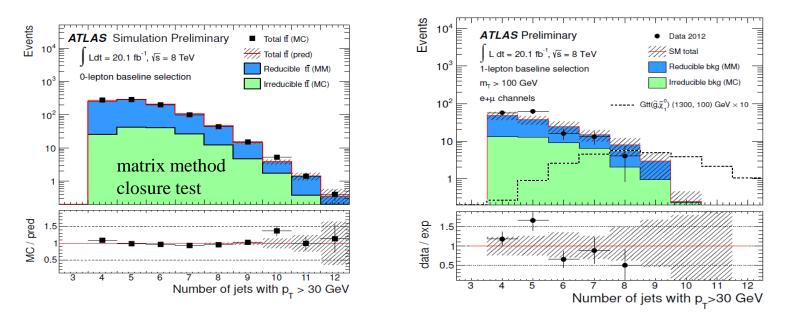
 \geq 4 jets with p_T > 30 GeV, \geq 3 *b*-jets with p_T > 30 GeV

$1-\ell$ region	N jets	$E_{\rm T}^{\rm miss}$ [GeV]	$m_{\rm T}$ [GeV]	m _{eff} ^{incl} [GeV]	$E_{\mathrm{T}}^{\mathrm{miss}}/\sqrt{H_{\mathrm{T}}^{\mathrm{incl}}} \mathrm{[GeV^{\frac{1}{2}}]}$
SR-11-6j-A	≥ 6	> 175	> 140	> 700	> 5
SR-11-6j-B	≥ 6	> 225	> 140	> 800	> 5
SR-11-6j-C	≥ 6	> 275	> 160	> 900	> 5

$$\tilde{g} \rightarrow \tilde{t}t$$

 $\tilde{g} \rightarrow \tilde{b}b$

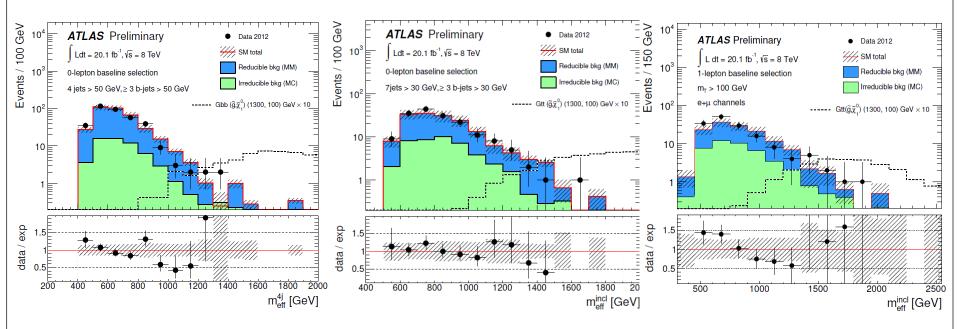
 $\tilde{g} \to \tilde{t} t$


Backgrounds

Reducible→ production of *tt* events in association with non b- jets which represents the dominant background →single t, W+jets, Z+jets, dibosons → data-driven: estimated by a matrix method based on number of b-jets in the event
 → generalization of lepton MM[2ⁿ × 2ⁿ]
 → 2ⁿ-combinations of real and fake b-jets

Irreducticible $\rightarrow t\bar{t} + b/b\bar{b}, t\bar{t} + V/h$ with $V/h \rightarrow b\bar{b}$

