#### String Cosmology

R. Brandenberger

Introduction

String Gas Cosmology

Structure Formation

Moduli Stabilization

Challenges

Conclusions

# String Gas Cosmology: Progress and Challenges

Robert Brandenberger McGill University

### PASCOS 2013, November 22, 2013

## Outline

#### String Cosmology

- R. Brandenberger
- Introduction
- String Gas Cosmology
- Structure Formation
- Moduli Stabilizatior
- Challenges
- Conclusions

- Introduction
- 2 String Gas Cosmology
- 3
- String Gas Cosmology and Structure Formation
- Moduli Stabilization and Supersymmetry Breaking in SGC



- Challenges for String Gas Cosmology
- 6 Conclusions

### Plan

#### String Cosmology

R. Brandenberger

#### Introduction

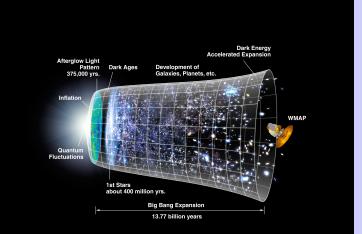
- String Gas Cosmology
- Structure Formation
- Moduli Stabilizatior
- Challenges
- Conclusions

### Introduction

- String Gas Cosmology
- String Gas Cosmology and Structure Formation
- Moduli Stabilization and Supersymmetry Breaking in SGC
- 5 Challenges for String Gas Cosmology
- 6 Conclusions



R. Brandenberger


#### Introduction

String Gas Cosmology

Structure Formation

Moduli Stabilization

Challenges



## Goals of Early Universe Cosmology

#### String Cosmology

R. Brandenberger

#### Introduction

- String Gas Cosmology
- Structure Formation
- Moduli Stabilizatior
- Challenges
- Conclusions

- Understand the origin and very early evolution of the universe.
- Test theory of the very early universe against cosmological observations.
- Make predictions for future observations.

# Current Paradigm for Early Universe Cosmology

#### String Cosmology

R. Brandenberger

#### Introduction

String Gas Cosmology

Structure Formation

Moduli Stabilizatio

Challenges

Conclusions

# The Inflationary Universe Scenario is the current paradigm of early universe cosmology.

Successes:

- Solves horizon problem
- Solves flatness problem
- Solves size/entropy problem
- Provides a causal mechanism of generating primordial cosmological perturbations (Chibisov & Mukhanov, 1981).

# Current Paradigm for Early Universe Cosmology

#### String Cosmology

R. Brandenberger

#### Introduction

String Gas Cosmology

Structure Formation

Moduli Stabilizatior

Challenges

Conclusions

The Inflationary Universe Scenario is the current paradigm of early universe cosmology. Successes:

- Solves horizon problem
- Solves flatness problem
- Solves size/entropy problem
- Provides a causal mechanism of generating primordial cosmological perturbations (Chibisov & Mukhanov, 1981).

# Current Paradigm for Early Universe Cosmology

#### String Cosmology

R. Brandenberger

#### Introduction

String Gas Cosmology

Structure Formation

Moduli Stabilizatior

Challenges

Conclusions

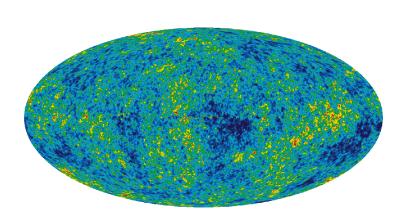
The Inflationary Universe Scenario is the current paradigm of early universe cosmology. Successes:

- Solves horizon problem
- Solves flatness problem
- Solves size/entropy problem
- Provides a causal mechanism of generating primordial cosmological perturbations (Chibisov & Mukhanov, 1981).

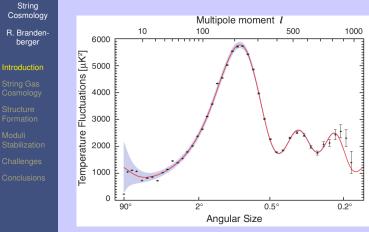


R. Brandenberger

#### Introduction


String Gas Cosmolog

Structure Formation


Moduli Stabilizatio

Challenges

Conclusions



### Credit: NASA/WMAP Science Team



Credit: NASA/WMAP Science Team

#### String Cosmology

R. Brandenberger

#### Introduction

String Gas Cosmology

Structure Formation

Moduli Stabilizatior

Challenges

Conclusions

# Does not eliminate cosmological singularity.

- $\bullet \ \rightarrow$  not a theory of the very early universe.
- Uses low energy field theory framework in a realm where this theory breaks down.
- Trans-Planckian problem for cosmological fluctuations.
- $\bullet \ \rightarrow$  analysis of cosmological fluctuations is based on incomplete physics.
- Not robust against our ignorance of what solves the cosmological constant problem.

#### String Cosmology

R. Brandenberger

#### Introduction

String Gas Cosmology

Structure Formation

Moduli Stabilizatior

Challenges

Conclusions

### • Does not eliminate cosmological singularity.

- $\bullet \rightarrow$  not a theory of the very early universe.
- Uses low energy field theory framework in a realm where this theory breaks down.
- Trans-Planckian problem for cosmological fluctuations.
- $\bullet \ \rightarrow$  analysis of cosmological fluctuations is based on incomplete physics.
- Not robust against our ignorance of what solves the cosmological constant problem.

