Modular properties of 3D higher spin theory
 (Based on 1308.2959)

PASCOS 2013

Chih-Wei Wang

Collaborator: Feng-Li Lin (National Taiwan Normal University) Wei Li (Max Planck Institute)

Modular Group and Modular Transformation

Modular Group and Modular Transformation

Complex plane $\xrightarrow{\text { quotient }}$ Torus

Modulus: $\tau \in \mathbb{C}$.

Modular Group and Modular Transformation

Complex plane $\xrightarrow{\text { quotient }}$ Torus

Modulus: $\tau \in \mathbb{C}$. $\quad . \quad \int z \sim z+n+m \tau \quad n, m \in \mathbb{Z}$

Modular Group and Modular Transformation

Complex plane $\xrightarrow{\text { quotient }}$ Torus

Modulus: $\tau \in \mathbb{C}$.

$$
\begin{aligned}
& z \sim z+n+m \tau \quad n, m \in \mathbb{Z} \\
& z \sim z+n(c \tau+d)+m(a \tau+b) \quad a, b, c, d \in \mathbb{Z}
\end{aligned}
$$

\longrightarrow Same lattice, if $a d-b c=1$

Modular Group and Modular Transformation

Complex plane $\xrightarrow{\text { quotient }}$ Torus

Modulus: $\tau \in \mathbb{C} \quad \quad \quad[z \sim z+n+m \tau \quad n, m \in \mathbb{Z}$ $z \sim z+n(c \tau+d)+m(a \tau+b) \quad a, b, c, d \in \mathbb{Z}$
\longrightarrow Same lattice, if $a d-b c=1$

$$
\binom{\tau}{1} \rightarrow \gamma \cdot\binom{\tau}{1} \quad \gamma \equiv\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \operatorname{PSL}(2, \mathbb{Z})
$$

Modular Group and Modular Transformation

Complex plane $\xrightarrow{\text { quotient }}$ Torus

Modulus: $\tau \in \mathbb{C}$.

$$
\left\{\begin{array}{l}
z \sim z+n+m \tau \quad n, m \in \mathbb{Z} \\
z \sim z+n(c \tau+d)+m(a \tau+b) \quad a, b, c, d \in \mathbb{Z}
\end{array}\right.
$$

\longrightarrow Same lattice, if $a d-b c=1$

$$
\binom{\tau}{1} \rightarrow \gamma \cdot\binom{\tau}{1} \quad \gamma \equiv\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \operatorname{PSL}(2, \mathbb{Z})
$$

- Pick $\{c \tau+d, a \tau+b\}$ as basis $\underset{\text { scaling }}{\text { rotation }}\left\{1, \tau^{\prime}\right\}$

Modular transformation: $\tau \rightarrow \tau^{\prime}=\frac{a \tau+b}{c \tau+d}$

Modular Group and Modular Transformation

Complex plane $\xrightarrow{\text { quotient }}$ Torus
Modulus: $\tau \in \mathbb{C}$.
$\quad[z \sim z+n+m \tau \quad n, m \in \mathbb{Z}$

$$
z \sim z+n(c \tau+d)+m(a \tau+b) \quad a, b, c, d \in \mathbb{Z}
$$

\longrightarrow Same lattice, if $a d-b c=1$

$$
\binom{\tau}{1} \rightarrow \gamma \cdot\binom{\tau}{1} \quad \gamma \equiv\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \operatorname{PSL}(2, \mathbb{Z})
$$

- Pick $\{c \tau+d, a \tau+b\}$ as basis $\underset{\text { scaling }}{\text { rotation }}\left\{1, \tau^{\prime}\right\}$

Modular transformation: $\tau \rightarrow \tau^{\prime}=\frac{a \tau+b}{c \tau+d}$
S-dual: $\tau \rightarrow \tau^{\prime}=-\frac{1}{\tau}$

Solid Torus (A/B cycles)

- $A(B)$-cycle: (non-)contractible cycle
- Modular Parameter $\equiv \frac{\int_{B} d z}{\int_{A} d z}=\tau$

Solid Torus (A/B cycles)

- $\mathrm{A}(\mathrm{B})$-cycle: (non-)contractible cycle
- Modular Parameter $\equiv \frac{\int_{B} d z}{\int_{A} d z}=\tau$

Thermal AdS and BTZ Black Hole

Focus on the solutions with Euclidean signature.

Thermal AdS and BTZ Black Hole

Focus on the solutions with Euclidean signature.

Thermal AdS:

$$
\begin{aligned}
& d s^{2}=d \rho^{2}+\left(e^{2 \rho}+\frac{1}{16} e^{-2 \rho}\right) d z d \bar{z}-\frac{1}{4}\left(d z^{2}+d \bar{z}^{2}\right) \quad z \equiv \phi+i t_{E} \\
& I_{\mathrm{AdS}}^{(\mathrm{E})}[\tau]=-\frac{\pi}{4 G} \tau_{2} \quad \tau_{2} \equiv \operatorname{Im}(\tau)
\end{aligned}
$$

Thermal AdS and BTZ Black Hole

Focus on the solutions with Euclidean signature.

