Finite Temperature Effects in Warm Hybrid Inflation

Tom Metcalf

Higgs Centre for Theoretical Physics University of Edinburgh

in collaboration with Mar Bastero-Gil, Arjun Berera and Joao Rosa

PASCOS 2013

Inflationary Cosmology - Two Dynamical Realizations

There are different dynamical realizations of Inflation.

- ▶ Cold Inflation
 - ▶ The inflaton is treated as an isolated system.
 - ▶ Other initial components of energy density are redshifted away.
 - A separate reheating phase after inflation brings the universe to a radiation dominated regime.

- ▶ Warm Inflation
 - ▶ Interactions leading to dissipation of inflaton energy to other degrees of freedom.
 - ▶ Inflationary expansion occurs concurrently with particle production.
 - ▶ Radiation can eventually dominate the energy density without a separate reheating phase.

"The Inflationary Universe: A possible soultion to the Horizon and Flatness Problems", AH Guth, Phys.Rev. D23 (1981) 347-356 "Warm Inflation", A Berera, Phys.Rev.Lett.75:3218-3221,1995

Warm Inflation

Warm inflation is realised when a dissipative term, Υ, is included as a friction term in the evolution equation for the inflaton

 $\begin{array}{cc} \mbox{Cold Inflation} & \mbox{Warm Inflation} \\ \ddot{\phi}(t) + 3H \dot{\phi}(t) + V_{\phi} = 0 & \rightarrow & \ddot{\phi}(t) + (3H + \Upsilon) \dot{\phi}(t) + V_{\phi} = 0 \end{array}$

- Energy lost by the inflaton field is gained by some other fluid ρ_{α}
- If $\rho_{\alpha} = \rho_R$ then the evolution equation for the radiation energy density becomes

Cold Inflation Warm Inflation

$$\dot{\rho_R} + 4H\rho_R = 0 \rightarrow \dot{\rho_R} + 4H\rho_R = \Upsilon \dot{\phi}^2$$

▶ Radiation is not necessarily redshifted.

"Warm Inflation", A Berera, Phys.Rev.Lett.75:3218-3221,1995

Warm Inflation Model Building - SUSY model

- ▶ Supersymmetry protects the potential from large radiative corrections
- ▶ Inflaton potential is protected from large thermal corrections*
 - \blacktriangleright Fields coupled to the inflaton, denoted $\chi,$ are heavy because of the coupling to the inflaton
 - ▶ Heavy χ fields are in turn coupled to light y fields
- ▶ This can be realised with the superpotential

$$W = W(\Phi) + g\Phi X^2 + hXY^2$$

- \blacktriangleright The scalar component of the superfield Φ describes the inflaton field ϕ
- ▶ X is the superfield for the heavy catalyst fields χ
- \blacktriangleright The last term allows the heavy catalyst field to decay into light degrees of freedom in the supermultiplet Y

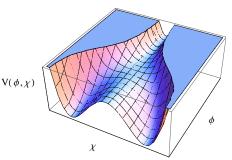
* "Dissipation coefficients from scalar and fermion quantum field interactions", M Bastero-Gil,A Berera, R Ramos, JCAP 1109:033,2011

Hybrid Inflation

- ▶ This decay mechanism for the inflaton can be readily realised with a hybrid model of inflation
- ▶ Inflaton field is responsible for slow-roll inflation
- ▶ Waterfall field triggers the end of inflation
- ▶ The hybrid inflation potential is

$$V(\phi,\chi) = \frac{1}{4\lambda} (M^2 - \lambda\chi^2)^2 + \frac{1}{2}\phi^2 + \frac{1}{2}g^2\phi^2\chi^2$$

- Effective mass squared of the χ field is $-M^2 + g^2 \phi^2$
- When φ > φ_c = M/g the minimum of V is at χ = 0
- When $\phi < \phi_c = M/g$ the tachyonic instability drives the system to a global minimum at $\phi = 0$ and $\chi^2 = M^2/\lambda$



"Hybrid Inflation", A Linde, Phys.Rev.D49:748-754,1994

Supersymmetric Hybrid Inflation

▶ Supersymmetric hybrid inflation can be realised with the superpotential

$$W = W(\Phi) + g\Phi(X^2 - M^2) + hXY^2$$

• The scalar and fermionic components of the X superfields, $\chi = (\chi_R + i\chi_i)/\sqrt{2}$ and ψ_{χ} , acquire non-vanishing masses during inflation

$$\begin{split} m_{\chi I}^2 &= 2g^2(\phi^2 + M^2) \\ m_{\chi R}^2 &= 2g^2(\phi^2 - M^2) \\ m_{\bar{\chi}}^2 &= 2g^2\phi^2 \end{split}$$

▶ The hybrid transition will happen when $\phi = \phi_c = M$

* "Warm Inflation Model Building", M Bastero-Gil, A Berera, Int.J.Mod.Phys.A24:2207-2240,2009

Dissipation in Warm Inflation

Ι

▶ In warm inflation the coupling between the inflaton, waterfall fields and light fields leads to the dissipation of inflaton energy during inflation.