#### String Cosmology

R. Brandenberger

#### Introduction

String Gas Cosmology

Structure Formation

Moduli Stabilizatior

Challenges

Conclusions

### • Does not eliminate cosmological singularity.

- $\bullet \rightarrow$  not a theory of the very early universe.
- Uses low energy field theory framework in a realm where this theory breaks down.
- Trans-Planckian problem for cosmological fluctuations.
- $\bullet \ \rightarrow$  analysis of cosmological fluctuations is based on incomplete physics.
- Not robust against our ignorance of what solves the cosmological constant problem.

#### String Cosmology

R. Brandenberger

#### Introduction

String Gas Cosmology

Structure Formation

Moduli Stabilizatior

Challenges

Conclusions

### • Does not eliminate cosmological singularity.

- $\bullet \rightarrow$  not a theory of the very early universe.
- Uses low energy field theory framework in a realm where this theory breaks down.
- Trans-Planckian problem for cosmological fluctuations.
- $\bullet \ \rightarrow$  analysis of cosmological fluctuations is based on incomplete physics.
- Not robust against our ignorance of what solves the cosmological constant problem.

String Cosmology

R. Brandenberger

#### Introduction

String Gas Cosmology

Structure Formation

Moduli Stabilizatior

Challenges

- String Gas Cosmology Toy model of the very early universe based on fundamental principles and symmetries of superstring theory (R.B. and C. Vafa, 1989).
- String Gas Cosmology yields a structure formation mechanism alternative to inflation (A. Nayeri, R.B. and C. Vafa, 2005).
- Problems of superstring cosmology such as the moduli stabilization problem have new solutions (S. Patil and R.B., 2004, R.B. et al 2012).
  - But: significant challenges before we will have a theory of superstring cosmology.

String Cosmology

R. Brandenberger

#### Introduction

String Gas Cosmology

Structure Formation

Moduli Stabilizatior

Challenges

- String Gas Cosmology Toy model of the very early universe based on fundamental principles and symmetries of superstring theory (R.B. and C. Vafa, 1989).
- String Gas Cosmology yields a structure formation mechanism alternative to inflation (A. Nayeri, R.B. and C. Vafa, 2005).
- Problems of superstring cosmology such as the moduli stabilization problem have new solutions (S. Patil and R.B., 2004, R.B. et al 2012).
  - But: significant challenges before we will have a theory of superstring cosmology.

String Cosmology

R. Brandenberger

#### Introduction

String Gas Cosmology

Structure Formation

Moduli Stabilizatior

Challenges

- String Gas Cosmology Toy model of the very early universe based on fundamental principles and symmetries of superstring theory (R.B. and C. Vafa, 1989).
- String Gas Cosmology yields a structure formation mechanism alternative to inflation (A. Nayeri, R.B. and C. Vafa, 2005).
- Problems of superstring cosmology such as the moduli stabilization problem have new solutions (S. Patil and R.B., 2004, R.B. et al 2012).
  - But: significant challenges before we will have a theory of superstring cosmology.

String Cosmology

R. Brandenberger

#### Introduction

String Gas Cosmology

Structure Formation

Moduli Stabilizatior

Challenges

- String Gas Cosmology Toy model of the very early universe based on fundamental principles and symmetries of superstring theory (R.B. and C. Vafa, 1989).
- String Gas Cosmology yields a structure formation mechanism alternative to inflation (A. Nayeri, R.B. and C. Vafa, 2005).
- Problems of superstring cosmology such as the moduli stabilization problem have new solutions (S. Patil and R.B., 2004, R.B. et al 2012).
  - But: significant challenges before we will have a theory of superstring cosmology.

#### String Cosmology

R. Brandenberger

#### Introduction

String Gas Cosmology

Structure Formation

Moduli Stabilization

Challenges

- Superstring theory give a completely different picture of the evolution of the very early universe than particle theory.
- String Gas Cosmology yields new theory of structure formation.
- consistent with current observations
- yielding predictions for future observations different from inflation
- Corollary: alternatives to inflationary cosmology exist.

#### String Cosmology

R. Brandenberger

#### Introduction

String Gas Cosmology

Structure Formation

Moduli Stabilizatio

Challenges

- Superstring theory give a completely different picture of the evolution of the very early universe than particle theory.
- String Gas Cosmology yields new theory of structure formation.
- consistent with current observations
- yielding predictions for future observations different from inflation
- Corollary: alternatives to inflationary cosmology exist.

#### String Cosmology

R. Brandenberger

#### Introduction

String Gas Cosmology

Structure Formation

Moduli Stabilizatior

Challenges

- Superstring theory give a completely different picture of the evolution of the very early universe than particle theory.
- String Gas Cosmology yields new theory of structure formation.
- consistent with current observations
- yielding predictions for future observations different from inflation
- Corollary: alternatives to inflationary cosmology exist.

#### String Cosmology

R. Brandenberger

#### Introduction

String Gas Cosmology

Structure Formation

Moduli Stabilizatior

Challenges

Conclusions

- Superstring theory give a completely different picture of the evolution of the very early universe than particle theory.
- String Gas Cosmology yields new theory of structure formation.
- consistent with current observations
- - yielding predictions for future observations different from inflation

• Corollary: alternatives to inflationary cosmology exist.

#### String Cosmology

R. Brandenberger

#### Introduction

String Gas Cosmology

Structure Formation

Moduli Stabilizatior

Challenges

- Superstring theory give a completely different picture of the evolution of the very early universe than particle theory.
- String Gas Cosmology yields new theory of structure formation.
- consistent with current observations
- - yielding predictions for future observations different from inflation
- Corollary: alternatives to inflationary cosmology exist.

