Three-generation models in heterotic asymmetric orbifolds

Shogo Kuwakino
(Chung Yuan Christian U., Taiwan)

Based on arXiv:1304.5621 [hep-th] and 1311.4687 [hep-th]
Collaborator : Florian Beye (Nagoya university)
Tatsuo Kobayashi (Kyoto university)

Plan of Talk

1. Introduction
2. Heterotic asymmetric orbifold models
3. Narain lattices, group breaking patterns
4. Three-generation models
5. Conclusion

Introduction

- String \rightarrow Standard Model ----- String compactification : 10-dim \rightarrow 4-dim

Orbifold compactification, Calabi-Yau, Intersecting D-brane, Magnetized D-brane, F-theory, M-theory, ...

- (Symmetric) orbifold compactification
- SM or several GUT gauge symmetries
- $\mathrm{N}=1$ supersymmetry
- Chiral matter spectrum
- MSSM searches in symmetric orbifold vacua :

Embedding higher dimensional GUT into string Three generations, Quarks, Leptons and Higgs, No exotics,

Dixon, Harvey, Vafa, Witten '85,'86
Ibanez, Kim, Nilles, Quevedo '87

Top Yukawa,
Proton longetivity,
R-parity,
Doublet-triplet splitting,

Kobayashi, Raby, Zhang '04
Buchmuller, Hamaguchi, Lebedev, Ratz '06 Lebedev, Nilles, Raby, Ramos-Sanchez, Ratz, Vaudrevange, Wingerter '07
Kim, Kyae '07

Introduction

- Asymmetric orbifold compactification of heterotic string theory Narain, Sarmadi, Vafa ' 87

Generalization of orbifold action (Non-geometric compactification)

- SM or several GUT gauge symmetries
- $\mathrm{N}=1$ supersymmetry
- Chiral matter spectrum
- Increase the number of possible models (symmetric \rightarrow asymmetric)
\longmapsto All Yukawa hierarchies ?
- A few/no moduli fields (non-geometric)
\longmapsto Moduli stabilization ?

However, in asymmetric orbifold construction, a systematic search for SUSY SM or other GUT extended models has not been investigated so far.

Goal : Search for SUSY SM in heterotic asymmetric orbifold vacua

SUSY SM in asymmetric orbifold vacua

- First step for model building : Gauge symmetry

Four-dimensions,
N=1 supersymmetry,
Standard model group(SU(3) $\times \operatorname{SU} U(2) \times U(1))$,
Three generations,
Quarks, Leptons and Higgs,
No exotics,
Yukawa hierarchy,
Proton stability,
R-parity,
Doublet-triplet splitting,
Moduli stabilization,
What types of gauge symmetries can be derived in these vacua?
-SM group ?
-GUT group ?

- Flavor symmetry ?
- Hidden sector ?

Heterotic asymmetric orbifold models

Asymmetric Orbifold Compactification

- Asymmetric orbifold compactification
- We start from (22,6)-dimensional Narain lattices $\Gamma_{22,6}$
- General flat compactification of heterotic string
--- Left : 22 dim
--- Right : 6 dim
- 4D N=4 SUSY
- Left-right combined momentum $\left(p_{\mathrm{L}}, p_{\mathrm{R}}\right)$ are quantized.
- Modular invariance \rightarrow The even and self-dual conditions

Asymmetric Orbifold Compactification

- Asymmetric orbifold compactification
- We start from (22,6)-dimensional Narain lattices $\Gamma_{22,6}$
- Narain lattice is not necessarily "left-right symmetric"
- Orbifold action $\theta=\left(\theta_{\mathrm{L}}, \theta_{\mathrm{R}}\right)$ (Twist, Shift)

$$
\begin{aligned}
\text { Left mover : } & X_{\mathrm{L}} \rightarrow \theta_{\mathrm{L}} X_{\mathrm{L}} \\
\text { Right mover: }: & X_{\mathrm{R}} \rightarrow \theta_{\mathrm{R}} X_{\mathrm{R}} \\
& \Psi_{\mathrm{R}} \rightarrow \theta_{\mathrm{R}} \Psi_{\mathrm{R}}
\end{aligned}
$$

