Single top-quark production cross section at LHC in ATLAS

PASCOS 2013 Conference – Taipei

Julien Donini for the ATLAS Collaboration

LPC/Université Blaise Pascal Clermont-Ferrand

Single top-quark production

Electroweak production of the top quark

Cross section proportional to $|V_{tb}|^2$ Sensitive to any (new) effect that can modify the top quark weak coupling

t-channel production

Probe W-t-b vertex

- Constrain V_{tb}
- Search for modified couplings
- Anomalous polarisation

Production mechanisms

• FCNC single-top production

Determine b-quark PDF

Dominant process: ~1/3 top-pair production ($\sigma_t^{\text{th.}} = 88 \text{ pb} @ 8 \text{ TeV}$) → **Observed** at Tevatron (2009), then at LHC (2011) [1]

Measure single-top cross-section as precisely as possible:

- → Test SM & probe for new physics
- \rightarrow But new intermediate particles suppressed as 1/M²

Wt and s-channels

Wt process (σ_{Wt}^{th} = 22 pb @ 8 TeV) \rightarrow Observation at LHC [2]

s-channel: smallest cross-section, ~1/15 t-channel (σ_s^{th.} = 6 pb @ 8 TeV)
→ Difficult channel, Evidence at Tevatron [3], Limits at LHC

Test of the SM in the single-top sector

Entering era of precision single-top quark measurements

Single Top-Quark Cross Section Measurements

t-channel @ 7 TeV (1.04 fb⁻¹)

Phys. Lett. B 717 (2012) 330-350

Signature & selections

1 isolated lepton (e/ μ) p_T>25 GeV 2 or 3 jets | η |<4.5, p_T>25 GeV Exactly 1 b-tagged jet E_T^{miss}>25 GeV m_T(W) > (60 GeV – E_T^{miss})

Analysis

Maximum likelihood **fit to NN** distribution **Cut based analysis** used as cross-check Data-driven multijet and W+jets background rates All other backgrounds set to theory predictions

Results

 $\sigma_t = 83 \pm 4 \text{ (stat.)} + 20 - 19 \text{ (syst)} = 83 \pm 20 \text{ pb (24\%)}$

Main systematics: ISR/FSR, b-tagging

Top/antitop cross section ratio (R_t)

ATLAS-CONF-2012-056

ATLAS-CONF-2012-132

Analysis

Wt channel @ 7 TeV (2.05 fb⁻¹)

Phys. Lett. B 716 (2012) 142-159

Signature & selections

Wt channel @ 8 TeV (20.3 fb⁻¹)

ATLAS-CONF-2013-100

Analysis

Maximum likelihood fit to BDT distribution Only eµ channel (opposite charge) Data driven: "fakes" dilepton 1 or 2 central jets, at least 1 b-tag Validation of diboson and $Z \rightarrow \tau \tau$ in CR 91400E 84500 ATLAS Preliminary ATLAS Preliminary Data Data 21200 VS = 8TeV, Ldt = 20.3 fb⁻¹ Q4000 - √S = 8TeV, Ldt = 20.3 fb⁻¹ 200 - γs = olev, jt = 1000 - eμ 1-jet 1-tag ₽3500E eµ 2-jet ≥1-tag Diboson Diboson Z(TT) + jets $Z(\tau\tau) + jets$ 3000 Fake lepton Fake lepton 800 2500Uncertainty 71 Uncertainty 2000 600 1500E 400F 1000E 200 500 1.3 Data/MC Data/MC 0 0.4 **BDT Response BDT Response** $\sigma_{tW} = 27.2 \pm 2.8(stat) \pm 5.4(syst) \text{ pb}$ Main systematics: jet energy scale, b-tagging, generators Significance: 4.2σ (4.0σ exp.)

Direct |V_{tb}| measurement

|V_{tb}| Measurement

• Cross section in t and Wt channels proportional to:

 $|V_{tb} \times f|^2$ (with f = 1 in SM)

 \bullet Independent of N_{quark} generations or CKM unitarity

Assumptions

- $|V_{tb}| >> |V_{td}|$, $|V_{ts}|$
- Left-handed SM-like W-t-b interaction
- Negligible contributions from other single-top processes

V _{tb}	7 TeV	8 TeV
t-ch	V _{tb} = 1.13 ± 0.14 > 0.75 (95% CL)	V _{tb} = 1.04 ± 0.11 > 0.80 (95% CL)
Wt	V _{tb} = 1.03 +0.16 -0.19	V _{tb} = 1.10 ± 0.12 > 0.72 (95% CL)

Best precision on |V_{tb}|: 10% (t-channel at 8 TeV)

Search for s-channel @ 7 TeV (0.7 fb⁻¹)

ATLAS-CONF-2011-118

. . .