## Review of Inflationary Cosmology

String Cosmology

R. Brandenberger

#### Introduction

String Gas Cosmology

Structure Formation

Moduli Stabilizatior

Challenges

Conclusions

### Context:

- General Relativity
- Scalar Field Matter

Metric : 
$$ds^2 = dt^2 - a(t)^2 d\mathbf{x}^2$$
 (

Inflation:

- phase with  $a(t) \sim e^{t}$
- requires matter with  $p \sim -\rho$
- ullet requires a slowly rolling scalar field arphi
- in order to have a potential energy term
- in order that the potential energy term dominates sufficiently long

## Review of Inflationary Cosmology

String Cosmology

R. Brandenberger

#### Introduction

String Gas Cosmology

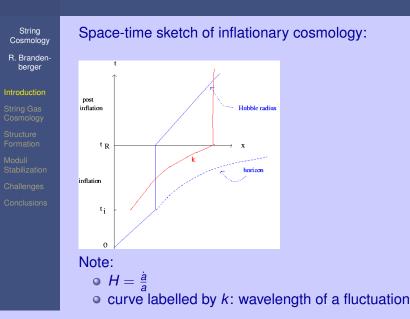
Structure Formation

Moduli Stabilizatior

Challenges

Conclusions

### Context:


- General Relativity
- Scalar Field Matter

Metric : 
$$ds^2 = dt^2 - a(t)^2 d\mathbf{x}^2$$
 (1)

### Inflation:

- phase with  $a(t) \sim e^{tH}$
- requires matter with  $p \sim -\rho$
- requires a slowly rolling scalar field  $\varphi$
- - in order to have a potential energy term
- in order that the potential energy term dominates sufficiently long

## Review of Inflationary Cosmology II



13/51

#### String Cosmology

R. Brandenberger

#### Introduction

String Gas Cosmology

Structure Formation

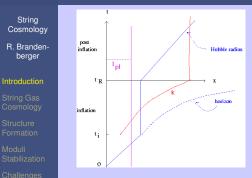
Moduli Stabilizatior

Challenges

- inflation renders the universe large, homogeneous and spatially flat
- classical matter redshifts  $\rightarrow$  matter vacuum remains
- quantum vacuum fluctuations: seeds for the observed structure [Chibisov & Mukhanov, 1981]
- sub-Hubble  $\rightarrow$  locally causal

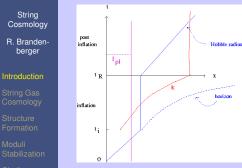
## Singularity Problem

#### String Cosmology


R. Brandenberger

#### Introduction

- String Gas Cosmology
- Structure Formation
- Moduli Stabilizatior
- Challenges
- Conclusions


- Standard cosmology: Penrose-Hawking theorems → initial singularity → incompleteness of the theory.
- Inflationary cosmology: In scalar field-driven inflationary models the initial singularity persists [Borde and Vilenkin] → incompleteness of the theory.

## Trans-Planckian Problem



- Success of inflation: At early times scales are inside the Hubble radius → causal generation mechanism is possible.
  - Problem: If time period of inflation is more than 70*H*<sup>-1</sup>, then λ<sub>ρ</sub>(t) < *l<sub>pl</sub>* at the beginning of inflation
  - → new physics MUST enter into the calculation of the fluctuations.

## Trans-Planckian Problem

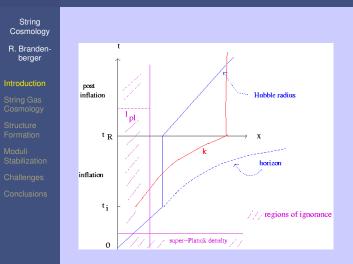


- Challenges
- Conclusions

- Success of inflation: At early times scales are inside the Hubble radius → causal generation mechanism is possible.
- **Problem:** If time period of inflation is more than  $70H^{-1}$ , then  $\lambda_p(t) < I_{pl}$  at the beginning of inflation
- $\rightarrow$  new physics MUST enter into the calculation of the fluctuations.

# Applicability of GR

#### String Cosmology


R. Brandenberger

#### Introduction

- String Gas Cosmology
- Structure Formation
- Moduli Stabilizatior
- Challenges
- Conclusions

- In all approaches to quantum gravity, the Einstein action is only the leading term in a low curvature expansion.
- Correction terms may become dominant at much lower energies than the Planck scale.
- Correction terms will dominate the dynamics at high curvatures.
- The energy scale of inflation models is typically  $\eta \sim 10^{16} {\rm GeV}.$
- $\rightarrow \eta$  too close to  $m_{pl}$  to trust predictions made using GR.

### Zones of Ignorance

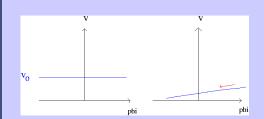


### **Cosmological Constant Problem**



String

#### Introduction


String Gas Cosmology

Structure Formation

Moduli Stabilizatio

Challenges

Conclusions



Quantum vacuum energy does not gravitate.
Why should the almost constant V(φ) gravitate?

$$\frac{V_0}{\Lambda_{obs}} \sim 10^{120}$$
 (2)

### Plan

#### String Cosmology

R. Brandenberger

Introduction

#### String Gas Cosmology

Structure Formation

- Moduli Stabilizatior Challenges
- Conclusions

### Introduction

### 2 String Gas Cosmology

- String Gas Cosmology and Structure Formation
- Moduli Stabilization and Supersymmetry Breaking in SGC
- 5 Challenges for String Gas Cosmology
- 6 Conclusions

### Principles R.B. and C. Vafa, *Nucl. Phys. B316:391 (1989)*

String Cosmology

R. Brandenberger

Introduction

#### String Gas Cosmology

Structure Formation

Moduli Stabilizatior

Challenges

Conclusions

Idea: make use of the new symmetries and new degrees of freedom which string theory provides to construct a new theory of the very early universe.