Ex.) Z_{3} action

Orbifold actions for left and right movers can be chosen independently

$$
\theta=\left(\theta_{\mathrm{L}}, \theta_{\mathrm{R}}\right) \quad \theta_{\mathrm{L}} \neq \theta_{\mathrm{R}}
$$

- N=4 SUSY $\rightarrow \mathrm{N}=1$ SUSY
- Modular invariance

Left-moving twists and shifts

Z3 Asymmetric Orbifold Compactification

In this work, we consider

- Z3 orbifold action
- Abelian orbifolds
- No twist action for the left-mover $\theta_{\mathrm{L}}=1$

A Z3 asymmetric orbifold model is specified by

- a (22,6)-dimensional Narain lattice Γ which contains a right-moving \bar{E}_{6} or \bar{A}_{2}^{3} lattice (compatible with $\mathrm{Z3}$ automorphism)
- a Z 3 shift vector $V=\left(V_{\mathrm{L}}, 0\right)$
- a Z3 twist vector $t_{\mathrm{R}}=\left(0, \frac{1}{3}, \frac{1}{3},-\frac{2}{3}\right)$
- Modular invariance condition: $\frac{3 V_{\mathrm{L}}^{2}}{2} \in \mathbf{Z}$

Narain lattices and group breaking patterns

Lattice and gauge symmetry

- Our starting point \rightarrow Narain lattice

Symmetric orbifolds

Lattice

Gauge symmetry breaking pattern)

Asymmetric orbifolds

What types of (22,6)-dimensional Narain lattices can be used for starting points ?

What types of gauge symmetries can be realized ?

22dim

Lattice Engineering Technique

- Lattice engineering technique

Lerche, Schellekens, Warner '88

- We can construct new Narain lattice from known one.
- We can replace one of the left-moving group factor with a suitable right-moving group factor.

$$
\begin{aligned}
\text { Left-mover } & \stackrel{\text { Replace }}{\longleftrightarrow} \text { Right-mover } \\
G & \longleftrightarrow \operatorname{Dual}(G)=G^{\prime}
\end{aligned}
$$

(Replace left G^{\prime}

$$
\left.\rightarrow \text { Right } \bar{G}\left(=G_{\text {dual }}^{\prime}\right)\right)
$$

The resulting lattice is also modular invariant (modular transformation properties of G^{\prime} part and \bar{G} part are similar)

G_{L}	c_{L}	\bar{G}_{R}	c_{R}
E_{6}	(1)	$\overline{\bar{A}}_{2}$	(1)
D_{4}	(v) (s)	\bar{D}_{4}	(v) (s)
A_{2}	(1)	\bar{E}_{6}	(1)
A_{2}^{2}	$(1,0)$ $(1,2)$	\bar{A}_{2}^{2}	$(1,2)$ $(2,0)$
$U(1)^{2}$	$(1 / 3,1 / 2)$ $(1 / 4,1 / 4)$	$\bar{D}_{4} \times \bar{A}_{2}$	$(s, 1)$ $(c, 0)$

Lattice Engineering Technique

- Lattice engineering technique
- We can construct new Narain lattice from known one.
- We can replace one of the left-moving group factor with a suitable right-moving group factor.
- Left-right replacement can be done in repeating fashion, Narain lattice $1 \rightarrow$ Narain lattice $2 \rightarrow$ Narain lattice $3 \rightarrow \ldots \rightarrow$ Narain lattice $\Gamma_{22,6}$
- We can construct various Narain lattices $\Gamma_{22,6}$ systematically.
- Advantage : Various gauge symmetries.

Easy to find out discrete symmetries of the lattices. \rightarrow Orbifold

(22,6)-dim lattices from 8, 16, 24-dim lattices

- We construct (22,6)-dim Narain lattices from 8, 16, 24-dim lattices by lattice engineering technique.