Thermal AdS:

$$
\begin{aligned}
& d s^{2}=d \rho^{2}+\left(e^{2 \rho}+\frac{1}{16} e^{-2 \rho}\right) d z d \bar{z}-\frac{1}{4}\left(d z^{2}+d \bar{z}^{2}\right) \quad z \equiv \phi+i t_{E} \\
& I_{\mathrm{AdS}}^{(\mathrm{E})}[\tau]=-\frac{\pi}{4 G} \tau_{2} \quad \tau_{2} \equiv \operatorname{Im}(\tau)
\end{aligned}
$$

BTZ black hole:

$$
\begin{gathered}
\mathrm{ds}^{2}=d \rho^{2}+8 \pi G\left(\mathcal{L} d z^{2}+\overline{\mathcal{L}} d \bar{z}^{2}\right)+\left(e^{2 \rho}+(8 \pi G)^{2} \mathcal{L} \overline{\mathcal{L}} e^{-2 \rho}\right) d z d \bar{z} \\
I_{\mathrm{BTZ}}^{(\mathrm{E})}[\tau]=-\frac{\pi}{4 G} \frac{\tau_{2}}{|\tau|^{2}}=I_{\mathrm{AdS}}^{(\mathrm{E})}\left[-\frac{1}{\tau}\right]
\end{gathered}
$$

Thermal AdS and BTZ Black Hole

Focus on the solutions with Euclidean signature.

Thermal AdS:

$$
\begin{aligned}
& d s^{2}=d \rho^{2}+\left(e^{2 \rho}+\frac{1}{16} e^{-2 \rho}\right) d z d \bar{z}-\frac{1}{4}\left(d z^{2}+d \bar{z}^{2}\right) \quad z \equiv \phi+i t_{E} \\
& I_{\mathrm{AdS}}^{(\mathrm{E})}[\tau]=-\frac{\pi}{4 G} \tau_{2} \quad \tau_{2} \equiv \operatorname{Im}(\tau)
\end{aligned}
$$

BTZ black hole:

$$
\begin{gathered}
\mathrm{ds}^{2}=d \rho^{2}+8 \pi G\left(\mathcal{L} d z^{2}+\overline{\mathcal{L}} d \bar{z}^{2}\right)+\left(e^{2 \rho}+(8 \pi G)^{2} \mathcal{L} \overline{\mathcal{L}} e^{-2 \rho}\right) d z d \bar{z} \\
I_{\mathrm{BTZ}}^{(\mathrm{E})}[\tau]=-\frac{\pi}{4 G} \frac{\tau_{2}}{|\tau|^{2}}=I_{\mathrm{AdS}}^{(\mathrm{E})}\left[-\frac{1}{\tau}\right]
\end{gathered}
$$

In general: $\quad I_{\gamma}^{(E)}[\tau]=I_{A d S}^{(E)}\left[\frac{a \tau+b}{c \tau+d}\right]$

Vasiliev's Higher-Spin Theory [Vasiliev '91]

- An extension of ordinary gravity theory including an infinite tower of massless higher spin fields with spin $s \geq 3$ coupled non-linearly.
- The theory lives in AdS (or dS) space. The no-go theorems are evaded.
- In AdS3, the theory can be realized as a Chern-Simon gauge theory with an infinite-dimensional gauge algebra hs $[\lambda]$.
- At $\lambda=N$, the algebra reduce to $s l(N)$. The result theory is a nature generalization of the usual sl(2) Chern-Simon theory. This 3D Chern-Simon theory with $s(\mathrm{~N})$ algebra will be the main topic of this talk.

Basics of 3D Higher Spin Theory

- In $D=2+1$ (or 3), there is a gauge formulation of Einstein gravity in terms of the Chern-Simon Theory:

The action of the Chern-Simon Theory:

$$
\begin{array}{cl}
S=S_{C S}[A]-S_{C S}[\bar{A}] \quad & S_{C S}[A]=\frac{k}{4 \pi} \int_{\mathcal{M}} \operatorname{Tr}\left[A \wedge d A+\frac{2}{3} A \wedge A \wedge A\right] \\
A, \bar{A} \in s l(2, R) \quad k=\frac{l}{4 G}
\end{array}
$$

$$
\text { sl(2) algebra: }\left[L_{m}, L_{n}\right]=(m-n) L_{m+n}, \quad m, n=-1,0,1 .
$$

Equation of motion: $d A+A \wedge A=0$

- A convenient gauge choice: $A=b^{-1} a b+b^{-1} d b \quad b=e^{\rho L_{0}}$ $a=a_{z} d z+a_{\bar{z}} d \bar{z}$ is a gauge field lives on the boundary E.O.M. for a constant connection: $\left[a_{z}, a_{\bar{z}}\right]=0$

Basics of 3D Higher Spin Theory

- Extend to higher spin theory by $\mathrm{sl}(2) \longrightarrow \mathrm{sl}(\mathrm{N}) \supset \mathrm{sl}(2)$

Basics of 3D Higher Spin Theory

- Extend to higher spin theory by $s l(2) \longrightarrow s l(N) \supset s l(2)$
- Precise field content will depend on how one embed the gravity sector sl(2) into sl(N)

Principal embedding:

```
\(\mathrm{sl}(\mathrm{N})\) generators \(\longrightarrow\) Embeded \(\mathrm{sl}(2): L_{0}, L_{ \pm 1}\)
    - Higher spin: \(W_{m}^{(s)} \quad s=3, \cdots, N \quad m=-s+1, \cdots, s-1\)
    \(\left[L_{m}, W_{n}^{(s)}\right]=[(s-1) m-n] W_{m+n}^{(s)}\)
```


Basics of 3D Higher Spin Theory

- Extend to higher spin theory by $\mathrm{sl}(2) \longrightarrow \mathrm{sl}(\mathrm{N}) \supset \mathrm{sl}(2)$
- Precise field content will depend on how one embed the gravity sector $\mathrm{sl}(2)$ into $\mathrm{sl}(\mathrm{N})$

Principal embedding:

- "Singularity" and "Horizon" are no longer gauge-invariant concepts.