Assumption: Matter is a gas of fundamental strings Assumption: Space is compact, e.g. a torus. Key points:

- New degrees of freedom: string oscillatory modes
- Leads to a maximal temperature for a gas of strings, the Hagedorn temperature
- New degrees of freedom: string winding modes
- Leads to a **new symmetry**: physics at large *R* is equivalent to physics at small *R*

### Principles R.B. and C. Vafa, Nucl. Phys. B316:391 (1989)

String Cosmology

R. Brandenberger

Introduction

#### String Gas Cosmology

Structure Formation

Moduli Stabilizatior

Challenges

Conclusions

Idea: make use of the new symmetries and new degrees of freedom which string theory provides to construct a new theory of the very early universe. Assumption: Matter is a gas of fundamental strings Assumption: Space is compact, e.g. a torus. Key points:

- New degrees of freedom: string oscillatory modes
- Leads to a maximal temperature for a gas of strings, the Hagedorn temperature
- New degrees of freedom: string winding modes
- Leads to a **new symmetry**: physics at large *R* is equivalent to physics at small *R*

### Principles R.B. and C. Vafa, *Nucl. Phys. B316:391 (1989)*

String Cosmology

R. Brandenberger

Introduction

String Gas Cosmology

Structure Formation

Moduli Stabilizatior

Challenges

Conclusions

Idea: make use of the new symmetries and new degrees of freedom which string theory provides to construct a new theory of the very early universe. Assumption: Matter is a gas of fundamental strings Assumption: Space is compact, e.g. a torus. Key points:

- New degrees of freedom: string oscillatory modes
- Leads to a maximal temperature for a gas of strings, the Hagedorn temperature
- New degrees of freedom: string winding modes
- Leads to a new symmetry: physics at large *R* is equivalent to physics at small *R*

# **T-Duality**

String Cosmology

R. Brandenberger

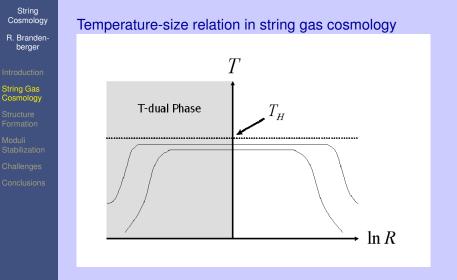
Introduction

#### String Gas Cosmology

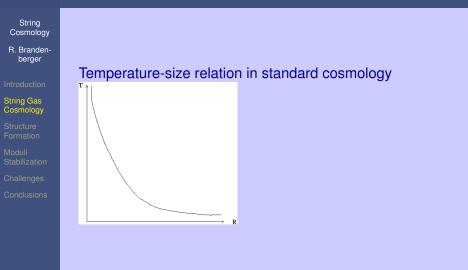
Structure Formation

Moduli Stabilizatio

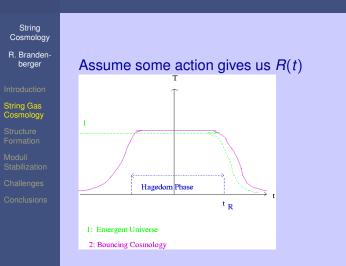
Challenges


Conclusions

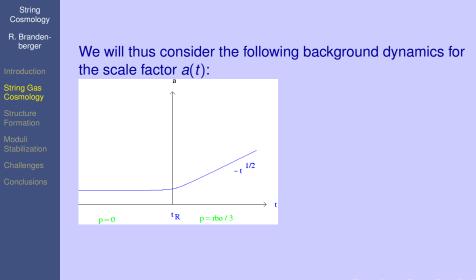
### **T-Duality**


- Momentum modes:  $E_n = n/R$
- Winding modes:  $E_m = mR$
- Duality:  $R \rightarrow 1/R$   $(n, m) \rightarrow (m, n)$
- Mass spectrum of string states unchanged
- Symmetry of vertex operators
- Symmetry at non-perturbative level → existence of D-branes

# Adiabatic Considerations


R.B. and C. Vafa, Nucl. Phys. B316:391 (1989)




# Singularity Problem in Standard and Inflationary Cosmology



# Dynamics



# **Dynamics II**



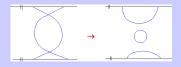
# Dimensionality of Space in SGC

String Cosmology

R. Brandenberger

Introduction

#### String Gas Cosmology


Structure Formation

Moduli Stabilizatio

Challenges

Conclusions

- Begin with all 9 spatial dimensions small, initial temperature close to  $T_H \rightarrow$  winding modes about all spatial sections are excited.
- Expansion of any one spatial dimension requires the annihilation of the winding modes in that dimension.



Decay only possible in three large spatial dimensions.
 → dynamical explanation of why there are exactly three large spatial dimensions.

Note: this argument assumes constant dilaton [R. Danos, A. Frey and A. Mazumdar]

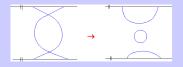
# Dimensionality of Space in SGC

String Cosmology

R. Brandenberger

Introduction

#### String Gas Cosmology


Structure Formation

Moduli Stabilizatio

Challenges

Conclusions

- Begin with all 9 spatial dimensions small, initial temperature close to  $T_H \rightarrow$  winding modes about all spatial sections are excited.
- Expansion of any one spatial dimension requires the annihilation of the winding modes in that dimension.