(22,6)-dim lattices from 8, 16, 24-dim lattices

Example :
$A_{11} \times D_{7} \times E_{6}$ 24-dim lattice
Generator of conjugacy classes: $(1, s, 1)$
Gauge symmetry : SU(12) x SO(14) x E6

$D_{7} \times E_{6} \times A_{8} \times U(1) \times \bar{E}_{6}(22,6)$-dim lattice
Generator of conjugacy classes: $(0,0,1,1 / 9,1),(s, 1,1,1 / 36,0)$
Gauge symmetry : $\mathrm{SO}(14) \times \mathrm{E} 6 \times \mathrm{SU}(9) \times \mathrm{U}(1)$

Gauge symmetry breaking by Z3 action

- Z3 asymmetric orbifold compactification

Z3 action :

Right mover \rightarrow twist action $\rightarrow \mathrm{N}=1$ SUSY
Left mover \rightarrow shift action \rightarrow Gauge symmetry breaking Modular invariance

- SO(14) x E6 x SU(9) x U(1) Gauge group breaks to Several gauge symmetries.
- Some group combinations lead to modular invariant models.
- SM group, Flipped SO(10)xU(1), Flipped $\operatorname{SU}(5) \times U(1)$, Trinification $S U(3)^{\wedge} 3$ group can be realized.
- Important data for model building.

Group	Group breaking patterns	Group breaking patterns
Shift	$(0,0,0,0,0)$	$(s, 1,1,1 / 36,0)$
	D_{7}	D_{7}
	$A_{6} \times U(1)$	$A_{6} \times U(1)$
	$D_{6} \times U(1)$	$D_{6} \times U(1)$
D_{7}	$A_{1} \times D_{5} \times U(1)$	$A_{1} \times D_{5} \times U(1)$
	$A_{2} \times D_{4} \times U(1)$	$A_{2} \times D_{4} \times U(1)$
	$A_{3}^{2} \times U(1)$	$A_{3}^{2} \times U(1)$
	$A_{5} \times U(1)^{2}$	$A_{5} \times U(1)^{2}$
	$A_{1}^{2} \times A_{4} \times U(1)$	$A_{1}^{2} \times A_{4} \times U(1)$
E_{6}	E_{6}	
	$A_{5} \times U(1)$	
	$A_{2} \times A_{2} \times A_{2}$	$D_{5} \times U(1)$
	$D_{5} \times U(1)^{2}$	$A_{4} \times A_{1} \times U(1)$
	$A_{4} \times A_{1} \times U(1)$	
	A_{8}	$A_{7} \times U(1)$
A_{8}	$A_{6} \times U(1)^{2}$	$A_{6} \times A_{1} \times U(1)$
	$A_{5} \times A_{2} \times U(1)$	$A_{5} \times A_{1} \times U(1)^{2}$
	$A_{4} \times A_{1}^{2} \times U(1)^{2}$	$A_{4} \times A_{3} \times U(1)$
	$A_{3}^{2} \times U(1)^{2}$	$A_{4} \times A_{2} \times U(1)^{2}$
	$A_{2}^{3} \times U(1)^{2}$	$A_{3} \times A_{2} \times A_{1} \times U(1)^{2}$
$U(1)$	$U(1)$	$U(1)$

Result: Lattice and gauge symmetry

- Our starting point \rightarrow Narain lattice

Symmetric orbifolds
Asymmetric orbifolds

Lattice $\mathrm{E} 8 \times \mathrm{E} 8, \mathrm{SO}(32)$

Gauge Group	Z_{3}	Z_{4}	Z_{6}	Z_{7}	Z_{8}	Z_{12}	No.
E_{8}	*		*	*	*	*	26
$E_{7} \times S U_{2}$		AS	$A S$		AS	$A S$	27
$E_{7} \times U_{1}$	$A S$	AS	$A S$	S	AS	$A S$	28
$E_{6} \times S U_{3}$	$A S$		$A S$			AS	29
$E_{6} \times S U_{2} \times U_{1}$		$A S$	S	S	AS	$A S$	30
$E_{6} \times U_{1}{ }^{2}$			AS	S	S	$A S$	31
$S^{\text {O }}$ 16		AS	$A S$		AS	$A S$	32
$S O_{14} \times U_{1}$	${ }_{A S}$	AS	${ }_{A S}$	S	AS	$A S$	33
						$A S$	34
Clas $\begin{gathered} S O_{10} \times S U_{2}^{2} \times U_{1} \\ S O_{10} \times S U_{2} \times U_{1}^{2} \\ S O_{10} \times U_{1}^{3} \end{gathered}$ $\mathrm{SO}_{8} \times \mathrm{SUC}_{4} \times \mathrm{U}_{1}$ SO 01×10 $\mathrm{SO}_{3} \times \mathrm{SU}_{2}{ }^{2} \times U^{2}$						$A S$	35
					5	AS	36
						S	37
			AS		S	AS	38
			$A S$	S	S	$A S$	39
					AS	S	40
			$A S$		$A S$		41
				AS	AS		