Signature & selections

1 isolated lepton (e/ μ) p_T>25 GeV

2 b-tagged jets, p_T>25 GeV

E_T^{miss}>25 GeV

$$m_T(W) > (60 \text{ GeV} - E_T^{miss})$$

Analysis

Cut based analysis

Data-driven multijet background rates

	Final Selection			
s-channel	16 ± 6			
t-channel	33 ± 13			
Wt	5 ± 3			
tī	111 ± 47			
W+jets	4 ± 5			
Wc+jets	10 ± 8			
Wcc+jets	14 ± 12			
Wbb+jets	70 ± 51			
Z+jets	1 ± 1			
Diboson	4 ± 1			
Multijets	17 ± 10			
TOTAL Exp	285 ± 17			
S/ \sqrt{B}	0.98			
DATA	296			

Results

 σ_{s} < 26.5 pb (20.5 pb exp.) @ 95% C.L. SM: 4.56 ± 0.19 pb (arXiv:1210.7813) Measurement statistically limited

Single top-quark cross-section summary

Measurements are in good agreement with theoretical predictions

BSM Searches in Single Top-Quark Signatures

Search for single-top FCNC production

Motivation

Phys. Lett. B 712 (2012) 351-369 (7 TeV) ATLAS-CONF-2013-063 (8 TeV)

FCNC in top-decays $B(t \rightarrow qV)$ with $V = H,Z,\gamma,g$ **SM**: highly suppressed: $B \sim 10^{-17}-10^{-12}$ **BSM**: can be enhanced up to $B \sim 10^{-3}$

 $\mathbf{t} \rightarrow \mathbf{q}\mathbf{g}$ mode difficult to distinguish from background Anomalous $\mathbf{q}\mathbf{g} \rightarrow \mathbf{t}$ production: better sensitivity

Model

Effective Lagrangian

$$\mathcal{L}_{\text{eff}} = g_s \sum_{q=u,c} \frac{\kappa_{qgt}}{\Lambda} \bar{t} \sigma^{\mu\nu} T^a (f_q^L P_L + f_q^R P_R) q G_{\mu\nu}^a + \text{h.c.}$$

K_{qgt}: new coupling strength Λ: new physics scale

Signature & selections

- 1 isolated lepton (e/ μ) p_T>25 GeV
- 1 b-tagged jet, p_T>30 GeV
- E_{T}^{miss} >30 GeV
- $m_T(W) > 50 \text{ GeV}$

FCNC production @ 8 TeV (14.2 fb⁻¹)

ATLAS-CONF-2013-063 (8 TeV)

Analysis

Bayesian fit to NN distribution

- CR: loose b-tagging
- SR: tight b-tagging

Data driven multijet rates

Results

No excess is observed: $\sigma_{FCNC} < 2.5 \text{ pb} @ 95\% \text{ C.L.} (2.2 \text{ pb exp.})$ $B(t \rightarrow ug) < 3.1 \ 10^{-5} \text{ for } B(t \rightarrow cg) = 0$ $B(t \rightarrow cg) < 1.6 \ 10^{-4} \text{ for } B(t \rightarrow ug) = 0$ Most stringent limits on FCNC single-top prod.

ATLAS-CONF-2013-050 (8 TeV)

Motivation

W' bosons appear in many extensions of the SM

L/R models, KK excitations, Little Higgs, ...

Search for W' \rightarrow tb decays

- More model independent than leptonic decay
- Probe leptophobic sector
- BSM dynamics could explain high top mass

Model independent approach

Effective Left-Right model (arXiv:1208.4858v1) W' with left-handed, right-handed or mixed couplings

$$\mathcal{L} = \frac{V'_{ij}}{2\sqrt{2}} \bar{f}_i \gamma_\mu \left(g'_{R_{i,j}} (1 + \gamma^5) + g'_{L_{i,j}} (1 - \gamma^5) \right) W'^\mu f_j + h.c.$$

g'_{R/L}: right/left-handed coupling

Signature & selections

Similar to s-channel analysis 1 lepton (e/ μ) p_T>30 GeV 2 or 3 central jets, p_T>25 GeV Exactly 2 b-tagged jets E_T^{miss}>35 GeV m_T(W) > (60 GeV - E_T^{miss}) m_{tb} > 270 GeV

Search for W' bosons @ 8 TeV (14.3 fb^{-1})

 $\sqrt{s} = 8 \text{ TeV}$

Analysis

Julien Donini

ATLAS-CONF-2013-050 (8 TeV)

√s = 8 TeV

Rich field of study, several public results by ATLAS→ 5 published papers, 7 CONF notes

Prospects

Effort on boosted top topologies Investigate full hadronic searches Even more interesting at higher pp energy Many new interesting results ahead !