Inflaton		Waterfall fields		Light fields
ϕ	\rightarrow	χ	\rightarrow	У

▶ The waterfall fields are unstable against decay into the Y sector

$$\chi \to yy, \psi_y \psi_y \qquad \qquad \psi_\chi \to y\psi_y$$

- ▶ Allows inflaton energy to be transferred to Y sector
- \blacktriangleright Dissipation acts as a friction term $\Upsilon \dot{\phi}$ in the equation of motion of the inflaton field ϕ

Dissipative Coefficient

The dissipative coefficient Υ receives leading contributions from

- ▶ Low-momentum contribution Υ_{lm}
 - Υ_{lm} corresponds to off-shell production
 - Υ_{lm} dominates for $m_i >> T$
- ▶ Pole contribution Υ_{pole}
 - Υ_{pole} corresponds to on-shell production
 - Υ_{pole} dominates for $m_i \ll T$

The expression for the Dissipative coefficient Υ is *

$$\begin{split} \Upsilon &= & \Upsilon_{lm} + \Upsilon_{pole} \\ &= & \sum_{i=\chi_{R,I}} \left[0.64h^2 g^8 N_x N_y \frac{T^3 \phi^6}{m_i^8} + \frac{16}{\sqrt{2\pi}} \frac{g^2 N_x}{h^2 N_y} \left(\frac{2g^2 \phi^2}{2g^2 \phi^2 + m_i^2} \right) \sqrt{Tm_i} e^{-m_i/T} \right] \end{split}$$

* "General Dissipation coefficient in low-temperature warm inflation", M Bastero-Gil, A Berera, R Ramos, J Rosa, JCAP 01, 016 (2013)

The Scalar Potential at One Loop

- \blacktriangleright Interactions between the inflaton ϕ and the waterfall field χ lead to radiative corrections to the scalar potential
- The scalar potential during inflation is given by the tree-level potential, $V_0 + f(\phi)$, and radiative corrections given by the Coleman-Weinberg potential*
- ▶ At one loop this gives

$$V(\phi) = V_0 + f(\phi) + \frac{1}{32\pi^2} \sum_{\chi_{R,I},\psi_{\chi}} m_i^4(\phi) \left[log\left(\frac{m_i^2(\phi)}{\mu^2}\right) - \frac{3}{2} \right]$$

• where $V_0 = g^2 M^4$, $f(\phi) = |W'(\phi)|^2$, μ is the renormalization scale, and we sum over the χ mass multiplets

$$\begin{split} m_{\chi I}^2(\phi) &= 2g^2(\phi^2 + M^2) \\ m_{\chi R}^2(\phi) &= 2g^2(\phi^2 - M^2) \\ m_{\tilde{\chi}}^2(\phi) &= 2g^2\phi^2 \end{split}$$

* "Radiative Corrections as the origin of Spontaneous Symmetry Breaking", S Coleman, E Weinberg, Phys.Rev. D7 (1973) 1888-1910

Tom Metcalf (U of Edinburgh)

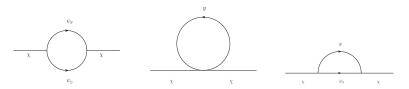
Warm Hybrid Inflation

A Heat Bath during Inflation

▶ In warm inflation radiation is not necessarily red-shifted during inflation

$$W = W(\Phi) + g\Phi(X^2 - M^2) + hXY^2$$

- \blacktriangleright The last term in W allows the waterfall field to decay to light degrees of freedom in the Y supermultiplet
- \blacktriangleright This allows for particle creation in the Y sector and the formation of a thermal bath
- Presence of a thermal bath induces thermal corrections to the masses of the waterfall field χ and ψ_{χ} through the following interactions with the light scalars and fermions in the Y sector, y and ψ_y



* "General dissipation coefficient in low-temperature warm inflation", M Bastero-Gil, A Berera, R Ramos, J Rosa, JCAP 01, 016 (2013)

Tom Metcalf (U of Edinburgh)

Warm Hybrid Inflation

Thermal Corrections to the Waterfall field

• Allowing for the existence of g_* light degrees of freedom in the thermal bath coupling to fields in the X sector, the waterfall field masses are shifted by a positive factor denoted $\alpha^2 T^2$

$$\begin{split} m_{\chi I}^2(\phi,T) &= 2g^2(\phi^2+M^2) + \alpha^2 T^2 \\ m_{\chi R}^2(\phi,T) &= 2g^2(\phi^2-M^2) + \alpha^2 T^2 \\ m_{\tilde{\chi}}^2(\phi,T) &= 2g^2\phi^2 + \alpha^2 T^2 \end{split}$$