estimated with MC


Main uncertainty from fake b-jets estimate

Good agreement between data and background estimation

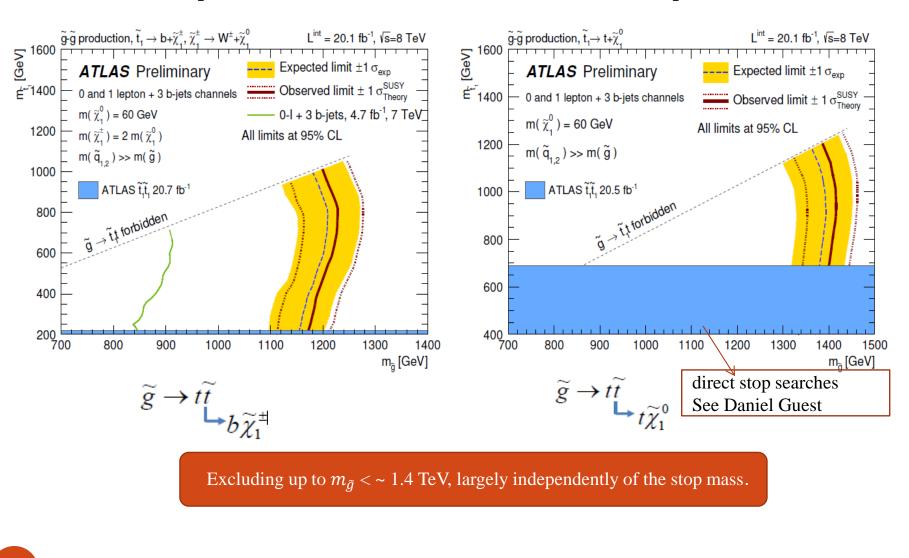
November, 2013

Results

Background estimates in the signal regions

region	reducible bkg	irreducible bkg	total bkg (MC)	data
SR-01-4j-A	2.2 ± 1.1	0.8 ± 0.7	3.0 ± 1.3 (5.1)	2
SR-01-4j-B	0.8 ± 0.9	0.5 ± 0.5	1.3 ± 1.0 (3.9)	3
SR-01-4j-C	1.2 ± 0.8	0.6 ± 0.6	1.8 ± 1.0 (2.5)	2
SR-01-7j-A	15.5 ± 3.4	7.0 ± 6.0	22.5 ± 6.9 (28.8)	22
SR-01-7j-B	2.3 ± 2.3	1.3 ± 1.1	3.6 ± 2.5 (6.2)	3
SR-01-7j-C	$0\pm 0.5^{+0.5}_{-0}$	0.8 ± 0.7	$0.8\pm^{+0.9}_{-0.8}~(3.1)$	1
SR-11-6j-A	$10.7 \substack{+7.5 \\ -6.8}$	4.8 ± 3.7	15.5 ± 8.4 (13.8)	7
SR-11-6j-B	5.7 ± 5.5	1.7 ± 1.4	7.4 ± 5.7 (6.3)	0
SR-11-6j-C	$2.4 {}^{+2.7}_{-2.4}$	$0.6 \ ^{+0.6}_{-0.5}$	3.0 ± 2.8 (2.6)	0

 \rightarrow good agreement between background estimation and observed data.

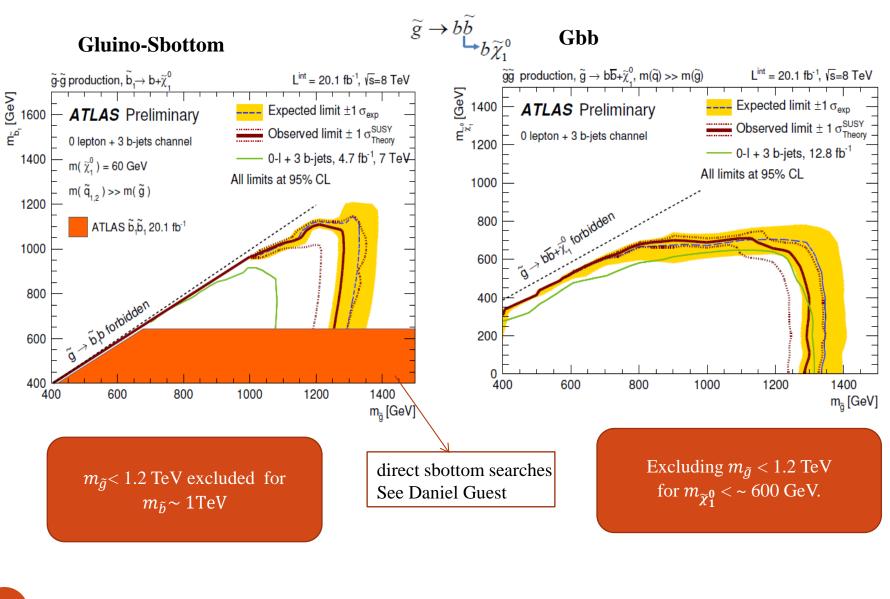

→ simultaneous fit to 0L and 1L channels for model-dependent exclusion tests.

Gluino-mediated 3rd gen. squark production at ATLAS

Interpretation

Gluino-stop I

Gluino-stop II



Gluino-mediated 3rd gen. squark production at ATLAS

November, 2013

Interpretation

19

Gluino-mediated 3rd gen. squark production at ATLAS

0 lepton + [7-10] jets

arXiv:1308.1841 [hep-ex]

Gluino-mediated 3rd gen. squark production at ATLAS

November, 2013

0 lepton + [7-10] jets

arXiv:1308.1841 [hep-ex],

See Ljiljana Morvaj talk

Strategy

The usage multi-jet triggers without E_T^{miss} requirements allows to have low cuts on E_T^{miss}

Preselection

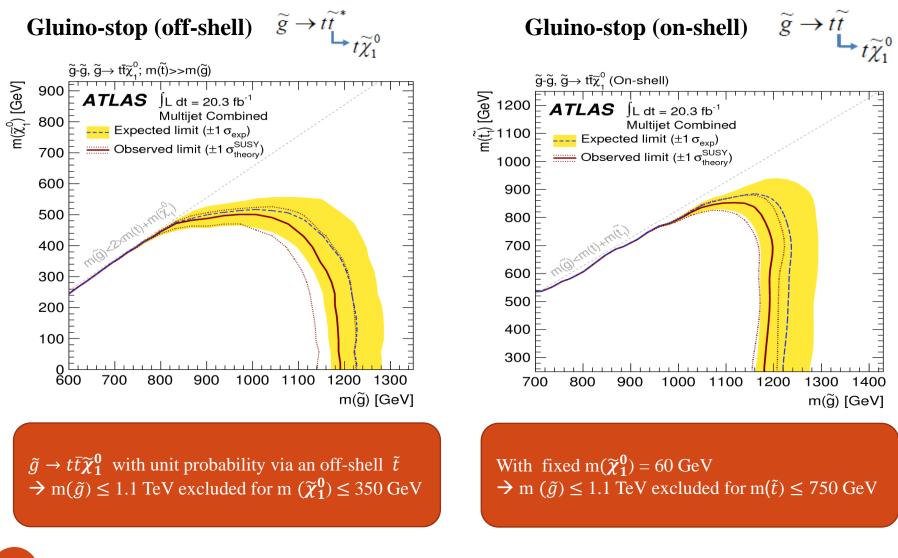
Veto events with high p_T electrons or muons in order to suppress W +jets or $t\bar{t}$ background Large jet multiplicity: from >= 7 to >= 10