Basics of 3D Higher Spin Theory

- Extend to higher spin theory by $\mathrm{sl}(2) \longrightarrow \mathrm{sl}(\mathrm{N}) \supset \mathrm{sl}(2)$
- Precise field content will depend on how one embed the gravity sector $\mathrm{sl}(2)$ into $\mathrm{sl}(\mathrm{N})$

Principal embedding:

- "Singularity" and "Horizon" are no longer gauge-invariant concepts.
- The only gauge invariant quantity: holonomy $\operatorname{Hol}_{\mathcal{C}}(A) \equiv \mathcal{P} e^{\oint_{\mathcal{C}} A}$

General Framework in $\operatorname{sl}(\mathrm{N})$ [de Boer, Jottar `13, Castro et al. '11]

- Highest/Lowest weight gauge convention:
Q and M are linear in charges and chemical potential respectively

$$
\begin{aligned}
& a_{z}=L_{1}+\mathbf{Q} \\
& a_{\bar{z}}=\mathbf{M}+\left(\mathrm{terms} \sim \sum_{s=2}^{N} \frac{Q_{s}}{t^{(s)}} W_{-s+1}^{(s)}\right. \\
& m \leq s-2) \quad \mathbf{M}=\frac{i}{2 \tau_{2}} \sum_{s=3}^{N} \mu_{s} W_{s-1}^{(s)}
\end{aligned}
$$

Uniquely determined by equation of motion: $\left[a_{z}, a_{\bar{z}}\right]=0$

General Framework in $\mathrm{Sl}(\mathrm{N})$ [de Boer, Jottar `13, Castro et al. '11]

- Highest/Lowest weight gauge convention:
Q and M are linear in charges and chemical potential respectively

$$
\begin{aligned}
& a_{z}=L_{1}+\mathbf{Q} \\
& a_{\bar{z}}=\mathbf{Q}+\left(\text { terms } \sim \sum_{s=2}^{N} \frac{Q_{s}}{t^{(s)}} W_{-s+1}^{(s)}\right. \\
& m \leq s-2) \quad \mathbf{M}=\frac{i}{2 \tau_{2}} \sum_{s=3}^{N} \mu_{s} W_{s-1}^{(s)}
\end{aligned}
$$

Uniquely determined by equation of motion: $\left[a_{z}, a_{\bar{z}}\right]=0$

- Smooth solutions are characterized by the holonomy condition along A-cycle:

$$
\operatorname{Hol}_{\mathrm{A}}(A) \equiv \mathcal{P} e^{\oint_{\mathrm{A}} A} \in \text { center of the } \operatorname{SL}(\mathrm{N})
$$

For a constant gauge field: $\operatorname{Hol}_{\mathrm{A}}(A)=b^{-1} e^{2 \pi \omega_{\mathrm{A}}} b$
Holonomy matrix: $\omega_{\mathrm{A}}=(c \tau+d) a_{z}+(c \bar{\tau}+b) a_{\bar{z}}$

General Framework in $\mathrm{Sl}(\mathrm{N})$ [de Boer, Jottar `13, Castro et al. '11]

- Highest/Lowest weight gauge convention:
Q and M are linear in charges and chemical potential respectively

$$
\begin{aligned}
& a_{z}=L_{1}+\mathbf{Q} \\
& a_{\bar{z}}=\mathbf{Q}+\left(\text { terms } \sim \sum_{s=2}^{N} \frac{Q_{s}}{t^{(s)}} W_{-s+1}^{(s)}\right. \\
& m \leq s-2) \quad \mathbf{M}=\frac{i}{2 \tau_{2}} \sum_{s=3}^{N} \mu_{s} W_{s-1}^{(s)}
\end{aligned}
$$

Uniquely determined by equation of motion: $\left[a_{z}, a_{\bar{z}}\right]=0$

- Smooth solutions are characterized by the holonomy condition along A-cycle:

$$
\operatorname{Hol}_{\mathrm{A}}(A) \equiv \mathcal{P} e^{\oint_{\mathrm{A}} A} \in \text { center of the } \operatorname{SL}(\mathrm{N})
$$

For a constant gauge field: $\operatorname{Hol}_{\mathrm{A}}(A)=b^{-1} e^{2 \pi \omega_{\mathrm{A}}} b$
Holonomy matrix: $\omega_{\mathrm{A}}=(c \tau+d) a_{z}+(c \bar{\tau}+b) a_{\bar{z}}$

- Condition constraint the vector of the eigenvalues of holonomy matrix: $\Lambda\left(\omega_{\mathrm{A}}\right)=i \vec{n}$

$$
\vec{n}=\left(n_{1}, \ldots, n_{N}\right), \quad n_{i} \in\left\{\begin{array}{ll}
\mathbb{Z} & N \text { odd } \\
\mathbb{Z} \text { or } \mathbb{Z}+\frac{1}{2} & N \text { even }
\end{array}, \quad n_{i} \neq n_{j} \text { for } i \neq j, \quad n_{i}+n_{N+1-i}=0\right.
$$