Gauge symmetry breaking pattern

90 lattices

(with right-moving non-Abelian factor, from 24 dimensional lattices)

Classified
$S U_{4}^{2} \times U_{1}{ }^{2}$

$S U_{4} \times S U_{3} \times S U_{2}^{2} \times U_{1}$

$S U_{4} \times S U_{3} \times S U_{2} \times U_{1}{ }^{2}$
$S U_{4} \times S U_{3} \times U_{1}^{3}$
$S U_{4} \times S U_{2}^{3} \times U_{1}^{2}$
$S U_{4} \times S U_{2}^{2} \times U_{1}^{3}$

4dim

22dim

Gauge group patterns of models

SM or GUT group patterns of Z3 asymmetric orbifold models from 90 Narain lattices

Group	SM	Flipped $S O(10)$	Flipped $S U(5)$	Pati-Salam	Left-right symmetric
\#1		\checkmark	\checkmark		
$\# 2$	\checkmark	\checkmark	\checkmark		\checkmark
$\# 3$	\checkmark	\checkmark	\checkmark		\checkmark
$\# 4$					
$\# 5$	\checkmark		\checkmark		
$\# 6$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
$\# 7$	\checkmark	\checkmark	\checkmark		\checkmark
$\# 8$	\checkmark		\checkmark	\checkmark	\checkmark
$\# 9$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
$\# 10$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
$\# 11$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
$\# 12$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
$\# 13$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
$\# 14$	\checkmark		\checkmark	\checkmark	\checkmark
$\# 15$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
$\# 16$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
$\# 17$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
$\# 18$	\checkmark	\checkmark	\checkmark		\checkmark

+ also for the other lattices.

Three-generation asymmetric orbifold models

Three generation left-right symmetric model

Z3 asymmetric orbifold compactification

- Narain lattice: $A_{1}^{2} \times A_{4}^{4} \times U(1)^{2} \times \bar{A}_{2}^{2}$ lattice $\oplus A_{2} \times \bar{A}_{2}$ lattice
- LET: $\quad A_{4}^{6} \xrightarrow[\text { decompose }]{\longrightarrow}\left(A_{2} \times A_{1} \times U(1)\right)^{2} \times A_{4}^{4} \xrightarrow[\text { replace }]{ } A_{1}^{2} \times A_{4}^{4} \times U(1)^{2} \times \bar{A}_{2}^{2}$

$$
E_{8} \xrightarrow[\text { decompose }]{ } E_{6} \times A_{2} \xrightarrow[\text { replace }]{ } A_{2} \times \bar{A}_{2}
$$

- Z3 shift vector: $V=\left(0, \omega_{1}^{A_{1}}, 2 \omega_{1}^{A_{4}}+\omega_{3}^{A_{4}}-3 \alpha_{1}^{A_{4}}-4 \alpha_{2}^{A_{4}}-2 \alpha_{3}^{A_{4}}-\alpha_{4}^{A_{4}},-\omega_{1}^{A_{4}}+\alpha_{1}^{A_{4}}+\alpha_{2}^{A_{4}}+\alpha_{3}^{A_{4}}+\alpha_{4}^{A_{4}}\right.$,

$$
\left.-\omega_{3}^{A_{4}}-2 \omega_{4}^{A_{4}}+2 \alpha_{4}^{A_{4}}, \omega_{2}^{A_{4}}+2 \omega_{4}^{A_{4}}-2 \alpha_{3}^{A_{4}}-2 \alpha_{4}^{A_{4}}, \frac{\sqrt{30}}{5}, \frac{3 \sqrt{30}}{10}, 0,0,0,0\right) / 3
$$

- Group breaking: $S U(5)^{4} \times S U(3) \times S U(2)^{2} \times U(1)^{2} \rightarrow S U(4)^{2} \times S U(3)^{3} \times S U(2)^{3} \times U(1)^{7}$
- One anomalous $U(1)_{A}$ gauge symmetry