- Decay only possible in three large spatial dimensions.
- → dynamical explanation of why there are exactly three large spatial dimensions.

Note: this argument assumes constant dilaton [R. Danos, A. Frey and A. Mazumdar]

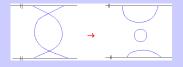
# Dimensionality of Space in SGC

String Cosmology

R. Brandenberger

Introduction

#### String Gas Cosmology


Structure Formation

Moduli Stabilizatio

Challenges

Conclusions

- Begin with all 9 spatial dimensions small, initial temperature close to  $T_H \rightarrow$  winding modes about all spatial sections are excited.
- Expansion of any one spatial dimension requires the annihilation of the winding modes in that dimension.



- Decay only possible in three large spatial dimensions.
- → dynamical explanation of why there are exactly three large spatial dimensions.

Note: this argument assumes constant dilaton [R. Danos, A. Frey and A. Mazumdar]

### Plan

#### String Cosmology

- R. Brandenberger
- Introduction
- String Gas Cosmology

#### Structure Formation

Moduli Stabilization Challenges

- Introduction
- String Gas Cosmology
- 3 String Gas Cosmology and Structure Formation
  - Moduli Stabilization and Supersymmetry Breaking in SGC
  - 5 Challenges for String Gas Cosmology
  - 6 Conclusions

# Theory of Cosmological Perturbations: Basics

String Cosmology

R. Brandenberger

Introduction

String Gas Cosmology

#### Structure Formation

Moduli Stabilization Challenges

Conclusions

Cosmological fluctuations connect early universe theories with observations

- Fluctuations of matter  $\rightarrow$  large-scale structure
- Fluctuations of metric  $\rightarrow$  CMB anisotropies
- N.B.: Matter and metric fluctuations are coupled

### Key facts:

- Fluctuations are small today on large scales
- ightarrow 
  ightarrow fluctuations were very small in the early universe
- ullet  $\to$  can use linear perturbation theory

# Theory of Cosmological Perturbations: Basics

String Cosmology

R. Brandenberger

Introduction

String Gas Cosmology

Structure Formation

Moduli Stabilizatio

Conclusions

Cosmological fluctuations connect early universe theories with observations

- Fluctuations of matter  $\rightarrow$  large-scale structure
- Fluctuations of metric  $\rightarrow$  CMB anisotropies
- N.B.: Matter and metric fluctuations are coupled

Key facts:

- Fluctuations are small today on large scales
- ullet  $\to$  fluctuations were very small in the early universe
- $\bullet \rightarrow$  can use linear perturbation theory

### Quantum Theory of Linearized Fluctuations

/. Mukhanov, H. Feldman and R.B., *Phys. Rep. 215:203 (1992)* 

Step 1: Metric including fluctuations

String Cosmology

R. Brandenberger

Introduction

String Gas Cosmology

#### Structure Formation

Moduli Stabilization Challenges

Conclusions

# $ds^{2} = a^{2}[(1+2\Phi)d\eta^{2} - (1-2\Phi)d\mathbf{x}^{2}] \qquad (3)$ $\varphi = \varphi_{0} + \delta\varphi \qquad (4)$

Note:  $\Phi$  and  $\delta \varphi$  related by Einstein constraint equations Step 2: Expand the action for matter and gravity to second order about the cosmological background:

$$S^{(2)} = \frac{1}{2} \int d^4 x \left( (v')^2 - v_{,i} v^{,i} + \frac{z''}{z} v^2 \right)$$
(5)  

$$v = a \left( \delta \varphi + \frac{z}{a} \Phi \right)$$
(6)  

$$z = a \frac{\varphi'_0}{\mathcal{H}}$$
(7)

30/51

### Quantum Theory of Linearized Fluctuations

/. Mukhanov, H. Feldman and R.B., *Phys. Rep. 215:203 (1992)* 

Step 1: Metric including fluctuations

$$ds^{2} = a^{2}[(1+2\Phi)d\eta^{2} - (1-2\Phi)d\mathbf{x}^{2}] \qquad (3)$$
  
$$\varphi = \varphi_{0} + \delta\varphi \qquad (4)$$

Note:  $\Phi$  and  $\delta \varphi$  related by Einstein constraint equations Step 2: Expand the action for matter and gravity to second order about the cosmological background:

$$S^{(2)} = \frac{1}{2} \int d^4 x \left( (v')^2 - v_{,i} v^{,i} + \frac{z''}{z} v^2 \right)$$
(5)  

$$v = a \left( \delta \varphi + \frac{z}{a} \Phi \right)$$
(6)  

$$z = a \frac{\varphi'_0}{\mathcal{H}}$$
(7)

30/51

String Cosmology

R. Brandenberger

Introduction

String Gas Cosmology

#### Structure Formation

Moduli Stabilization Challenges

R. Brandenberger

Introduction

String Gas Cosmology

#### Structure Formation

Moduli Stabilization Challenges

### Step 3: Resulting equation of motion (Fourier space)

$$v_k'' + (k^2 - \frac{z''}{z})v_k = 0$$
(8)

### eatures:

oscillations on sub-Hubble scales
 squeezing on super-Hubble scales v<sub>k</sub> ~ .