Modular Images of the Conical Surpluses

For a conical surplus, $\omega_{\mathrm{A}}=\omega_{\phi}=a_{z}+a_{\bar{z}}$

$$
\mathrm{CS}: \quad i \vec{n}=\Lambda\left(\omega_{\phi}\left[\tau ; \mu_{s} ; Q_{s}\right]\right)=\Lambda\left(a_{z}\left[Q_{s}\right]\right)+\Lambda\left(a_{\bar{z}}\left[\tau ; \mu_{s} ; Q_{s}\right]\right)
$$

Modular Images of the Conical Surpluses

For a conical surplus, $\omega_{\mathrm{A}}=\omega_{\phi}=a_{z}+a_{\bar{z}}$

$$
\mathrm{CS}: \quad i \vec{n}=\Lambda\left(\omega_{\phi}\left[\tau ; \mu_{s} ; Q_{s}\right]\right)=\Lambda\left(a_{z}\left[Q_{s}\right]\right)+\Lambda\left(a_{\bar{z}}\left[\tau ; \mu_{s} ; Q_{s}\right]\right)
$$

For a general modular image $\gamma, \omega_{\mathrm{A}}=(c \tau+d) a_{z}+(c \bar{\tau}+b) a_{\bar{z}}$

$$
\gamma: \quad i \vec{n}=\Lambda\left(\omega_{\mathrm{A}}\left[\tau ; \mu_{s} ; Q_{s}\right]\right)=(c \tau+d) \Lambda\left(a_{z}\left[Q_{s}\right]\right)+(c \bar{\tau}+d) \Lambda\left(a_{\bar{z}}\left[\tau ; \mu_{s} ; Q_{s}\right]\right)
$$

Modular Images of the Conical Surpluses

For a conical surplus, $\omega_{\mathrm{A}}=\omega_{\phi}=a_{z}+a_{\bar{z}}$

$$
\mathrm{CS}: \quad i \vec{n}=\Lambda\left(\omega_{\phi}\left[\tau ; \mu_{s} ; Q_{s}\right]\right)=\Lambda\left(a_{z}\left[Q_{s}\right]\right)+\Lambda\left(a_{\bar{z}}\left[\tau ; \mu_{s} ; Q_{s}\right]\right)
$$

For a general modular image $\gamma, \omega_{\mathrm{A}}=(c \tau+d) a_{z}+(c \bar{\tau}+b) a_{\bar{z}}$

$$
\gamma: \quad i \vec{n}=\Lambda\left(\omega_{\mathrm{A}}\left[\tau ; \mu_{s} ; Q_{s}\right]\right)=(c \tau+d) \Lambda\left(a_{z}\left[Q_{s}\right]\right)+(c \bar{\tau}+d) \Lambda\left(a_{\bar{z}}\left[\tau ; \mu_{s} ; Q_{s}\right]\right)
$$

Goal: to figure out some transformations of τ, μ_{s}, Q_{s}.

Modular Images of the Conical Surpluses

For a conical surplus, $\omega_{\mathrm{A}}=\omega_{\phi}=a_{z}+a_{\bar{z}}$

$$
\mathrm{CS}: \quad i \vec{n}=\Lambda\left(\omega_{\phi}\left[\tau ; \mu_{s} ; Q_{s}\right]\right)=\Lambda\left(a_{z}\left[Q_{s}\right]\right)+\Lambda\left(a_{\bar{z}}\left[\tau ; \mu_{s} ; Q_{s}\right]\right)
$$

For a general modular image $\gamma, \omega_{\mathrm{A}}=(c \tau+d) a_{z}+(c \bar{\tau}+b) a_{\bar{z}}$

$$
\gamma: \quad i \vec{n}=\Lambda\left(\omega_{\mathrm{A}}\left[\tau ; \mu_{s} ; Q_{s}\right]\right)=(c \tau+d) \Lambda\left(a_{z}\left[Q_{s}\right]\right)+(c \bar{\tau}+d) \Lambda\left(a_{\bar{z}}\left[\tau ; \mu_{s} ; Q_{s}\right]\right)
$$

Goal: to figure out some transformations of τ, μ_{s}, Q_{s}.

Using $\operatorname{sl}(\mathrm{N})$ algebra and the lowest/highest weight structure of $a_{z} / a_{\bar{z}}$, one can show:

$$
i \vec{n}=\Lambda\left(\omega_{\mathrm{A}}\left[\tau ; \mu_{s} ; Q_{s}\right]\right)=\Lambda\left(\omega_{\phi}\left[\hat{\gamma} \tau ; \frac{\mu_{s}}{(c \tau+d)^{s}} ;(c \tau+d)^{s} Q_{s}\right]\right) .
$$

Modular Images of the Conical Surpluses

For a conical surplus, $\omega_{\mathrm{A}}=\omega_{\phi}=a_{z}+a_{\bar{z}}$

$$
\mathrm{CS}: \quad i \vec{n}=\Lambda\left(\omega_{\phi}\left[\tau ; \mu_{s} ; Q_{s}\right]\right)=\Lambda\left(a_{z}\left[Q_{s}\right]\right)+\Lambda\left(a_{\bar{z}}\left[\tau ; \mu_{s} ; Q_{s}\right]\right)
$$

For a general modular image $\gamma, \omega_{\mathrm{A}}=(c \tau+d) a_{z}+(c \bar{\tau}+b) a_{\bar{z}}$

$$
\gamma: \quad i \vec{n}=\Lambda\left(\omega_{\mathrm{A}}\left[\tau ; \mu_{s} ; Q_{s}\right]\right)=(c \tau+d) \Lambda\left(a_{z}\left[Q_{s}\right]\right)+(c \bar{\tau}+d) \Lambda\left(a_{\bar{z}}\left[\tau ; \mu_{s} ; Q_{s}\right]\right)
$$

Goal: to figure out some transformations of τ, μ_{s}, Q_{s}.