Three sets of signal regions:

- \rightarrow 8, 9 or at least 10 jets with $p_T > 50$ GeV and zero, one or at least two b-tagged jets
- \rightarrow 7 or at least 8 jets with $p_T > 80$ GeV and zero, one or at least two b-tagged jets

Signal regions with "fat-jets":

→ At least 8, 9 or 10 jets with $p_T > 50 \text{ GeV}$ and $M_I^{\Sigma} > 340 \text{ or } 420 \text{ GeV}$


All signal regions also impose $E_T^{miss}/\sqrt{H_T} > 4\sqrt{GeV}(H_T = \Sigma p_T^{jet} \text{ using } p_T > 40 \text{ GeV and } \eta < |2.8|)$

Backgrounds

- \rightarrow multijets: fully hadronic decays of $t\bar{t}$ and hadronic decay of W and Z bosons + jets
- \rightarrow semi and fully leptonic decays of $t\bar{t}$
- \rightarrow leptonically decaying W or Z + jets

Signal regions with 50 GeV jets are the most sensitive to gluino-mediated stop from flavor stream.

Interpretation

November, 2013

Gluino-mediated 3rd gen. squark production at ATLAS

0 lepton + [2-6] jets $+E_T^{miss}$

ATLAS-CONF-2013-047

Gluino-mediated 3rd gen. squark production at ATLAS

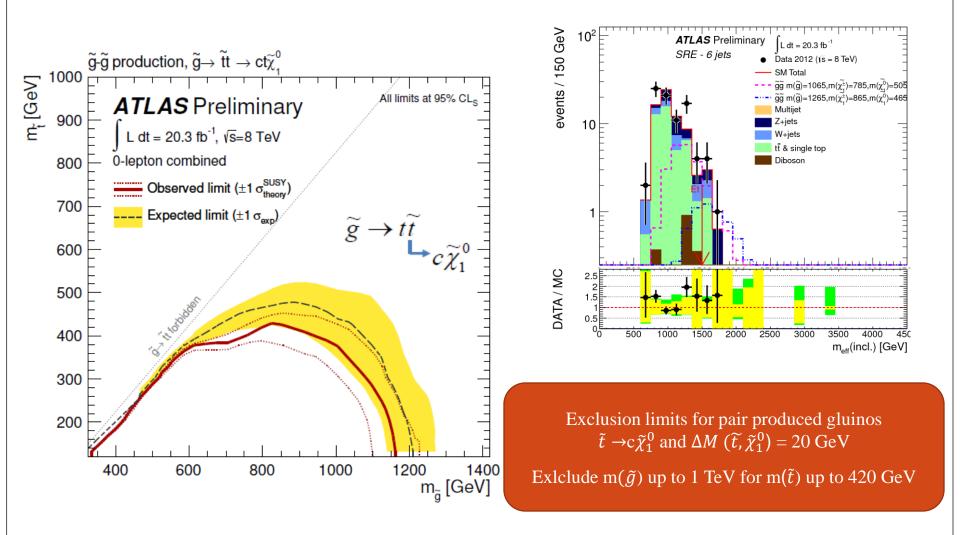
0 lepton + [2-6] jets + E_T^{miss}

ATLAS-CONF-2013-047

See Ljiljana Morvaj talk

\rightarrow Five types of signal regions

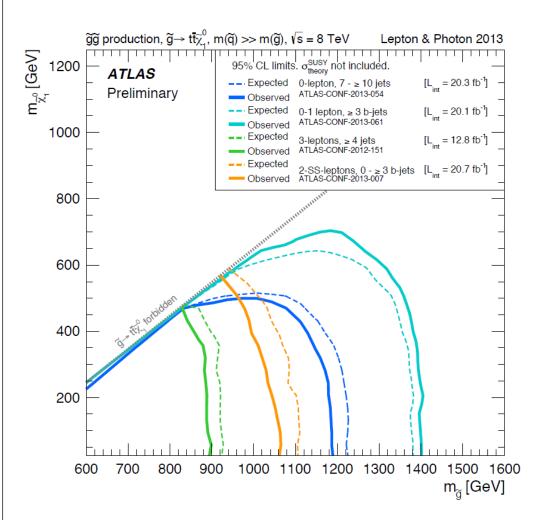
 \rightarrow SRE(6jets) best for gluino-mediated stop \rightarrow charm