Additional references

[1] t-channel observation

- D0: Phys. Rev. Lett. 103, 092002 (2009)
- CDF: Phys. Lett. B 682, 363 (2010)
- CMS: Phys. Rev. Lett. 107 (2011) 091802
- ATLAS: Phys. Lett. B 717 (2012) 330 350

[2] Wt observation

CMS: CMS FAS TOP 12040

[3] Evidence for s-channel

D0: Phys. Lett. B **726**, 656 (2013)

Backup material

Single-top LHC combination

Method

ATLAS-CONF-2013-098 CMS-PAS-TOP-12-002

Iterative BLUE (Best Linear Unbiased Estimator) Mapping of uncertainty contributions in separate categories Assumption of correlation factors of different categories Stability of the combined result tested varying correlation factors

ATLAS+CMS Preliminary, $\sqrt{s} = 8 \text{ TeV}$

Source	Uncertainty (pb)		
Statistics	4.1		
Luminosity	3.4		
Simulation and modelling	7.7		
Jets	4.5		
Backgrounds	3.2		
Detector modelling	5.5		
Total systematics (excl. lumi)	11.0		
Total systematics (incl. lumi)	11.5		
Total uncertainty	12.2		

Largest uncertainties: simulation and modeling systematics

FCNC in BSM

Aguilar - Saavedra, ACTA Phys. Pol. B 35 (2004)

	\mathbf{SM}	QS	2HDM	FC $2HDM$	MSSM	R SUSY
$t \rightarrow uZ$	8×10^{-17}	$1.1 imes 10^{-4}$	(1)	1	2×10^{-6}	$3 imes 10^{-5}$
$t \rightarrow u\gamma$	$3.7 imes 10^{-16}$	$7.5 imes 10^{-9}$	—	-	2×10^{-6}	$1 imes 10^{-6}$
$t \rightarrow ug$	3.7×10^{-14}	1.5×10^{-7}	-		8×10^{-5}	$2 imes 10^{-4}$
$t \rightarrow uH$	2×10^{-17}	4.1×10^{-5}	$5.5 imes10^{-6}$		10^{-5}	$\sim 10^{-6}$
$t \to c Z$	1×10^{-14}	1.1×10^{-4}	$\sim 10^{-7}$	$\sim 10^{-10}$	2×10^{-6}	3×10^{-5}
$t \to c \gamma$	$4.6 imes 10^{-14}$	7.5×10^{-9}	$\sim 10^{-6}$	$\sim 10^{-9}$	2×10^{-6}	1×10^{-6}
$t \rightarrow cg$	$4.6 imes 10^{-12}$	1.5×10^{-7}	$\sim 10^{-4}$	$\sim 10^{-8}$	8×10^{-5}	2×10^{-4}
$t \rightarrow cH$	3×10^{-15}	$4.1 imes 10^{-5}$	1.5×10^{-3}	$\sim 10^{-5}$	10^{-5}	$\sim 10^{-6}$

Table 1: Branching ratios for top FCN decays in the SM, models with Q = 2/3 quark singlets (QS), a general 2HDM, a flavour-conserving (FC) 2HDM, in the MSSM and with R parity violating SUSY.

b* search @ 7 TeV (4.7 fb⁻¹)

Phys. Lett. B 721 (2013) 171-189

Single b*-quark produced through chromomagnetic interaction and decays to a W+t **ATLAS:** search performed in dilepton and lepton+jets final

states and combined

b^{*} search

m(b^{*})>870 GeV at 95% C.L (benchmark scenario)

CP Violation @ 7 TeV (4.7 fb⁻¹)

ATLAS-CONF-2013-032

In the Standard Model the couplings of the *Wtb* vertex are reduced to $V_{\rm L} \simeq 1$ and $V_{\rm R} = g_{\rm R,L} = 0$ at leading order.

A forward-backward asymmetry with respect to the normal to the plane defined by the *W* momentum and the top quark polarization, A^{N}_{FB} , is used to probe the complex phase of g_{R} .

A non-zero value of this asymmetry signals a CP violating contribution to the *Wtb* vertex not expected in the Standard Model.

$$A_{\text{FB}}^{\text{N}} = \frac{N_{\text{evt}}(\cos\theta^{\text{N}} > 0) - N_{\text{evt}}(\cos\theta^{\text{N}} < 0)}{N_{\text{evt}}(\cos\theta^{\text{N}} > 0) + N_{\text{evt}}(\cos\theta^{\text{N}} < 0)}$$

Very sensitive to the imaginary part of the anomalous coupling g_R $A_{FB}^N = 0.64 P I(g_R)$

$$A_{\text{FB}}^{\text{N}} = 0.031 \pm 0.065(\text{stat.})_{-0.031}^{+0.029}(\text{syst.})$$

CP Violation @ 7 TeV (4.7 fb⁻¹)

ATLAS-CONF-2013-032

