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Motivation

1 Algorithmic string compactification
A combination of the latest developments in computer algebra and
algebraic geometry have been utilized to study the compactification
of the heterotic string on smooth Calabi-Yau three-folds with
holomorphic vector bundles satsifying the Hermitian Yang-Mills
equations. arXiv:hep-th/0702210 arXiv:1307.4787

2 Kreuzer-Skarke (KS) list of Toric Varieties
These total 473,800,776 ambient toric four-folds, each coming from
a reflexive polytope in 4-dimensions. Thus there are at least this
many Calabi-Yau three-folds. arXiv, hep-th/0002240
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Motivation

3 The procedure of heterotic compactification
Given a generically simply connected Calabi-Yau three-fold X̃, we
need to find a freely-acting discrete symmetry group Γ, so that X̃/Γ
is a smooth quotient. We then need to construct stable
Γ-equivariant bundles Ṽ on the cover X̃ so that on the quotient
X = X̃/Γ, Ṽ descends to a bona fide bundle V . It is the
cohomology of V , coupled with Wilson lines valued in the group Γ,
that gives us the particle content which we need to compute. In
other words, we need to find Calabi-Yau manifolds X with
non-trivial fundamental group π1(X) ' Γ. Often, the manifolds X̃
and X are referred to as “upstairs” and the “downstairs” manifolds,
to emphasize their quotienting relation.

4 Of the some 500 million manifolds in the KS list, only 16 have
non-trivial fundamental group. arXiv, math/0505432
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The CY Construction over Toric Varieties
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Physical Constraints

Bundle Structure:
we would like to consider Whitney sums of line bundles of the form

V =

n⊕
a=1

La , La = OX(ka) , (1)

which leads, generically, to the structure group G = S(U(1)n). For
n = 4, 5 this structure group embeds into E8 via the subgroup chains
S(U(1)4) ⊂ SU(4) ⊂ E8 and S(U(1)5) ⊂ SU(5) ⊂ E8, respectively.
This results in the commutants H = SO(10)× U(1)3 for n = 4 and
H = SU(5)× U(1)4 for n = 5.
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Physical Constraints

Anomaly Cancellation:
In general, anomaly cancelation can be expressed as the topological
condition

ch2(V ) + ch2(V̂ )− ch2(TX) = [C] , (2)

A simple way to guarantee that this condition can be satisfied is to
require that

c2(TX)− c2(V ) ∈ Mori(X) , (3)

To compute the the second Chern class c2(V ) = c2r(V )νr of line bundle
sums (1) we can use the result

c2r(V ) = −1

2
drst

n∑
a=1

ksak
t
a , (4)
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Physical Constraints

Poly-stability:
In order to make the models consistent with supersymmetry, we need to
verify that the sum of holomorphic line bundles is poly-stable.
Poly-stability of a bundle (coherent sheaf) F is defined by means of the
slope

µ(F) ≡ 1

rk(F)

∫
X

c1(F) ∧ J ∧ J , (5)

The bundle F is called poly-stable if it decomposes as a direct sum of
stable pieces,

F =

m⊕
a=1

Fa , (6)

Since c1(V ) = 0, we have µ(V ) = 0 and, hence, the slopes of all
constituent line bundles La must vanish.
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Physical Constraints

GUT SU(5):
In this case we start with a line bundle sum (1) of rank five (n = 5) and
associated structure group G = S(U(1)5). This leads to a
four-dimensional gauge group H = SU(5)× S(U(1)5). The
four-dimensional spectrum consists of the following SU(5)× S(U(1)5)
multiplets:

10a , 10a , 5a,b , 5a,b , 1a,b . (7)

The most basic phenomenological constraint to impose on this spectrum
is chiral asymmetry of three in the 10–10 sector. This translates into the
condition

ind(V ) = −3 ,

10 multiplets and their standard-model descendants are
phenomenologically unwanted we should impose that ind(La) ≤ 0 for all
a.
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Physical Constraints

GUT SU(5):
A similar argument can be made for the 5–5 multiplets. We should
require that ind(La ⊗ Lb) ≤ 0 for all a < b which implies that

−3 6 ind(La ⊗ Lb) 6 0 , (8)

Table 1 summarizes both the consistency constraints explained earlier
and the phenomenological constraints discussed in this subsection.