Using sl(N) algebra and the lowest/highest weight structure of $a_{z} / a_{\bar{z}}$, one can show:

$$
i \vec{n}=\Lambda\left(\omega_{\mathrm{A}}\left[\tau ; \mu_{s} ; Q_{s}\right]\right)=\Lambda\left(\omega_{\phi}\left[\hat{\gamma} \tau ; \frac{\mu_{s}}{(c \tau+d)^{s}} ;(c \tau+d)^{s} Q_{s}\right]\right) .
$$

Modular transformation:

$$
\tau \longmapsto \hat{\gamma} \tau=\frac{a \tau+b}{c \tau+d}, \quad \mu_{s} \longmapsto \frac{\mu_{s}}{(c \tau+d)^{s}}, \quad Q_{s} \longmapsto(c \tau+d)^{s} Q_{s}
$$

Modular Images of the Conical Surpluses

Passive point of view: coordinate transformation and Q_{s} / μ_{s} redefinition.

Modular Images of the Conical Surpluses

Passive point of view: coordinate transformation and Q_{s} / μ_{s} redefinition.

```
In order to sum the partition functions, we need to put them in a
``` particular coordinate and ensemble.

Active point of view: fix coordinate and \(\mu_{s \text { (in grand canonical ensemble) }}\)

\section*{Modular Images of the Conical Surpluses}

Passive point of view: coordinate transformation and \(Q_{s} / \mu_{s}\) redefinition.
```

In order to sum the partition functions, we need to put them in a
particular coordinate and ensemble.

```

Active point of view: fix coordinate and \(\mu_{s}\) (in grand canonical ensemble)
\[
\begin{aligned}
& Q_{t}^{\mathrm{CS}}=q_{t}\left[\vec{n} ; \tau ; \mu_{s}\right] \Longleftrightarrow Q_{t}^{\gamma}=\frac{1}{(c \tau+d)^{t}} q_{t}\left[\vec{n} ; \hat{\gamma} \tau ; \frac{\mu_{s}}{(c \tau+d)^{s}}\right] \quad t=2, \ldots, N
\end{aligned}
\]

\section*{Modular Images of the Conical Surpluses}

Passive point of view: coordinate transformation and \(Q_{s} / \mu_{s}\) redefinition.

> In order to sum the partition functions, we need to put them in a particular coordinate and ensemble.

Active point of view: fix coordinate and \(\mu_{s}\) (in grand canonical ensemble)
\[
\begin{gathered}
\omega_{\phi} \\
Q_{t}^{\mathrm{CS}}=q_{t}\left[\vec{n} ; \tau ; \mu_{s}\right] \Longleftrightarrow Q_{t}^{\gamma}=\frac{1}{(c \tau+d)^{t}} q_{t}\left[\vec{n} ; \hat{\gamma} \tau ; \frac{\mu_{s}}{(c \tau+d)^{s}}\right] \quad t=2, \ldots, N
\end{gathered}
\]

Different solutions, different solid torus

\section*{Thermodynamics ("canonical" formalism) [de Boer, Jottar `13]}
\(-\beta F\left[\tau ; \mu_{s}\right]=\ln Z\left[\tau ; \mu_{s}\right] \underset{\wedge}{\approx}-\left.I^{(\mathrm{E})}\right|_{\text {on-shell }}\)
saddle point approximation
- Modulus \(\tau\) act as the chemical potential of spin-2 charge
- \(\mu_{\mathrm{s} \text { : chemical potential for higher }}\) spin charge with \(\mathrm{s}>2\)

\section*{Thermodynamics ("canonical" formalism) [de Boer, Jottar `13]}
\[
\begin{array}{cc}
-\beta F\left[\tau ; \mu_{s}\right]=\ln Z\left[\tau ; \mu_{s}\right] \underset{\sim}{\approx}-\left.I^{(\mathrm{E})}\right|_{\text {on-shell }} & \begin{array}{l}
\text { Modulus } \tau \text { act as the chemical } \\
\text { potential of spin-2 charge } \\
\\
\text { saddle point approximation }
\end{array} \begin{array}{c}
\mu_{\text {s: chemical potential for higher }} \\
\text { spin charge with } \mathrm{s}>2
\end{array}
\end{array}
\]

Consistent thermodynamic system should have:
\[
\left.\delta I^{(\mathrm{E})}\right|_{\text {on-shell }}=\left.\delta I_{\text {bulk }}^{(\mathrm{E})}\right|_{\text {on-shell }}+\left.\delta I_{\text {bndy }}^{(\mathrm{E})}\right|_{\text {on-shell }}=\sum_{i}\left(\text { conjugated } q_{i}\right) \delta\left(\mu_{i}\right)
\]
add boundary action to impose appropriate boundary condition