Quantum vacuum initial conditions:

$$v_k(\eta_i) = (\sqrt{2k})^{-1}$$
 (9)

R. Brandenberger

Introduction

String Gas Cosmolog

#### Structure Formation

Moduli Stabilization

Conclusions

### Step 3: Resulting equation of motion (Fourier space)

$$V_k'' + (k^2 - \frac{z''}{z})v_k = 0$$
(8)

### Features:

oscillations on sub-Hubble scales
squeezing on super-Hubble scales v<sub>k</sub> ~ z

Quantum vacuum initial conditions:

$$V_k(\eta_i) = (\sqrt{2k})^{-1}$$
 (9)

R. Brandenberger

Introduction

String Gas Cosmolog

#### Structure Formation

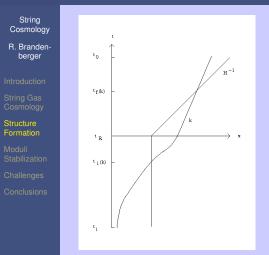
Moduli Stabilizatior

Challenges

Conclusions

### Step 3: Resulting equation of motion (Fourier space)

$$V_k'' + (k^2 - \frac{z''}{z})v_k = 0$$
(8)


### Features:

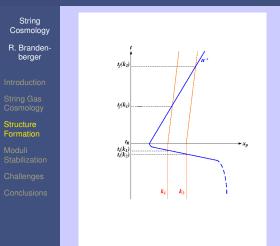
- oscillations on sub-Hubble scales
- squeezing on super-Hubble scales  $v_k \sim z$

Quantum vacuum initial conditions:


$$v_k(\eta_i) = (\sqrt{2k})^{-1}$$
 (9)

## Structure formation in inflationary cosmology




# N.B. Perturbations originate as quantum vacuum fluctuations.

### Background for string gas cosmology



# Structure formation in string gas cosmology

A. Nayeri, R.B. and C. Vafa, *Phys. Rev. Lett. 97:021302 (2006)* 



# N.B. Perturbations originate as thermal string gas fluctuations.

# Method

#### String Cosmology

- R. Brandenberger
- Introduction
- String Gas Cosmology

#### Structure Formation

- Moduli Stabilizatior
- Challenges
- Conclusions

- Calculate matter correlation functions in the Hagedorn phase (neglecting the metric fluctuations)
- For fixed *k*, convert the matter fluctuations to metric fluctuations at Hubble radius crossing *t* = *t<sub>i</sub>*(*k*)
- Evolve the metric fluctuations for *t* > *t<sub>i</sub>*(*k*) using the usual theory of cosmological perturbations

### Extracting the Metric Fluctuations

String Cosmology

R. Brandenberger

Introduction

String Gas Cosmology

#### Structure Formation

Moduli Stabilization Challenges Conclusions Ansatz for the metric including cosmological perturbations and gravitational waves:

$$ds^{2} = a^{2}(\eta) ((1+2\Phi)d\eta^{2} - [(1-2\Phi)\delta_{ij} + h_{ij}]dx^{i}dx^{j}).$$
 (10)

Inserting into the perturbed Einstein equations yields

$$\langle |\Phi(k)|^2 \rangle = 16\pi^2 G^2 k^{-4} \langle \delta T^0_0(k) \delta T^0_0(k) \rangle, \qquad (11)$$

$$\langle |\mathbf{h}(k)|^2 \rangle = 16\pi^2 G^2 k^{-4} \langle \delta T^i_{\ j}(k) \delta T^i_{\ j}(k) \rangle \,. \tag{12}$$

### Power Spectrum of Cosmological Perturbations

String Cosmology

R. Brandenberger

Introduction

String Gas Cosmology

#### Structure Formation

Moduli Stabilizatio

Conclusions

Key ingredient: For thermal fluctuations:

$$\langle \delta \rho^2 \rangle = \frac{T^2}{R^6} C_V \,. \tag{13}$$

Key ingredient: For string thermodynamics in a compact space

$$C_V \approx 2 \frac{R^2 / \ell_s^3}{T (1 - T / T_H)}$$
 (14)

### Power Spectrum of Cosmological Perturbations

String Cosmology

R. Brandenberger

Introduction

String Gas Cosmology

#### Structure Formation

Moduli Stabilizatio

Conclusions

Key ingredient: For thermal fluctuations:

$$\langle \delta \rho^2 \rangle = \frac{T^2}{R^6} C_V \,. \tag{13}$$

Key ingredient: For string thermodynamics in a compact space

$$C_V \approx 2 \frac{R^2 / \ell_s^3}{T (1 - T / T_H)}$$
 (14)

R. Brandenberger

Introduction

String Gas Cosmology

#### Structure Formation

Moduli Stabilization Challenges

### Power spectrum of cosmological fluctuations

$$P_{\Phi}(k) = 8G^{2}k^{-1} < |\delta\rho(k)|^{2} > (15)$$
  
=  $8G^{2}k^{2} < (\delta M)^{2} >_{R} (16)$   
=  $8G^{2}k^{-4} < (\delta\rho)^{2} >_{R} (17)$   
=  $8G^{2}\frac{T}{\ell_{s}^{3}}\frac{1}{1 - T/T_{H}} (18)$ 