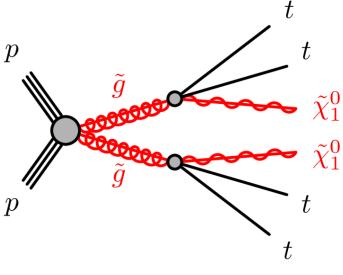

	Channel										
Requirement	A (2-jets)		B (3-jets)		C (4-jets)		D (5-jets) E (6-jets		E (6-jets	s)	
	L	М	М	Т	Μ	Т	_	L	М	Т	
$E_{\rm T}^{\rm miss}[{\rm GeV}] >$	160										
$p_{\rm T}(j_1) [{\rm GeV}] >$					13	0					
$p_{\rm T}(j_2) [{\rm GeV}] >$		60									
$p_{\rm T}(j_3)$ [GeV] >	_	- 60			60		60 60				
$p_{\rm T}(j_4) [{\rm GeV}] >$	_	_		_	6	0	60		60		
$p_{\rm T}(j_5)$ [GeV] >	-	-		_	- 60		60				
$p_{\rm T}(j_6) [{\rm GeV}] >$								60			
$\Delta \phi(\text{jet}_i, \mathbf{E}_{\mathrm{T}}^{\mathrm{miss}})_{\mathrm{min}} >$	0.4 (<i>i</i> =	= {1, 2, (3	$3 ext{ if } p_{\mathrm{T}}(j_3)$	> 40 GeV))	($0.4 (i = {$	1,2,3}), 0.2 ($p_{\rm T} > 40$	GeV jets)	
$E_{\rm T}^{\rm miss}/m_{\rm eff}(Nj) >$	0.2	_ ^a	0.3	0.4	0.25	0.25	0.2	0.15	0.2	0.25	
$m_{\rm eff}({\rm incl.}) [{\rm GeV}] >$	1000	1600	1800	2200	1200	2200	1600	1000	1200	1500	

(a) For SR A-medium the cut on $E_{\rm T}^{\rm miss}/m_{\rm eff}(Nj)$ is replaced by a requirement $E_{\rm T}^{\rm miss}/\sqrt{H_{\rm T}} > 15 {\rm ~GeV^{1/2}}$.

Gluino-mediated 3rd gen. squark production at ATLAS

Interpretation


ATLAS-CONF-2013-047



Gluino-mediated 3rd gen. squark production at ATLAS

November, 2013

Results of various SUSY searches for gluino-mediated stop \rightarrow top χ_1^0 model

Sensitivity dominated by 0/1 lepton + 3 b-jets + E_T^{miss} <u>ATLAS-CONF-2012-151</u> Excluding $m_{\tilde{g}} <\sim 1.4$ TeV for $m_{\tilde{\chi}_1^0} < \sim 350$ GeV.

November, 2013

Gluino-mediated 3rd gen. squark production at ATLAS

Conclusions

Gluino-mediated production of 3rd generation squarks strongly motivated by SUSY Naturalness.

Stringent limits from several analyses :

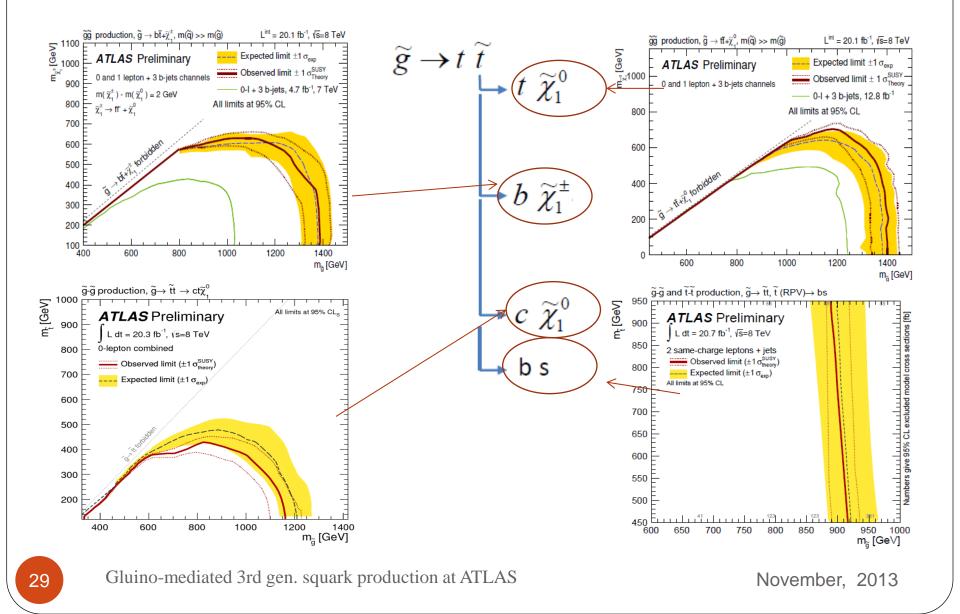
2 same-sign leptons, jets, MET 0/1lepton, 3bjets, MET 0 lepton, [7-10] jets

0 lepton, [2-6] jets, MET

Limits set are largely independent from stop and sbottom masses

No significant excess above SM expectations has been seen.

Looking forward to ~14 TeV data!


All results can be found on this <u>webpage</u>, summarising all public ATLAS SUSY results.

