FIRST RESULTS FROM LUX: TOWARDS DIRECT DETECTION OF DARK MATTER

peter sorensen on behalf of the LUX Collaboration

what is LUX?

- a particle detector
- a monolithic, "wall-less," radiopure, ~370 kg xenon TPC
- viewed by 122 Photomultiplier Tubes
- able to reconstruct (x,y,z) for each event
- self-shielding

how would LUX see dark matter?

- it detects scintillation photons and ionized electrons created by particle interactions
- if dark matter interacted with a xenon atom, energy transferred to that atom would be visible to LUX
- $\bullet \alpha_1 \sim O(0.10)$ and $\alpha_2 \sim O(10)$ are the probabilities for detection of each quanta
- \bullet n_{γ} and n_e are the fundamental measured quantities

WE KNOW THERE IS DARK MATTER OUT THERE: WE CAN "SEE" IT!

(above) weak-lensing mass reconstruction of a dark matter filament stretching between two clusters, separated by ~15 Mpc/h

BUT, WHAT IS IT?

- Weakly Interacting Massive Particles are a prime candidate
- lots of effort to detect them (below, plot from Snowmass report)
- LUX presently the most sensitive search

MANY MODELS OF WIMP DARK MATTER, SIMPLEST CASE SPECTRUM IS ~EXP

dark matter direct detection seems to require:

- 1.extremely low background
- 2.background rejection
- 3.lowest possible energy threshold
- 4.large target mass
- 5.patience

LOTS OF WORK WENT INTO BUILDING LUX ...

p sorensen PASCOS, 20 Nov 2013

WE'VE GOT EXTREMELY LOW BACKGROUND

- •4850 ft (1492 m) underground in the black hills of South Dakota (4300 meters water equiv.) ... reduces muon flux to <1 muon per day
- •surrounded by a 7.6 m diameter water shield ... reduces gamma and neutron backgrounds to <1 projected event in 300 days of searching
- •limiting factor is detector construction materials ... this limit is <2 background events per DAY in the central 118 kg target in the energy window of interest.. and **decreasing**

1492 meters below...

AND, THE BACKGROUND RATE IS DECREASING!

SHOWING EVENT RATE 0-5 KEV

A TYPICAL BACKGROUND EVENT AT 1.5 KEV

WE'VE GOT BACKGROUND REJECTION!

99.6% background rejection in low energy region of interest

NB: data reduction built on robust event identification and extremely minimal software cuts

AND, AN ENERGY THRESHOLD OF ~3 KEV

=> (ENERGY OF RECOILING XENON ATOM)

Total signal (electrons + photons)

** for details about NEST see e.g. arxiv:1307.6601

p sorensen 9 PASCOS, 20 Nov 2013

SIGNAL DETECTION EFFICIENCY IS ROBUST

- ●(left)
- •well understood
- •limited by scintillation photon (S1) detection
- geometrical
- •two-fold coincidence in xxx ns

- 0 51-01ily
- ∇ S1, S2 combined, before threshold cuts
- + S1, S2 combined, after threshold cuts

- •same efficiency curve as a function of recoil energy
- •fall-off at 20 keV due to search window defined in S1

160 EVENTS IN 85 DAYS SEARCH WITH 118 KG TARGET

inset gray curves defined from $E_{\rm nr} = \epsilon (n_{\gamma} + n_e)/f_n$

Source	Background rate, mDRU _{ee}
γ -rays $^{127}{ m Xe}$	$1.8 \pm 0.2_{ m stat} \pm 0.3_{ m sys}$
	$0.5\pm0.02_{ m stat}\pm0.1_{ m sys}$
²¹⁴ Pb	0.11-0.22 (90% C.L.)
⁸⁵ Kr	$0.13\pm0.07_{\mathrm{sys}}$
Total predicted	$2.6\pm0.2_{ m stat}\pm0.4_{ m sys}$
Total observed	$3.1 \pm 0.2_{ m stat}$

SIMULATED WIMP SIGNAL FOR 1000 GEV MASS

At 1000 GeV particle mass and cross section at the existing XENON100 90% CL Sensitivity 1.9x10⁻⁴⁴ cm² ... We would expect ~7 WIMPs in LUX Search (trial experiment shown as filled circles)

SIMULATED WIMP SIGNAL FOR 8.6 GEV MASS

At 8.6 GeV particle mass and cross section favored by CDMS II silicon (2012) ${\sim}2.0x10^{\text{-}41}~\text{cm}^2~\dots$

We would expect 1550 WIMPs in LUX Search (trial experiment NOT shown:)

LUX 85 LIVE DAY SEARCH, AND PROJECTED LUX 300 DAY WIMP SEARCH

- First results from LUX -- consistent with background-only hypothesis (p=0.35)
- additional dark matter search analyses under consideration
- We intend to run LUX for a new run of 300 days in 2014/15
 - Extending sensitivity by another factor 5
 - Even though LUX sees no WIMP-like events in the current run, it is still quite possible to discover a signal when extending the reach
 - "LUX does not exclude LUX"

p sorensen PASCOS, 20 Nov 2013

LOW MASS WIMPS - FULLY EXCLUDED BY LUX

CONCLUSION

- LUX has made an 85 live day WIMP search and released manuscript (arxiv:1310.8214) within 9 months of commissioning the detector underground at the Davis Lab at SURF
- Low backgrounds as expected, inner fiducial (118 kg) ER rate <2 events/day in region of interest
- New calibration techniques including 83mKr and Tritiated-CH₄ injected directly into Xe target (not discussed in this talk)
- Very low energy threshold achieved: 3 keVnr with no ambiguous/leakage events
- ER rejection shown to be 99.6+/-0.1% in energy range of interest
- Extended sensitivity over existing experiments by x3 at 35 GeV WIMP mass and x2 at 1000 GeV WIMP mass
- Low Mass WIMP Favored Hypotheses ruled out
- LUX WIMP Sensitivity 20x better
- LUX does not observe 6-10 GeV WIMPs favored by earlier experiments
- Results due to lots of great work by a large number of scientists!