- scale-invariant like for inflation
- slight red tilt like for inflation

R. Brandenberger

Introduction

String Gas Cosmology

#### Structure Formation

Moduli Stabilization Challenges

Conclusions

### Power spectrum of cosmological fluctuations

$$P_{\Phi}(k) = 8G^{2}k^{-1} < |\delta\rho(k)|^{2} >$$
(15)  
$$= 8G^{2}k^{2} < (\delta M)^{2} >_{R}$$
(16)  
$$= 8G^{2}k^{-4} < (\delta\rho)^{2} >_{R}$$
(17)  
$$= 8G^{2}\frac{T}{\ell_{s}^{3}}\frac{1}{1 - T/T_{H}}$$
(18)

- scale-invariant like for inflation
- slight red tilt like for inflation

### Spectrum of Gravitational Waves

R.B., A. Nayeri, S. Patil and C. Vafa, Phys. Rev. Lett. (2007)

String Cosmology

R. Brandenberger

Introduction

String Gas Cosmolog

#### Structure Formation

Moduli Stabilization Challenges

$$P_{h}(k) = 16\pi^{2}G^{2}k^{-1} < |T_{ij}(k)|^{2} >$$
(19)  
$$= 16\pi^{2}G^{2}k^{-4} < |T_{ij}(R)|^{2} >$$
(20)  
$$\sim 16\pi^{2}G^{2}\frac{T}{\ell_{s}^{3}}(1 - T/T_{H})$$
(21)

# Key ingredient for string thermodynamics

$$||T_{ij}(R)|^2 > \sim \frac{T}{l_s^3 R^4} (1 - T/T_H)$$
 (22)

- scale-invariant (like for inflation)
- slight blue tilt (unlike for inflation)

### Spectrum of Gravitational Waves

R.B., A. Nayeri, S. Patil and C. Vafa, Phys. Rev. Lett. (2007)

String Cosmology

R. Brandenberger

Introduction

String Gas Cosmolog

#### Structure Formation

Moduli Stabilization Challenges  $P_{h}(k) = 16\pi^{2}G^{2}k^{-1} < |T_{ij}(k)|^{2} >$ (19)  $= 16\pi^{2}G^{2}k^{-4} < |T_{ij}(R)|^{2} >$ (20)  $\sim 16\pi^{2}G^{2}\frac{T}{\ell_{s}^{3}}(1 - T/T_{H})$ (21)

Key ingredient for string thermodynamics

$$<|T_{ij}(R)|^2>\sim \frac{T}{l_s^3 R^4}(1-T/T_H)$$
 (22)

- scale-invariant (like for inflation)
- slight blue tilt (unlike for inflation)

# Requirements

#### String Cosmology

R. Brandenberger

Introduction

String Gas Cosmology

#### Structure Formation

Moduli Stabilization

Challenges

Conclusions

- I. static Hagedorn phase (including static dilaton) → new physics required.
- 2. C<sub>V</sub>(R) ~ R<sup>2</sup> obtained from a thermal gas of strings provided there are winding modes which dominate.
- 3. Cosmological fluctuations in the IR are described by Einstein gravity.

Note: Specific higher derivative toy model: T. Biswas, R.B., A. Mazumdar and W. Siegel, 2006

# Requirements

#### String Cosmology

R. Brandenberger

Introduction

String Gas Cosmology

#### Structure Formation

Moduli Stabilization

Challenges

Conclusions

- I. static Hagedorn phase (including static dilaton) → new physics required.
- 2. C<sub>V</sub>(R) ~ R<sup>2</sup> obtained from a thermal gas of strings provided there are winding modes which dominate.
- 3. Cosmological fluctuations in the IR are described by Einstein gravity.

Note: Specific higher derivative toy model: T. Biswas, R.B., A. Mazumdar and W. Siegel, 2006

### Plan

#### String Cosmology

- R. Brandenberger
- Introduction
- String Gas Cosmology
- Structure Formation
- Moduli Stabilization
- Challenges
- Conclusions

### Introduction

- String Gas Cosmology
  - String Gas Cosmology and Structure Formation



- Moduli Stabilization and Supersymmetry Breaking in SGC
- 5 Challenges for String Gas Cosmology
- 6 Conclusions

# Moduli Stabilization in SGC

String Cosmology

R. Brandenberger

Introduction

String Gas Cosmology

Structure Formation

Moduli Stabilization

Challenges

Conclusions

Size Moduli [S. Watson, 2004; S. Patil and R.B., 2004, 2005]

winding modes prevent expansion

momentum modes prevent contraction

 $ightarrow V_{eff}(R)$  has a minimum at a finite value of  $R, 
ightarrow R_{min}$ 

• in heterotic string theory there are enhanced symmetry states containing both momentum and winding which are massless at *R<sub>min</sub>* 

ullet o  $V_{eff}(oldsymbol{R}_{min})=0$ 

 → size moduli stabilized in Einstein gravity background

# Moduli Stabilization in SGC

String Cosmology

R. Brandenberger

Introduction

String Gas Cosmology

Structure Formation

Moduli Stabilization

Challenges

Conclusions

Size Moduli [S. Watson, 2004; S. Patil and R.B., 2004, 2005]

- winding modes prevent expansion
- momentum modes prevent contraction
- $\rightarrow V_{eff}(R)$  has a minimum at a finite value of

$$R, \rightarrow R_{min}$$

• in heterotic string theory there are enhanced symmetry states containing both momentum and winding which are massless at *R<sub>min</sub>* 

• 
$$\rightarrow V_{eff}(R_{min}) = 0$$

 $\bullet \rightarrow$  size moduli stabilized in Einstein gravity background

## Moduli Stabilization in SGC II

- String Cosmology
- R. Brandenberger
- Introduction
- String Gas Cosmology
- Structure Formatior
- Moduli Stabilization
- Challenges
- Conclusions