Gluino-mediated 3rd gen. squark production at ATLAS

November, 2013

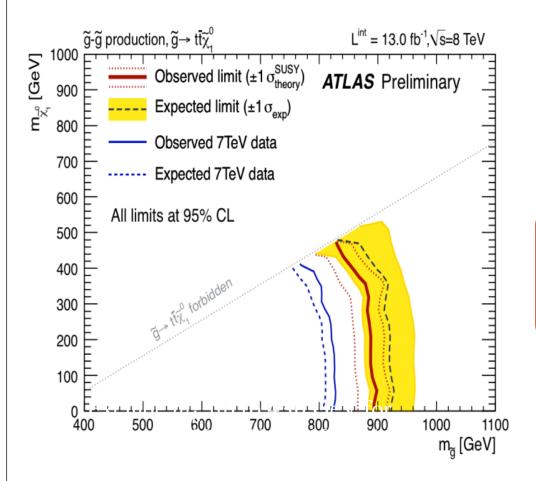
Limits on all gluino-mediated stop decays

Mapping SUSY

ATLAS SUSY Searches* - 95% CL Lower Limits

Status: EPS 2013

ATLAS Preliminary


 $\int \mathcal{L} dt = (4.4 - 22.9) \text{ fb}^{-1}$ $\sqrt{s} = 7, 8 \text{ TeV}$