\section*{Thermodynamics ("canonical" formalism) [de Boer, Jottar `13]}
\[
\begin{array}{cc}
-\beta F\left[\tau ; \mu_{s}\right]=\ln Z\left[\tau ; \mu_{s}\right] \underset{\wedge}{\approx}-\left.I^{(\mathrm{E})}\right|_{\text {on-shell }} & \begin{array}{l}
\text { Modulus } \tau \text { act as the chemical } \\
\text { potential of spin-2 charge } \\
\text { - }
\end{array} \mu_{\text {s: chemical potential for higher }} \\
\text { spin charge with } \mathrm{s}>2
\end{array}
\]

Consistent thermodynamic system should have:
\[
\begin{aligned}
\left.\delta I^{(\mathrm{E})}\right|_{\text {on-shell }}= & \left.\delta I_{\text {bulk }}^{(\mathrm{E})}\right|_{\text {on-shell }}+\left.\delta I_{\text {bndy }}^{(\mathrm{E})}\right|_{\text {on-shell }}=\sum_{i}\left(\text { conjugated } q_{i}\right) \delta\left(\mu_{i}\right) \\
& \text { add boundary action to impose appropriate boundary condition }
\end{aligned}
\]
- Varying bulk action produce a boundary term: \(\left.\delta I_{\text {bulk }}^{(\mathrm{E})}[A]\right|_{\text {on-shell }}=-\frac{i k}{4 \pi} \int_{\partial M} \operatorname{Tr}[a \wedge \delta a]\)
- When varying the action, one need to vary \(\tau\) (shape of the torus) explicitly. To do that, we can change the coordinate to the rigid torus and shift \(\tau\) dependence to the gauge field, \(a\), and then vary it.
- \(\delta a\) involves the variation of charges and chemical potentials including \(\tau\).

\section*{Boundary Action [de Boer, Jottar` 13]}

Add the following boundary action: \(\quad I_{\mathrm{bndy}}[A]=-\frac{k}{2 \pi} \int_{\partial M} d^{2} z \operatorname{Tr}\left[\left(a_{z}-2 L_{1}\right) a_{\bar{z}}\right]\)

\section*{Boundary Action [de Boer, Jottar `13]}

Add the following boundary action: \(\quad I_{\text {bndy }}[A]=-\frac{k}{2 \pi} \int_{\partial M} d^{2} z \operatorname{Tr}\left[\left(a_{z}-2 L_{1}\right) a_{\bar{z}}\right]\)

Varying the whole action yield the desired form (including the part coming from \(\bar{A}\)):
\[
\begin{gathered}
\left.\delta I^{(\mathrm{E})}\right|_{\text {os }}=\left.\delta I_{\text {bulk }}^{(\mathrm{E})}\right|_{\text {os }}+\left.\delta I_{\text {bndy }}^{(\mathrm{E})}\right|_{\text {os }}=-(2 \pi i k)\left(T \delta \tau-\bar{T} \delta \bar{\tau}+\sum_{s=3}^{N}\left(Q_{s} \delta \mu_{s}-\bar{Q}_{s} \delta \bar{\mu}_{s}\right)\right) \\
T=\frac{1}{2} \operatorname{Tr}\left[\left(a_{z}\right)^{2}\right]+\operatorname{Tr}\left[a_{z} a_{\bar{z}}\right]-\frac{1}{2} \operatorname{Tr}\left[\left(\bar{a}_{z}\right)^{2}\right]
\end{gathered}
\]

\section*{Boundary Action [de Boer, Jottar` 13]}

Add the following boundary action: \(\quad I_{\text {bndy }}[A]=-\frac{k}{2 \pi} \int_{\partial M} d^{2} z \operatorname{Tr}\left[\left(a_{z}-2 L_{1}\right) a_{\bar{z}}\right]\)

Varying the whole action yield the desired form (including the part coming from \(\bar{A}\)):
\[
\begin{gathered}
\left.\delta I^{(\mathrm{E})}\right|_{\text {os }}=\left.\delta I_{\text {bulk }}^{(\mathrm{E})}\right|_{\text {os }}+\left.\delta I_{\text {bndy }}^{(\mathrm{E})}\right|_{\text {os }}=-(2 \pi i k)\left(T \delta \tau-\bar{T} \delta \bar{\tau}+\sum_{s=3}^{N}\left(Q_{s} \delta \mu_{s}-\bar{Q}_{s} \delta \bar{\mu}_{s}\right)\right) \\
T=\frac{1}{2} \operatorname{Tr}\left[\left(a_{z}\right)^{2}\right]+\operatorname{Tr}\left[a_{z} a_{\bar{z}}\right]-\frac{1}{2} \operatorname{Tr}\left[\left(\bar{a}_{z}\right)^{2}\right]
\end{gathered}
\]
- T is the energy momentum tensor conjugated to the modulus \(\tau\).
- T is not holomorphic and will depend on the higher spin charges if the chemical potential is not zero.
- In short, the highest/lowest weight gauge choice of the charge/chemical potential separation plus this particular boundary action yield a consistent thermodynamic system.

\section*{Evaluation of On-Shell Action (Free Energy) [Banados et al. ‘12]}
- Evaluation of the bulk action depends on the choice of \(A / B\) cycles.