Three generation left-right symmetric model

Massless spectrum $\left(S U(3)_{\mathrm{C}} \times S U(2)_{\mathrm{L}} \times S U(2)_{\mathrm{R}} \times S U(2)_{\mathrm{F}} \times S U(3)^{2} \times S U(4)^{2}\right)$

U / T					U / T	Irrep.	Q_{B-L}	Deg.
		Irrep.	Q_{B-L}	Deg.	T	$(\mathbf{1}, 1,1,2 ; 1,1,1,1)$	0	1
U	Q_{R}	$(\overline{3}, 1,2,1 ; 1,1,1,1)$	$-\frac{1}{6}$	3	T	$(1,1,1,2 ; 1,1,1,1)$	0	1
U		$(1,2,1,1 ; \overline{3}, 1,1,1)$	$-\frac{1}{2}$	3	T	$(1,1,1,2 ; 1,1,1,1)$	0	1
T	\bar{Q}_{R}	$(3,1,2,1 ; 1,1,1,1)$	$\frac{1}{6}$	1	T	$(1,1,1,2 ; 1,1,1,1)$	0	1
T	Q_{R}	$(\overline{3}, 1,2,1 ; 1,1,1,1)$	$-\frac{1}{6}$	1	T	$(1,1,1,2 ; 1,1,1,1)$	0	1
T	$Q_{\mathrm{L} 2}$	$(3,2,1,2 ; 1,1,1,1)$	$\frac{1}{6}$	1	T	$(1,1,1,2 ; 1,1,1,1)$	0	1
T	$Q_{\mathrm{L} 1}$	$(3,2,1,1 ; 1,1,1,1)$	$\frac{1}{6}$	1	T	$(1,1,1,2 ; 1,1,1,4)$	0	1
T	H	$(1,2,2,1 ; 1,1,1,1)$	0	1	T	$(3,1,1,1 ; 1,1,1,1)$	$-\frac{4}{3}$	1
T	H	$(1,2,2,1 ; 1,1,1,1)$	0	1	T	$(3,1,1,1 ; 1,1,1,1)$	$-\frac{1}{3}$	1
T		$(1,2,1,1 ; 3,1,1,1)$	$\frac{1}{2}$	1	T	$(3,1,1,1 ; \overline{3}, 1,1,1)$	$\frac{2}{3}$	1
T		$(1,2,1,1 ; \overline{3}, 1,1,1)$	$-\frac{1}{2}$	1	T	$(3,1,1,1 ; 1,1,1, \overline{4})$	$-\frac{1}{3}$	1
T		$(1,2,1,1 ; 1,1,6,1)$	$\frac{1}{2}$	1	T	$(\overline{\mathbf{3}}, \mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1})$	$\frac{4}{3}$	1
T		$(1,2,1,1 ; 1,1,1,4)$	$\frac{1}{2}$	1	T	$(\overline{3}, 1,1,1 ; 1,1,1,1)$	$\frac{1}{3}$	1
T		$(1,2,1,1 ; 1,1,1, \overline{4})$	$-\frac{1}{2}$	1	T	$(\overline{3}, 1,1,1 ; 3,1,1,1)$	$-\frac{2}{3}$	1
T		$(1,1,2,2 ; 3,1,1,1)$	$\frac{1}{2}$	1	T	$(\overline{3}, 1,1,1 ; 1,1, \overline{4}, 1)$	$\frac{1}{3}$	1
T		$(1,1,2,1 ; 3,1,1,1)$	$\frac{1}{2}$	1	T	$(\mathbf{3}, 1,1,1,1,1,4,1)$	$\overline{3}$ 1	1
T		$(1,1,2,1 ; 1,1,4,1)$	$-\frac{1}{2}$	1	T	$(1,2,2,1 ; 1,1,1,1)$	-1	1
T		$(1,1,2,1 ; 1,1, \overline{4}, 1)$	$\frac{1}{2}$	1	T	$(1,1,1,2 ; 1,1,1,1)$	-1	1
T		$(1,1,2,1 ; 1,1,1,6)$	$-\frac{1}{2}$	1	T	$(1,1,1,2 ; 1,1,1,1)$	1	1
					T	$(1,1,1,2 ; 1,1, \overline{4}, 1)$	-1	1