0.							$\int \mathcal{L} dt = (4.4 - 22.9) \text{ ID}^{-1}$	$\sqrt{s} = 7$, o lev
	Model	e, μ, τ, γ	′ Jets	E_T^{miss}	∫£ dt[ft	⁻¹] Mass limit		Reference
Inclusive Searches	$\begin{array}{l} \text{MSUGRA/CMSSM} \\ \text{MSUGRA/CMSSM} \\ \text{MSUGRA/CMSSM} \\ \overline{q}\overline{q}, \overline{q} \rightarrow q \overline{k}^0 \\ \overline{g}\overline{z}, \overline{z} \rightarrow q \overline{k}^0 \\ \overline{g}\overline{z}, \overline{z} \rightarrow q \overline{k}^1 \\ \overline{g}\overline{z}, \overline{z} \rightarrow q q \overline{k}^1 \rightarrow q \overline{q} W^\pm \overline{k}^0 \\ \overline{g}\overline{z}, \overline{z} \rightarrow q q \overline{k}^1 (I \overline{k} \overline{k} \overline{k}^0) \\ \overline{g}\overline{d} \text{MSB} (\overline{\ell} \text{NLSP}) \\ \overline{G} \text{GM} (\overline{h} \text{Iono} \text{NLSP}) \\ \overline{G} \text{GM} (\overline{higgsino-bino} \text{NLSP}) \\ \overline{G} \text{GM} (\overline{higgsino} \text{NLSP}) \\ \overline{G} \text{GR} (higgsi$	$\begin{array}{c} 0 \\ 1 \ e, \mu \\ 0 \\ 0 \\ 2 \ e, \mu \ (SS) \\ 2 \ e, \mu \\ 1-2 \ \tau \\ 2 \\ \gamma \\ 1 \ e, \mu + \gamma \\ \gamma \\ 2 \ e, \mu \ (Z) \\ 0 \end{array}$	2-6 jets 3-6 jets 2-6 jets 2-6 jets 3-6 jets 3-6 jets 3-6 jets 0-2 jets 0 0 1 b 0-3 jets mono-jet	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.7 4.7 20.7 4.8 4.8 4.8 5.8 10.5	6.8 1.7 TeV 8 1.2 TeV 8 1.1 TeV 9 740 GeV 8 1.1 TeV 9 1.3 TeV 8 1.1 TeV 8 1.1 TeV 8 1.1 TeV 8 1.2 TeV 8 619 GeV 8 619 GeV 8 619 GeV 8 619 GeV 8 619 GeV	$\begin{array}{l} m(\tilde{q}) = m(\tilde{g}) \\ any \ m(\tilde{q}) \\ any \ m(\tilde{q}) \\ m(\tilde{r}_1^0) = O G e V \\ m(\tilde{r}_1^0) = O G e V \\ m(\tilde{r}_1^0) = O G e V \\ m(\tilde{r}_1^0) = O G O e O e V \\ i a \mathfrak{g} > I S \\ i a \mathfrak{g} > I S \\ m(\tilde{r}_1^0) > S O G e V \\ m(\tilde{g}) > I O^* e V \\ d g > I O^* e V \end{array}$	ATLAS-CONF-2013-047 ATLAS-CONF-2013-062 ATLAS-CONF-2013-064 ATLAS-CONF-2013-047 ATLAS-CONF-2013-047 ATLAS-CONF-2013-062 ATLAS-CONF-2013-062 ATLAS-CONF-2013-062 ATLAS-CONF-2012-144 1211.1167 ATLAS-CONF-2012-147
3 rd gen. ẽ med.	$\begin{array}{l} \tilde{g} \rightarrow b \bar{b} \tilde{\chi}_{1}^{0} \\ \tilde{g} \rightarrow t \bar{t} \tilde{\chi}_{1}^{0} \\ \tilde{g} \rightarrow t \bar{t} \tilde{\chi}_{1}^{0} \\ \tilde{g} \rightarrow b \bar{t} \tilde{\chi}_{1}^{+} \end{array}$	0 0 0-1 e,μ 0-1 e,μ	3 b 7-10 jets 3 b 3 b	Yes Yes Yes Yes	20.1 20.3 20.1 20.1	š 1.2 TeV š 1.14 TeV š 1.34 TeV š 1.34 TeV	$\begin{array}{l} m(\tilde{\chi}_{2}^{0}) < 600 \; \text{GeV} \\ m(\tilde{\chi}_{1}^{0}) < 200 \; \text{GeV} \\ m(\tilde{\chi}_{1}^{0}) < 400 \; \text{GeV} \\ m(\tilde{\chi}_{1}^{0}) < 300 \; \text{GeV} \end{array}$	ATLAS-CONF-2013-061 ATLAS-CONF-2013-054 ATLAS-CONF-2013-061 ATLAS-CONF-2013-061
3rd gen. squarks direct production	$ \begin{split} \tilde{\underline{b}}_1 \tilde{\underline{b}}_1, \ \tilde{\underline{b}}_1 \to b \tilde{\underline{v}}_1^n \\ \tilde{b}_1 b_1, b_1 \to t \tilde{\underline{v}}_1^n \\ \tilde{b}_1 b_1, b_1 \to t \tilde{\underline{v}}_1^n \\ \tilde{\underline{b}}_1 \tilde{\underline{b}}_1, b_1 \to t \tilde{\underline{v}}_1^n \\ \tilde{\underline{b}}_1 \tilde{\underline{b}}_1, \ \tilde{\underline{b}}_1 \to b \tilde{\underline{v}}_1^n \\ \tilde{\underline{b}}_1 \tilde{\underline{b}}_1, \ \tilde{\underline{b}}_1 \to b \tilde{\underline{v}}_1^n \\ \tilde{\underline{b}}_1 \tilde{\underline{b}}_1, \ \tilde{\underline{b}}_1 \to b \tilde{\underline{b}}_1^n \\ \tilde{\underline{b}}_1 \tilde{\underline{b}}_1, \ \tilde{\underline{b}}_1 \to t \tilde{\underline{b}}_1^n \\ \tilde{\underline{b}}_1 \tilde{\underline{b}}_1 \tilde{\underline{b}}_1, \ \tilde{\underline{b}}_1 \to t \tilde{\underline{b}}_1^n \\ \tilde{\underline{b}}_1 \tilde{\underline{b}}_1, \ \tilde{\underline{b}}_1 \to t \tilde{\underline{b}}_1 \\ \tilde{\underline{b}}_1 \tilde{\underline{b}}_1 \tilde{\underline{b}}_1, \ \tilde{\underline{b}}_1 \to t \tilde{\underline{b}}_1 \\ \tilde{\underline{b}}_1 \tilde{\underline{b}}_1 \tilde{\underline{b}}_1 \\ \tilde{\underline{b}}_1 \tilde{\underline{b}}_1 \\ \tilde{\underline{b}}_1 \\ \tilde{\underline{b}}_1 \\ \tilde{\underline{b}}_1 \tilde{\underline{b}}_1 \\ \tilde{\underline{b}}_1$	$\begin{array}{c} 0\\ 2\ e,\mu\ (SS)\\ 1-2\ e,\mu\\ 2\ e,\mu\\ 2\ e,\mu\\ 0\\ 1\ e,\mu\\ 0\\ 3\ e,\mu\ (Z) \end{array}$	2 b 0-3 b 1-2 b 0-2 jets 2 jets 2 b 1 b 2 b nono-jet/c-t 1 b 1 b	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.1 20.7 4.7 20.3 20.3 20.1 20.7 20.5 20.3 20.7 20.7	51 100-630 GeV 51 430 GeV 51 167 GeV 51 167 GeV 51 167 GeV 51 220 GeV 51 150-580 GeV 51 200-610 GeV 51 200-610 GeV 51 200-610 GeV 51 200 GeV 52 520 GeV	