\section*{Evaluation of On-Shell Action (Free Energy) [Banados et al. ‘12]}
- Evaluation of the bulk action depends on the choice of \(A / B\) cycles.
- Slice the torus along the A-cycle yield the on-shell bulk action:
\[
\left.I_{\text {bulk }}^{(\mathrm{E})}[A]\right|_{\mathrm{os}}=[\text { bulk term }]-\frac{i k}{4 \pi} \int_{\partial \mathcal{M}} \operatorname{Tr}\left[\omega_{\mathrm{A}} \omega_{\mathrm{B}}\right]
\]

\section*{Evaluation of On-Shell Action (Free Energy) [Banados et al. ‘12]}
- Evaluation of the bulk action depends on the choice of \(A / B\) cycles.
- Slice the torus along the A-cycle yield the on-shell bulk action:
\[
\left.I_{\text {bulk }}^{(\mathrm{E})}[A]\right|_{\mathrm{os}}=[\text { bulk term }]-\frac{i k}{4 \pi} \int_{\partial \mathcal{M}} \operatorname{Tr}\left[\omega_{\mathrm{A}} \omega_{\mathrm{B}}\right]
\]

- For constant gauge fields: \(\left.\quad I_{\mathrm{bulk}}^{(\mathrm{E})}\right|_{\mathrm{os}}=-(2 \pi i k) \frac{1}{2} \operatorname{Tr}\left[\omega_{\mathrm{A}} \omega_{\mathrm{B}}-\bar{\omega}_{\mathrm{A}} \bar{\omega}_{\mathrm{B}}\right]\).

\section*{Evaluation of On-Shell Action (Free Energy) [Banados et al. ‘12]}
- Evaluation of the bulk action depends on the choice of \(A / B\) cycles.
- Slice the torus along the A-cycle yield the on-shell bulk action:
\[
\left.I_{\mathrm{bulk}}^{(\mathrm{E})}[A]\right|_{\mathrm{os}}=[\text { bulk term }]-\frac{i k}{4 \pi} \int_{\partial \mathcal{M}} \operatorname{Tr}\left[\omega_{\mathrm{A}} \omega_{\mathrm{B}}\right]
\]

- For constant gauge fields: \(\left.\quad I_{\text {bulk }}^{(\mathrm{E})}\right|_{\mathrm{os}}=-(2 \pi i k) \frac{1}{2} \operatorname{Tr}\left[\omega_{\mathrm{A}} \omega_{\mathrm{B}}-\bar{\omega}_{\mathrm{A}} \bar{\omega}_{\mathrm{B}}\right]\).
- Using sl(N) algebra and the lowest/highest weight structure of \(a_{z} / a_{\bar{z}}\), one can show that the on-shell boundary action is:
\[
\left.I_{\mathrm{bndy}}^{(\mathrm{E})}\right|_{\mathrm{os}}=(2 \pi i k) \frac{1}{2} \sum_{s=3}^{N}(s-2)\left(\mu_{s} Q_{s}-\bar{\mu}_{s} \bar{Q}_{s}\right)
\]

\section*{Evaluation of On-Shell Action (Free Energy) [Banados et al. ‘12]}
- Evaluation of the bulk action depends on the choice of \(A / B\) cycles.
- Slice the torus along the A-cycle yield the on-shell bulk action:
\[
\left.I_{\mathrm{bulk}}^{(\mathrm{E})}[A]\right|_{\mathrm{os}}=[\text { bulk term }]-\frac{i k}{4 \pi} \int_{\partial \mathcal{M}} \operatorname{Tr}\left[\omega_{\mathrm{A}} \omega_{\mathrm{B}}\right]
\]

- For constant gauge fields: \(\left.\quad I_{\text {bulk }}^{(\mathrm{E})}\right|_{\mathrm{os}}=-(2 \pi i k) \frac{1}{2} \operatorname{Tr}\left[\omega_{\mathrm{A}} \omega_{\mathrm{B}}-\bar{\omega}_{\mathrm{A}} \bar{\omega}_{\mathrm{B}}\right]\).
- Using sl(N) algebra and the lowest/highest weight structure of \(a_{z} / a_{\bar{z}}\), one can show that the on-shell boundary action is:
\[
\left.I_{\mathrm{bndy}}^{(\mathrm{E})}\right|_{\mathrm{os}}=(2 \pi i k) \frac{1}{2} \sum_{s=3}^{N}(s-2)\left(\mu_{s} Q_{s}-\bar{\mu}_{s} \bar{Q}_{s}\right)
\]
- The free energy is: \(\quad-\beta F=-\left(\left.I_{\text {bulk }}^{(\mathrm{E})}\right|_{\text {os }}+\left.I_{\text {bndy }}^{(\mathrm{E})}\right|_{\text {os }}\right)\)

\section*{Modular Invariant Full Partition Function}
- Simple result (obtained non-trivially): \(\quad F^{\gamma}\left[\vec{n} ; \tau ; \mu_{s}\right]=F^{\mathrm{CS}}\left[\vec{n} ; \hat{\gamma} \tau ; \frac{\mu_{s}}{(c \tau+d)^{s}}\right]\).