+ other fields
- Three-generation $S U(3)_{\mathrm{C}} \times S U(2)_{\mathrm{L}} \times S U(2)_{\mathrm{R}} \times U(1)_{\text {B-L }}$ model

Three generation left-right symmetric model

Massless spectrum $\left(S U(3)_{\mathrm{C}} \times S U(2)_{\mathrm{L}} \times S U(2)_{\mathrm{R}} \times S U(2)_{\mathrm{F}} \times S U(3)^{2} \times S U(4)^{2}\right)$

U / T		Irrep.	Q_{B-L}	Deg.
U	Q_{R}	$(\overline{\mathbf{3}}, \mathbf{1}, \mathbf{2}, \mathbf{1} ; \mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1})$	$-\frac{1}{6}$	3
U		$(1,2,1,1 ; \overline{3}, 1,1,1)$	$-\frac{1}{2}$	3
T	\bar{Q}_{R}	$(3,1,2,1 ; 1,1,1,1)$	$\frac{1}{6}$	1
T	Q_{R}	$(\overline{\mathbf{3}}, \mathbf{1}, \mathbf{2}, \mathbf{1}, \mathbf{1}, 1,1,1)$	$-\frac{1}{6}$	1
T	$Q_{\mathrm{L} 2}$	$(3,2,1,2 ; 1,1,1,1)$	$\frac{1}{6}$	1
T	$Q_{\mathrm{L} 1}$	$(3,2,1,1 ; 1,1,1,1)$	$\frac{1}{6}$	1
T	H	$(1,2,2,1 ; 1,1,1,1)$	0	1
T	H	$(1,2,2,1 ; 1,1,1,1)$	0	1
T		$(1,2,1,1 ; 3,1,1,1)$	$\frac{1}{2}$	1
T		$(1,2,1,1 ; \overline{3}, 1,1,1)$	$-\frac{1}{2}$	1
T		$(1,2,1,1 ; 1,1,6,1)$	$\frac{1}{2}$	1
T		$(1,2,1,1 ; 1,1,1,4)$	$\frac{1}{2}$	1
T		$(1,2,1,1 ; 1,1,1, \overline{4})$	$-\frac{1}{2}$	1
T		$(1,1,2,2 ; 3,1,1,1)$	$\frac{1}{2}$	1
T		$(1,1,2,1 ; 3,1,1,1)$	$\frac{1}{2}$	1
T		$(1,1,2,1 ; 1,1,4,1)$	$-\frac{1}{2}$	1
T		$(1,1,2,1 ; 1,1, \overline{4}, 1)$	$\frac{1}{2}$	1
T		$(1,1,2,1 ; 1,1,1,6)$	$-\frac{1}{2}$	1

- Three-generation $S U(3)_{\mathrm{C}} \times S U(2)_{\mathrm{L}} \times S U(2)_{\mathrm{R}} \times U(1)_{\text {B-L }}$ model
- Additional fields are vector-like

Three generation left-right symmetric model

Massless spectrum $\left(S U(3)_{\mathrm{C}} \times S U(2)_{\mathrm{L}} \times S U(2)_{\mathrm{R}} \times S U(2)_{\mathrm{F}} \times S U(3)^{2} \times S U(4)^{2}\right)$