- If only fields in the Y sector are present in the thermal bath then $g_* = (15/4)N_y$ and $\alpha = h\sqrt{N_y/2}$
- Inserting into the Coleman-Weinberg expression for radiative corrections at one loop the potential becomes

$$V(\phi,T) = V_0 + f(\phi) + \frac{1}{32\pi^2} \sum_{\chi_{R,I},\psi_{\chi}} m_i^4(\phi,T) \left[\log\left(\frac{m_i^2(\phi,T)}{\mu^2}\right) - \frac{3}{2} \right]$$

"Thermal Effects on Pure and Hybrid Inflation", L Hall, I Moss, Phys.Rev.D71:023514,2005

Hybrid Transition at Finite Temperature

- \blacktriangleright Inflation ends when the mass squared of the real scalar component $m^2_{\chi_R}$ becomes negative
- Without thermal corrections $m_{\chi_R}^2(\phi) = 2g^2(\phi^2 M^2)$
- Critical value of ϕ for the end of inflation, ϕ_c , is constant

$$\phi_c = M$$

- ▶ Thermal corrections mean $m_{\chi_B}^2$ becomes temperature dependent
- The critical value of ϕ now evolves as

$$\phi_c = \left(M - \frac{\alpha^2}{2g^2}T^2\right)^{1/2}$$

Numerical Results

Evolution of ϕ/M_p for initial conditions that give spectral index $n_s = 0.962$ and r = 0.019. Solid lines show evolution with thermal corrections included.

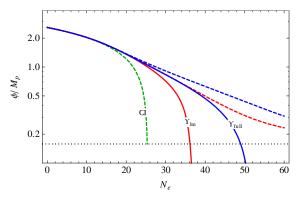


Figure: Evolution of ϕ/m_p for standard cold inflation, warm inflation with $\Upsilon = \Upsilon_{lm}$ and $\alpha^2 = 0$, warm inflation with $\Upsilon = \Upsilon_{lm} + \Upsilon_{pole}$ and $\alpha^2 = 0$, $\Upsilon = \Upsilon_{lm}$ and $\alpha^2 = h^2 N_y/2$, and warm inflation with $\Upsilon = \Upsilon_{lm} + \Upsilon_{pole}$ and $\alpha^2 = h^2 N_y/2$. h = 0.34, $M = 0.158m_p$, $N_x = 5 \times 10^6$, $g = 10^{-3}$, $N_y = 50$, and initial value of $\Phi(0) = 2.58m_p$.

Numerical Results

Evolution of m_{χ_R}/T for both low-momentum contribution on its own and the full dissipative coefficient for initial conditions that give spectral index $n_s = 0.962$ and r = 0.019. Solid lines show evolution with thermal corrections included.

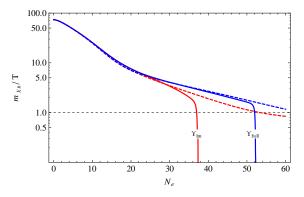


Figure: Evolution of m_{χ_R}/T for standard cold inflation, warm inflation with $\Upsilon = \Upsilon_{lm}$ and $\alpha^2 = 0$, warm inflation with $\Upsilon = \Upsilon_{lm} + \Upsilon_{pole}$ and $\alpha^2 = 0$, $\Upsilon = \Upsilon_{lm}$ and $\alpha^2 = h^2 N_y/2$, and warm inflation with $\Upsilon = \Upsilon_{lm} + \Upsilon_{pole}$ and $\alpha^2 = h^2 N_y/2$. h = 0.34, $M = 0.158m_p$, $N_x = 5 \times 10^6$, $g = 10^{-3}$, $N_y = 50$, and initial value of $\Phi(0) = 2.58m_p$.

Conclusion

- Dissipation in warm inflation causes a friction term Υ in the inflaton's equation of motion, leading to particle production occuring concurrently with inflationary expansion.
- ▶ The dissipative coefficient receives a contribution from low-momentum "off-shell" modes and from the pole "on-shell" modes of the waterfall field.
- Thermal corrections increase the mass of the waterfall field lowering the critical value of ϕ , but also suppresses dissipation so the critical value is reached faster.
- \blacktriangleright With thermal corrections included in the example shown the low-momentum contribution alone increases the number of e-folds by ~ 10 e-folds
- With thermal corrections included in the example shown the pole contribution adds a further ~ 15 e-folds taking the total to ~ 52 e-folds with spectral index $n_s = 0.962$ and r = 0.019

THANK YOU FOR LISTENING

$Extra \ slide$

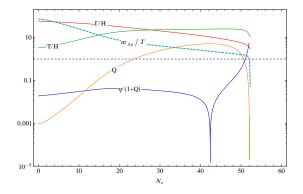


Figure: Evolution of $\eta/(1+Q)$, Q, T/H, Γ/H and m_{χ_R}/T for warm inflation with $\Upsilon = \Upsilon_{lm} + \Upsilon_{pole}$ and $\alpha^2 = h^2 N_y/2$. h = 0.34, $M = 0.158m_p$, $N_x = 5 \times 10^6$, $g = 10^{-3}$, $N_y = 50$, and initial value of $\Phi(0) = 2.58m_p$. Spectral index $n_s = 0.962$