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stabilization problem have new solutions (S. Patil and
R.B., 2004, R.B. et al 2012).
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theory of the very early universe.
S Assumption: Matter is a gas of fundamental strings
Eeeledy Assumption: Space is compact, e.g. a torus.

Structure Key pOIntS

Formation
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Lol o New degrees of freedom: string oscillatory modes
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Challenges o Leads to a maximal temperature for a gas of strings,
Conclusions the Hagedorn temperature

@ New degrees of freedom: string winding modes

o Leads to a new symmetry: physics at large R is
equivalent to physics at small R
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Conclusions

o Decay only possible in three large spatial dimensions.

@ — dynamical explanation of why there are exactly three
large spatial dimensions.

Note: this argument assumes constant dilaton [R. Danos, A.
Frey and A. Mazumdar]
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Po(k) = 8G?k™' < |dp(k)|? >
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T 1
_ 2 |
- 8¢ B1-T/Ty
Key features:

o scale-invariant like for inflation
o slight red tilt like for inflation
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Note: Specific higher derivative toy model: T. Biswas, R.B.,
A. Mazumdar and W. Siegel, 2006
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@ winding modes prevent expansion

Introduction

String Gas @ momentum modes prevent contraction
Cosmology . L.
S 0 — Ver(R) has a minimum at a finite value of
Formation R N Rmin
Y

Moduli . g .
Stabilization @ in heterotic string theory there are enhanced symmetry
Challenges states containing both momentum and winding which
conclusions are massless at Rnmin

o — eff(Rmin) =0

©

— size moduli stabilized in Einstein gravity background
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o At this scale gaugino condensation sets in.

o NB: Dilaton stabilization is consistent with size
stabilization [R. Danos, A. Frey and R.B., 2008]
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Formation
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Supersymmetry Breaking in SGC

String
Cosmology

R. Branden-
berger

Introduction Qo Gaugino condensation scale M-
String Gas

'l Es
Cosmology o Gravitino mass mg o ~ M2
4

Structure
Formation

" o Supersymmetry breaking scale given by M2 ~ ,’\‘/,—f1

Stabilization o TeV scale gravitino mass implies high scale
Challenges Supersymmetry breaking-

conclisions o NB: consistent with moduli stabiliation.
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Introduction

String Gas

Gosmology o Size and Entropy problems not solved.
SIEE o Dynamics of Hagedorn phase not known.

Formation

Modui o - Einstein gravity and dilaton gravity do not apply in this
abilization regime_
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Possible Approaches

String
Cosmology

R. Branden-
berger

Introduction

o Double Field Theory as a way of obtaining dynamics of

String Gas

Cosmology the Hagedorn phase?

P o Emergent geometry as in matrix theory to replace the
Modul Hagedorn phase?

Stabilization X -

S o Bottom line: we need a better understanding of
Gonclusions non-perturbative string theory.
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Conclusions
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berger

o String Gas Cosmology: Model of cosmology of the very
String Gas early universe based on new degrees of freedom and
Cosmology new symmetries of superstring theory.

Structure

Formation o String Theory leads to a very different picture for the
Moduli very early universe than point particle theories.

Stabilization

Challenges @ SGC — nonsingular cosmology

Conelusions o SGC — natural explanation of the number of large
spatial dimensions.

Introduction
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Formation

Modul @ Spectrum of gravitational waves has a small blue tilt
Hlebiizaton (unlike in inflationary cosmology).

Challenges
e @ String Theory testable through cosmological
observations.

Conclusions
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