$\begin{split} m(\tilde{\epsilon}_{1}^{0}) <& 100 \text{ GeV} \\ m(\tilde{\epsilon}_{1}^{0}) &=& 2m(\tilde{\epsilon}_{1}^{0}) \\ m(\tilde{\epsilon}_{1}^{0}) &=& 2m(\tilde{\epsilon}_{1}^{0}) \\ m(\tilde{\epsilon}_{1}^{0}) &=& m(\tilde{\epsilon}_{1}) - m(W) - 50 \text{ GeV}, \\ m(\tilde{\epsilon}_{1}^{0}) &=& GeV \\ m(\tilde{\epsilon}_{1}^{0}) &=& 5G \text{ GeV} \\ m(\tilde{\epsilon}_{1}^{0}) &=& 5G \text{ GeV} \\ m(\tilde{\epsilon}_{1}^{0}) &=& 10G \text{ GeV} \\ m(\tilde{\epsilon}_{1}^{0}) &=& 10G \text{ GeV} \\ \end{split}$	ATLAS-CONF-2013-053 ATLAS-CONF-2013-007 1208-4305,1209.2102 ATLAS-CONF-2013-048 ATLAS-CONF-2013-065 ATLAS-CONF-2013-065 ATLAS-CONF-2013-025 ATLAS-CONF-2013-026 ATLAS-CONF-2013-025 ATLAS-CONF-2013-025
EW direct	$ \begin{array}{c} \tilde{\ell}_{L,R} \tilde{\ell}_{L,R}, \tilde{\ell} \rightarrow \ell \tilde{x}_{1}^{0} \\ \tilde{x}_{1}^{+} \tilde{x}_{1}^{-}, \tilde{x}_{1}^{+} \rightarrow \tilde{\ell} \nu(\ell \tilde{\nu}) \\ \tilde{x}_{1}^{+} \tilde{x}_{1}^{-}, \tilde{x}_{1}^{+} \rightarrow \tilde{\tau} \nu(\tau \tilde{\nu}) \\ \tilde{x}_{1}^{+} \tilde{x}_{2}^{0} \rightarrow \tilde{\ell}_{L} \tilde{\ell}_{L} \ell(\ell \nu), \ell \tilde{\nu} \tilde{\ell}_{L} \ell(\tilde{\nu} \nu) \\ \tilde{x}_{1}^{+} \tilde{x}_{2}^{0} \rightarrow W^{*} \tilde{x}_{1}^{0} Z^{*} \tilde{x}_{1}^{0} \end{array} $	2 e, μ 2 e, μ 2 τ 3 e, μ 3 e, μ	0 0 0 0	Yes Yes Yes Yes Yes	20.3 20.3 20.7 20.7 20.7	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{l} m(\tilde{\chi}_{1}^{0}) = 0 \; GeV \\ m(\tilde{\chi}_{1}^{0}) = 0 \; GeV, \; m(\tilde{\ell}, \tilde{\nu}) = 0.5(m(\tilde{\chi}_{1}^{\tau}) + m(\tilde{\chi}_{1}^{0})) \\ m(\tilde{\chi}_{1}^{0}) = 0 \; GeV, \; m(\tilde{\ell}, \tilde{\nu}) = 0.5(m(\tilde{\chi}_{1}^{\tau}) + m(\tilde{\chi}_{1}^{0})) \\ m(\tilde{\chi}_{2}^{0}), \; m(\tilde{\chi}_{1}^{0}) = 0.5(m(\tilde{\chi}_{1}^{\tau}) + m(\tilde{\chi}_{1}^{0})) \\ m(\tilde{\chi}_{1}^{1}) = m(\tilde{\chi}_{2}^{0}), \; m(\tilde{\chi}_{1}^{0}) = 0.5(m(\tilde{\chi}_{1}^{\tau}) sen(\tilde{\chi}_{1}^{0})) \end{array}$	ATLAS-CONF-2013-049 ATLAS-CONF-2013-049 ATLAS-CONF-2013-028 ATLAS-CONF-2013-035 ATLAS-CONF-2013-035
Long-lived particles	Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^+$ Stable, stopped \tilde{g} R-hadron GMSB, stable $\tilde{\tau}, \tilde{\chi}_1^0 \rightarrow \tilde{\tau}(\tilde{e}, \tilde{\mu}) + \tau$ GMSB, $\tilde{\chi}_1^0 \rightarrow \gamma \tilde{G}$, long-lived $\tilde{\chi}_1^0$ $\tilde{\chi}_1^0 \rightarrow qq\mu$ (RPV)	0	1 jet 1-5 jets 0 0 0	Yes Yes - Yes Yes	20.3 22.9 15.9 4.7 4.4	X ¹ / ₁ 270 GeV 8 857 GeV 3 [±] / ₁ 475 GeV 4 230 GeV 9 700 GeV	$\begin{array}{l} m(\tilde{\chi}_{1}^{*}){-}m(\tilde{\chi}_{1}^{0}){=}{160}\;MeV,\;\tau(\tilde{\chi}_{1}^{*}){=}{0.2}\;ns\\ m(\tilde{\chi}_{1}^{0}){=}{100}\;GeV,\;10\;\mus{<}\tau(\tilde{g}){<}{1000}\;s\\ 10{<}{tan}\beta{<}50\\ 0.4{<}\tau(\tilde{\chi}_{1}^{0}){<}2\;ns\\ 1\;mm{<}cr{<}1\;m,\;\tilde{g}\;decoupled \end{array}$	ATLAS-CONF-2013-069 ATLAS-CONF-2013-057 ATLAS-CONF-2013-058 1304.6310 1210.7451
RPV	$ \begin{array}{l} LFV pp \rightarrow \widetilde{v}_\tau + X, \widetilde{v}_\tau \rightarrow e + \mu \\ LFV pp \rightarrow \widetilde{v}_\tau + X, \widetilde{v}_\tau \rightarrow e(\mu) + \tau \\ Bilinear RPV CMSSM \\ \widetilde{\chi}_1^+ \widetilde{\chi}_1^-, \widetilde{\chi}_1^+ \rightarrow W \widetilde{\chi}_1^0, \widetilde{\chi}_1^0 \rightarrow e \widetilde{v}_\mu, e \mu \\ \widetilde{\chi}_1^+ \widetilde{\chi}_1^-, \widetilde{\chi}_1^+ \rightarrow W \widetilde{\chi}_1^0, \widetilde{\chi}_1^0 \rightarrow \tau \widetilde{\tau} \widetilde{v}_e, e \tau \\ \widetilde{g} \rightarrow q q \\ \widetilde{g} \rightarrow \widetilde{t}_1 t, \widetilde{t}_1 \rightarrow b s \end{array} $	$2 e, \mu 1 e, \mu + \tau 1 e, \mu \tilde{v}_e 4 e, \mu \tilde{v}_\tau 3 e, \mu + \tau 0 2 e, \mu (SS)$	0 0 7 jets 0 0 6 jets 0-3 <i>b</i>	- Yes Yes Yes - Yes	4.6 4.7 20.7 20.7 4.6 20.7	>. 1.61 TeV >. 1.1 TeV 4.8 1.2 TeV X ¹ 760 GeV X ¹ 350 GeV 8 666 GeV 8 880 GeV	$\begin{split} &A_{211}^2 = 0.10, A_{132} = 0.05 \\ &A_{211}^2 = 0.10, A_{1(2)31} = 0.05 \\ &m(\tilde{q}) = m(\tilde{g}), cr_{1420} = 11 \\ &m(\tilde{t}_1^0) > 300 \text{ GeV}, A_{121} > 0 \\ &m(\tilde{t}_1^0) > 800 \text{ GeV}, A_{133} > 0 \end{split}$	1212.1272 1212.1272 ATLAS-CONF-2012-140 ATLAS-CONF-2013-036 ATLAS-CONF-2013-036 1210.4813 ATLAS-CONF-2013-007
Other	Scalar gluon WIMP interaction (D5, Dirac χ) $\sqrt{s} = 7 \text{ TeV}$	$\int_{0}^{0} \sqrt{s} = 8 \text{ TeV}$		8 TeV	4.6 10.5	sgluon 100-287 GeV M* scale 704 GeV 10 ⁻¹ 1	incl. limit from 1110.2693 $m_{(\chi)}$ < 80 GeV, limit of <687 GeV for D8 Mass scale [TeV]	1210.4826 ATLAS-CONF-2012-147
	full data	Jartial Gata	Tull	data				