Physics Background geometry

Gauge group c1(V ) = 0

Anomaly c2(TX)− c2(V ) ∈ Mori(X)

Supersymmetry µ(La) = 0, for 1 ≤ a ≤ 5

Three generations ind(V ) = −3

No exotics
−3 ≤ ind(La) ≤ 0, for 1 ≤ a ≤ 5 ;

−3 ≤ ind(La ⊗ Lb) ≤ 0, for 1 ≤ a < b ≤ 5

Table : Consistency and phenomenological constraints imposed on rank five
line bundle sums of the form (1).
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Physical Constraints

GUT SU(4):
Table 2 summarizes the consistency constraints explained earlier and the
phenomenological constraints discussed above. These constraints will be
used to classify rank four line bundle sums on our 16 manifolds.

Physics Background geometry

Gauge group c1(V ) = 0

Anomaly ch2(TX)− ch2(V ) ∈ Mori(X)

Supersymmetry µ(La) = 0, for 1 ≤ a ≤ 4

Three generations ind(V ) = −3

No exotics −3 ≤ ind(La) ≤ 0, for 1 ≤ a ≤ 4

Table : Consistency and phenomenological constraints on rank four line bundles
of the form (1).Chuang Sun Oxford University
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Search Algorithm

We firstly generate all the single line bundles, L = OX(k) with
entries kr in a certain range and with their index between −3 and 0.
Then we compose these line bundles into rank four or five sums
imposing the constraints detailed in Table 1 and 2, respectively, as
we go along and at the earliest possible stage.
The other issue is related to multiple triangulations, or multiple
phases, which can arise when de-singularising the Calabi-Yau
manifolds.

Indeed, X6 and X14 can be desingularised in two and three different
ways, respectively. In general, the intersection ring can depend on
which phase is considered. However, in cases where different phases
carry the same intersection data they essentially describe a single
manifold and we should, therefore, join the corresponding Kähler
cones.
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Results

SU(5) Amongst the favourable base manifolds Xi=1,··· ,14, only X1 has
Picard number 1, X2 and X4 have Picard number 2, X5, X6, X7,
X8, X14 have Picard number 3, and X3, X9, X10, X11, X12, X13

have Picard number 4. It turns out that viable models arise on all
the six manifolds with Picard number 4 and on two out of the five
manifolds with Picard number 3, namely X6 and X14, in total 122
models.

SU(4) It turns out that amongst the five Picard number 3 manifolds, X7

does not admit any viable models, and the other four, X5, X6, X8,
X14 admit 5, 13, 9, 28 bundles, respectively. For all those cases, the
scan has saturated according to our criterion and the complete set of
viable models has been found. For the other six manifolds X3, X9,
X10, X11, X12, X13, all with Picard number four, only X9 is
complete and admits 2207 bundles.
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Examlple: X9
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Conclusion & Outlook

We have studied heterotic model building on the sixteen families of
torically generated Calabi-Yau three-folds with non-trivial first
fundamental group.

For SU(5) we have succeeded in finding all such line bundle models
on the 14 base spaces, thereby proving finiteness of the class
computationally. The result is a total of 122 SU(5) GUT models.

For SO(10) we have obtained a complete classification for all spaces
up to Picard number three, resulting in a total of 55 SO(10) GUT
models. For the other six manifolds, all with Picard number four,
only one (X9) was amenable to a complete classification.
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Conclusion & Outlook

Favorable Issue The main technical obstacle to determine the full
spectrum of these models – before and after Wilson line breaking – is the
computation of line bundle cohomology on torically defined Calabi-Yau
manifolds. We hope to address this problem in the future.

Symmetries We consider the present work as the first step in a
programme of classifying all line bundle standard models on the
Calabi-Yau manifolds in the Kreuzer-Skarke list. A number of technical
challenges have to be overcome in order to complete this programme,
including a classification of freely-acting symmetries for these Calabi-Yau
manifolds and the aforementioned computation of line bundle cohomology.
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