\section*{Modular Invariant Full Partition Function}
- Simple result (obtained non-trivially): \(\quad F^{\gamma}\left[\vec{n} ; \tau ; \mu_{s}\right]=F^{\mathrm{CS}}\left[\vec{n} ; \hat{\gamma} \tau ; \frac{\mu_{s}}{(c \tau+d)^{s}}\right]\).
- Partition function of \(\mathrm{CS}: \quad Z_{\vec{n}}^{C S}=e^{-\beta F^{\mathrm{CS}}}\)

\section*{Modular Invariant Full Partition Function}
- Simple result (obtained non-trivially): \(F^{\gamma}\left[\vec{n} ; \tau ; \mu_{s}\right]=F^{\mathrm{CS}}\left[\vec{n} ; \hat{\gamma} \tau ; \frac{\mu_{s}}{(c \tau+d)^{s}}\right]\).
- Partition function of \(\mathrm{CS}: \quad Z_{\vec{n}}^{C S}=e^{-\beta F^{\mathrm{CS}}}\)
- Partition function of a modular image: \(Z_{\vec{n}}^{\gamma}\left[\tau ; \mu_{s}\right]=Z_{\vec{n}}^{C S}\left[\hat{\gamma} \tau ; \frac{\mu_{s}}{(c \tau+d)^{s}}\right]\)

\section*{Modular Invariant Full Partition Function}
- Simple result (obtained non-trivially): \(F^{\gamma}\left[\vec{n} ; \tau ; \mu_{s}\right]=F^{\mathrm{CS}}\left[\vec{n} ; \hat{\gamma} \tau ; \frac{\mu_{s}}{(c \tau+d)^{s}}\right]\).
- Partition function of \(\mathrm{CS}: \quad Z_{\vec{n}}^{C S}=e^{-\beta F^{\mathrm{CS}}}\)
- Partition function of a modular image: \(Z_{\vec{n}}^{\gamma}\left[\tau ; \mu_{s}\right]=Z_{\vec{n}}^{C S}\left[\hat{\gamma} \tau ; \frac{\mu_{s}}{(c \tau+d)^{s}}\right]\)
- Sum over modular images:
\[
Z_{\vec{n}}\left[\tau ; \mu_{s}\right]=\sum_{\gamma \in \Gamma_{\infty} \backslash \Gamma} Z_{\vec{n}}^{\gamma}\left[\tau ; \mu_{s}\right]=\sum_{\gamma \in \Gamma_{\infty} \backslash \Gamma} Z_{\vec{n}}^{C S}\left[\hat{\gamma} \tau ; \frac{\mu_{s}}{(c \tau+d)^{s}}\right]
\]

\section*{Modular Invariant Full Partition Function}
- Simple result (obtained non-trivially): \(F^{\gamma}\left[\vec{n} ; \tau ; \mu_{s}\right]=F^{\mathrm{CS}}\left[\vec{n} ; \hat{\gamma} \tau ; \frac{\mu_{s}}{(c \tau+d)^{s}}\right]\).
- Partition function of \(\mathrm{CS}: \quad Z_{\vec{n}}^{C S}=e^{-\beta F^{\mathrm{CS}}}\)
- Partition function of a modular image: \(Z_{\vec{n}}^{\gamma}\left[\tau ; \mu_{s}\right]=Z_{\vec{n}}^{C S}\left[\hat{\gamma} \tau ; \frac{\mu_{s}}{(c \tau+d)^{s}}\right]\)
- Sum over modular images:
\[
Z_{\vec{n}}\left[\tau ; \mu_{s}\right]=\sum_{\gamma \in \Gamma_{\infty} \backslash \Gamma} Z_{\vec{n}}^{\gamma}\left[\tau ; \mu_{s}\right]=\sum_{\gamma \in \Gamma_{\infty} \backslash \Gamma} Z_{\vec{n}}^{C S}\left[\hat{\gamma} \tau ; \frac{\mu_{s}}{(c \tau+d)^{s}}\right]
\]
- Sum over \(\vec{n}: Z\left[\tau ; \mu_{s}\right]=\sum_{\vec{n}} Z_{\vec{n}}\left[\tau ; \mu_{s}\right]\)

\section*{Modular Invariant Full Partition Function}
- Simple result (obtained non-trivially): \(F^{\gamma}\left[\vec{n} ; \tau ; \mu_{s}\right]=F^{\mathrm{CS}}\left[\vec{n} ; \hat{\gamma} \tau ; \frac{\mu_{s}}{(c \tau+d)^{s}}\right]\).
- Partition function of \(\mathrm{CS}: \quad Z_{\vec{n}}^{C S}=e^{-\beta F^{\mathrm{CS}}}\)
- Partition function of a modular image: \(Z_{\vec{n}}^{\gamma}\left[\tau ; \mu_{s}\right]=Z_{\vec{n}}^{C S}\left[\hat{\gamma} \tau ; \frac{\mu_{s}}{(c \tau+d)^{s}}\right]\)
- Sum over modular images:
\[
Z_{\vec{n}}\left[\tau ; \mu_{s}\right]=\sum_{\gamma \in \Gamma_{\infty} \backslash \Gamma} Z_{\vec{n}}^{\gamma}\left[\tau ; \mu_{s}\right]=\sum_{\gamma \in \Gamma_{\infty} \backslash \Gamma} Z_{\vec{n}}^{C S}\left[\hat{\gamma} \tau ; \frac{\mu_{s}}{(c \tau+d)^{s}}\right]
\]
- Sum over \(\vec{n}: Z\left[\tau ; \mu_{s}\right]=\sum_{\vec{n}} Z_{\vec{n}}\left[\tau ; \mu_{s}\right]\)

\section*{Thank you!}```