*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1 or theoretical signal cross section uncertainty.

Gluino-mediated 3rd gen. squark production at ATLAS

3 lepton + **jets** + E_T^{miss} ATLAS-CONF-2012-151

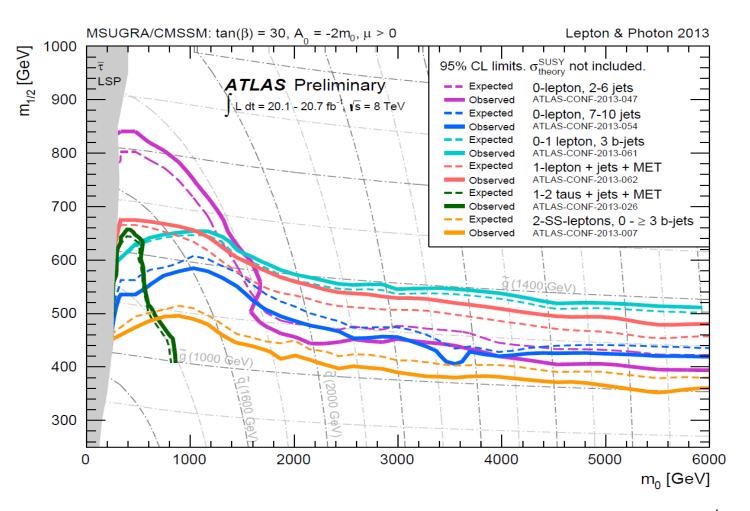
$$\widetilde{g} \to t\widetilde{t}$$

 $\downarrow t\widetilde{\chi}_1^0$

 $\widetilde{g} \rightarrow t \overline{t} \widetilde{\chi}_{1}^{0}$ Exclude $\widetilde{\chi}_{1}^{0}$ below 440 GeV for $m_{\widetilde{g}} = 800 \text{ GeV}$

Matrix Method

32


- Matrix method of estimation of multijet backgrounds faking leptons:
 - Construct four high-statistics control regions with respectively tight (T) and loose (L) lepton definitions: TT,TL,LT,LL
 - The event yields in these regions is correlated to the number of events from real and fake leptons through this matrix:

$$\begin{pmatrix} N_{TT} \\ N_{TL} \\ N_{LT} \\ N_{LL} \end{pmatrix} = \begin{pmatrix} \varepsilon_1 \varepsilon_2 & \varepsilon_1 \zeta_2 & \zeta_1 \varepsilon_2 & \zeta_1 \zeta_2 \\ \varepsilon_1 (1 - \varepsilon_2) & \varepsilon_1 (1 - \zeta_2) & \zeta_1 (1 - \varepsilon_2) \\ (1 - \varepsilon_1) \varepsilon_2 & (1 - \varepsilon_1) \zeta_2 & (1 - \zeta_1) \varepsilon_2 \\ (1 - \varepsilon_1) (1 - \varepsilon_2) & (1 - \varepsilon_1) (1 - \zeta_2) & (1 - \zeta_1) (1 - \varepsilon_2) \end{pmatrix} \begin{pmatrix} N_{RR} \\ N_{RF} \\ N_{FR} \\ N_{FF} \end{pmatrix}$$

 ς : misidenfication rate, ϵ_i : real lepton efficiency

- By inverting the matrix, one obtains the fake rate estimate from the yields in the control regions
- This method can be generalized to estimate light multijet backgrounds faking b-flavoured jets

MSUGRA/CMSSM model

Gluino-mediated stop dominates at large m_0 , showing sensitivity of 1 lepton + jets + E_T^{miss}

Gluino-mediated 3rd gen. squark production at ATLAS

November, 2013