### Shape Moduli [E. Cheung, S. Watson and R.B., 2005]

- enhanced symmetry states
- $\rightarrow$  harmonic oscillator potential for  $\theta$
- $\bullet \rightarrow$  shape moduli stabilized

# Dilaton stabilization in SGC

R. Danos, A. Frey and R.B., 2008

String Cosmology

R. Brandenberger

Introduction

String Gas Cosmology

Structure Formation

Moduli Stabilization

Challenges

Conclusions

- The only remaining modulus is the dilaton
- Make use of gaugino condensation to give the dilaton a potential with a unique minimum
- $\bullet \rightarrow$  diltaton is stabilized
- Context Perturbative *E*<sub>8</sub>*xE*<sub>8</sub> superstring theory.
- Hidden sector gauge group becomes strongly coupled at a scale  $\mu$ .
- At this scale gaugino condensation sets in.
- NB: Dilaton stabilization is consistent with size stabilization [R. Danos, A. Frey and R.B., 2008]

### Supersymmetry Breaking in SGC

S. Mishra, W. Xue, R.B. and U. Yajnik, 2012

- String Cosmology
- R. Brandenberger
- Introduction
- String Gas Cosmology
- Structure Formation
- Moduli Stabilization
- Challenges
- Conclusions

- Gaugino condensation scale  $\mu$ .
- Gravitino mass  $m_{3/2} \sim rac{\mu^3}{M_A^2}$
- Supersymmetry breaking scale given by  $M_s^2 \sim rac{\mu^3}{M_a}$
- TeV scale gravitino mass implies high scale supersymmetry breaking.
- NB: consistent with moduli stabiliation.

### Plan

#### String Cosmology

- R. Brandenberger
- Introduction
- String Gas Cosmology
- Structure Formation
- Moduli Stabilizatio
- Challenges
- Conclusions

### Introduction

- String Gas Cosmology
- String Gas Cosmology and Structure Formation
- Moduli Stabilization and Supersymmetry Breaking in SGC

### 5

Challenges for String Gas Cosmology

### Conclusions

## Challenges for String Gas Cosmology

- String Cosmology
- R. Brandenberger
- Introduction
- String Gas Cosmology
- Structure Formation
- Moduli Stabilizatior
- Challenges
- Conclusions

- Size and Entropy problems not solved.
  - Dynamics of Hagedorn phase not known.
- Einstein gravity and dilaton gravity do not apply in this regime.

### Challenges for String Gas Cosmology

- String Cosmology
- R. Brandenberger
- Introduction
- String Gas Cosmology
- Structure Formatior
- Moduli Stabilization
- Challenges
- Conclusions

- Size and Entropy problems not solved.
- Dynamics of Hagedorn phase not known.
- Einstein gravity and dilaton gravity do not apply in this regime.

### Challenges for String Gas Cosmology

- String Cosmology
- R. Brandenberger
- Introduction
- String Gas Cosmology
- Structure Formatior
- Moduli Stabilizatior
- Challenges
- Conclusions

- Size and Entropy problems not solved.
- Dynamics of Hagedorn phase not known.
- Einstein gravity and dilaton gravity do not apply in this regime.

### **Possible Approaches**

| String    |  |
|-----------|--|
| Cosmology |  |

- R. Brandenberger
- Introduction
- String Gas Cosmology
- Structure Formatior
- Moduli Stabilizatior
- Challenges
- Conclusions

- Double Field Theory as a way of obtaining dynamics of the Hagedorn phase?
- Emergent geometry as in matrix theory to replace the Hagedorn phase?
- Bottom line: we need a better understanding of non-perturbative string theory.

### Plan

#### String Cosmology

- R. Brandenberger
- Introduction
- String Gas Cosmology
- Structure Formation
- Moduli Stabilization Challenges
- Conclusions

### Introduction

- String Gas Cosmology
- String Gas Cosmology and Structure Formation
- Moduli Stabilization and Supersymmetry Breaking in SGC
- Challenges for String Gas Cosmology



### Conclusions

#### String Cosmology

- R. Brandenberger
- Introduction
- String Gas Cosmology
- Structure Formation
- Moduli Stabilizatior
- Challenges
- Conclusions

- String Gas Cosmology: Model of cosmology of the very early universe based on new degrees of freedom and new symmetries of superstring theory.
- String Theory leads to a very different picture for the very early universe than point particle theories.
- SGC  $\rightarrow$  nonsingular cosmology
- SGC → natural explanation of the number of large spatial dimensions.

# Conclusions II

#### String Cosmology

- R. Brandenberger
- Introduction
- String Gas Cosmology
- Structure Formation
- Moduli Stabilizatior
- Challenges
- Conclusions

- SGC  $\rightarrow$  new scenario of structure formation
- Scale invariant spectrum of cosmological fluctuations (like in inflationary cosmology).
- Spectrum of gravitational waves has a small blue tilt (unlike in inflationary cosmology).
- String Theory testable through cosmological observations.

# Conclusions II

#### String Cosmology

- R. Brandenberger
- Introduction
- String Gas Cosmology
- Structure Formation
- Moduli Stabilization
- Challenges
- Conclusions

- SGC  $\rightarrow$  new scenario of structure formation
- Scale invariant spectrum of cosmological fluctuations (like in inflationary cosmology).
- Spectrum of gravitational waves has a small blue tilt (unlike in inflationary cosmology).
- String Theory testable through cosmological observations.