LUX COLLABORATION: ~100 SCIENTISTS FROM 17 INSTITUTIONS

Brown

Richard Gaitskell PI, Professor Simon Fiorucci Research Associate Monica Pangilinan Postdoc Jeremy Chapman Graduate Student **David Malling** Graduate Student James Verbus Graduate Student Samuel Chung Chan Graduate Student **Dongqing Huang** Graduate Student

Case Western

PI, Professor **Thomas Shutt** Dan Akerib PI, Professor Karen Gibson Postdoc Tomasz Biesiadzinski Postdoc Wing H To Postdoc Graduate Student **Adam Bradley** Patrick Phelps Graduate Student Chang Lee Graduate Student Graduate Student Kati Pech

Imperial College London

Imperial College London

Henrique Araujo PI, Reader Tim Sumner Professor Alastair Currie Postdoc **Adam Bailey** Graduate Student

Lawrence Berkeley + UC Berkeley

PI, Professor Bob Jacobsen **Murdock Gilchriese** Senior Scientist Kevin Lesko Senior Scientist Carlos Hernandez Faham Postdoc Victor Gehman Scientist Mia Ihm Graduate Student

Lawrence Livermore

PI, Leader of Adv. Detectors Group Adam Bernstein Mechanical Technician **Dennis Carr** Staff Physicist Kareem Kazkaz Staff Physicist Peter Sorensen John Bower Engineer

LIP Coimbra

Isabel Lopes	PI, Professor
Jose Pinto da Cunha	Assistant Professor
Vladimir Solovov	Senior Researcher
Luiz de Viveiros	Postdoc
Alexander Lindote	Postdoc
Francisco Neves	Postdoc
Claudio Silva	Postdoc

M SD School of Mines

Xinhua Bai PI, Professor Tyler Liebsch Graduate Student **Doug Tiedt** Graduate Student

SDSTA

Project Engineer **David Taylor** Mark Hanhardt Support Scientist

Texas A&M

Pl. Professor James White † Robert Webb PI, Professor Rachel Mannino Graduate Student Clement Sofka Graduate Student

UC Davis

Mani Tripathi PI, Professor **Bob Svoboda** Professor Richard Lander Professor Britt Holbrook Senior Engineer Senior Machinist John Thomson Ray Gerhard **Electronics Engineer** Aaron Manalaysay Postdoc **Matthew Szydagis** Postdoc Richard Ott Postdoc Jeremy Mock Graduate Student **James Morad** Graduate Student Nick Walsh Graduate Student Michael Woods Graduate Student Graduate Student Sergey Uvarov Graduate Student Brian Lenardo

UC Santa Barbara

PI, Professor **Harry Nelson** Mike Witherell Professor Dean White Engineer Susanne Kyre Engineer Carmen Carmona **Curt Nehrkorn** Graduate Student Scott Haselschwardt Graduate Student

University College London

Chamkaur Ghag Pl. Lecturer Lea Reichhart Postdoc

University of Edinburgh

PI, Reade Alex Murphy Paolo Beltrame Research Fellow James Dobson Postdoo

University of Maryland

PI, Professor Attila Dobi Graduate Student Richard Knoche Graduate Student Graduate Student Jon Balaithy

University of Rochester

Frank Wolfs PI, Professor Wojtek Skutski Senior Scientist Graduate Student Eryk Druszkiewicz Mongkol Moongweluwan Graduate Student

University of South Dakota

Dongming Mei	PI, Professor	
Chao Zhang	Postdoc	
Angela Chiller	Graduate Student	
Chris Chiller	Graduate Student	
Dana Byram	*Now at SDSTA	
Chris Chiller	Graduate Student	

Daniel McKinsey	PI, Professor	
Peter Parker	Professor	
Sidney Cahn	Lecturer/Research Scientist	
Ethan Bernard	Postdoc	
Markus Horn	Postdoc	
Blair Edwards	Postdoc	
Scott Hertel	Postdoc	
Kevin O'Sullivan	Postdoc	
Nicole Larsen	Graduate Student	
Evan Pease	Graduate Student	
Brian Tennyson	Graduate Student	
Ariana Hackenburg	Graduate Student	
Elizabeth Boulton	Graduate Student	

PASCOS 20 Nov 2013 17 P Sorensen

EXTRA SLIDE: BACKGROUNDS WELL UNDERSTOOD

EXTRA SLIDE: BACKGROUND SUMMARY FOR 118 KG FIDUCIAL

Background Component	Source	10 ⁻³ x evts/keVee/kg/day
Gamma-rays	Internal Components including PMTS (80%), Cryostat, Teflon	1.8±0.2 _{stat} ±0.3 _{sys}
¹²⁷ Xe (36.4 day half-life)	Cosmogenic 0.87 -> 0.28 during run	0.5±0.02 _{stat} ±0.1 _{sys}
²¹⁴ Pb	222Rn	0.11-0.22 _(90% CL)
⁸⁵ Kr	Reduced from 130 ppb to 3.5±1 ppt	0.13±0.07 _{sys}
Predicted	Total	2.6±0.2 _{stat} ±0.4 _{sys}
Observed	Total	3.1±0.2 _{stat}