Vector-like fields	U/T	Irrep.	Q_{B-L}	Deg.
	T	(1, 1, 1, 2; 1, 1, 1, 1)	0	1
	T	(1, 1, 1, 2; 1, 1, 1, 1)	0	1
	T	(1, 1, 1, 2; 1, 1, 1, 1)	0	1
	T	(1, 1, 1, 2; 1, 1, 1, 1)	0	1
	T	$(1,1,1,2 ; 1,1,1,1)$	0	1
	T	(1, 1, 1, 2; 1, 1, 1, 1)	0	1
	T	(1, 1, 1, 2; 1, 1, 1, 4)	0	1
	T	(3, 1, 1, 1; 1, 1, 1, 1)	$-\frac{4}{3}$	1
	T	(3, 1, 1, 1; 1, 1, 1, 1)	$-\frac{1}{3}$	1
	T	$(3,1,1,1 ; \overline{\mathbf{3}}, 1,1,1)$	$\frac{2}{3}$	1
	T	$(3,1,1,1 ; 1,1,1, \overline{4})$	$-\frac{1}{3}$	1
	T	$(\overline{3}, 1,1,1 ; 1,1,1,1)$	${ }^{\frac{4}{3}}$	1
	T	($\overline{3}, 1,1,1 ; 1,1,1,1)$	$\frac{1}{3}$	1
	T	$(\overline{3}, 1,1,1 ; 3,1,1,1)$	- ${ }^{3}$	1
	T	$(\overline{3}, 1,1,1 ; 1,1, \overline{4}, 1)$	$\frac{1}{3}$	1
	T	(1, 2, 2, 1; 1, 1, 1, 1)	1	1
	T	$(1,2,2,1 ; 1,1,1,1)$	-1	1
	T	$(1,1,1,2 ; 1,1,1,1)$	-1	1
	T	(1, 1, 1, 2; 1, 1, 1, 1)	1	1
	T	$(\mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{2} ; \mathbf{1}, \mathbf{1}, \overline{\mathbf{4}}, \mathbf{1})$	-1	1

- Three-generation $S U(3)_{\mathrm{C}} \times S U(2)_{\mathrm{L}} \times S U(2)_{\mathrm{R}} \times U(1)_{\text {B-L }}$ model
- Additional fields are vector-like

Three generation left-right symmetric model

$$
\text { Massless spectrum }\left(S U(3)_{\mathrm{C}} \times S U(2)_{\mathrm{L}} \times S U(2)_{\mathrm{R}} \times S U(2)_{\mathrm{F}} \times S U(3)^{2} \times S U(4)^{2}\right)
$$

U / T		Irrep.	Q_{B-L}	Deg.
U	Q_{R}	$(\overline{\mathbf{3}}, \mathbf{1}, \mathbf{2}, \mathbf{1} ; \mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1})$	$-\frac{1}{6}$	3
U		$(\mathbf{1}, \mathbf{2}, \mathbf{1}, \mathbf{1} ; \overline{\mathbf{3}}, \mathbf{1}, \mathbf{1}, \mathbf{1})$	$-\frac{1}{2}$	3
T	\bar{Q}_{R}	$(\mathbf{3}, \mathbf{1}, \mathbf{2}, \mathbf{1} ; \mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1})$	$\frac{1}{6}$	1
T	Q_{R}	$(\overline{\mathbf{3}, \mathbf{1}, \mathbf{2}, \mathbf{1} ; \mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1})}$	$-\frac{1}{6}$	1
T	$Q_{\mathrm{L} 2}$	$(\mathbf{3}, \mathbf{2}, \mathbf{1}, \mathbf{2} ; \mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1})$	$\frac{1}{6}$	1
T	$Q_{\mathrm{L} 1}$	$(\mathbf{3 , 2 , 1}, \mathbf{1} ; \mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1})$	$\frac{1}{6}$	1
T	H	$(\mathbf{1}, \mathbf{2}, \mathbf{2}, \mathbf{1} ; \mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1})$	0	1
T	H	$(\mathbf{1}, \mathbf{2}, \mathbf{2}, \mathbf{1} ; \mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1})$	0	1
T		$(\mathbf{1}, \mathbf{2}, \mathbf{1}, \mathbf{1} ; \mathbf{3}, \mathbf{1}, \mathbf{1}, \mathbf{1})$	$\frac{1}{9}$	1

U / T		Irrep.	Q_{B-L}	Deg.
T	$(\mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{2} ; \mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1})$	0	1	other
T	$(\mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{2} ; \mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1})$	0	1	fields
T	$(\mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{2} ; \mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1})$	0	1	
T	$(\mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{2} ; \mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1})$	0	1	
T	$(\mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{2} ; \mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1})$	0	1	
T	$(\mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{2} ; \mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1})$	0	1	
T	$(\mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{2} ; \mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{4})$	0	1	SU(2)F
T	$(\mathbf{3}, \mathbf{1}, \mathbf{1}, \mathbf{1} ; \mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1})$	$-\frac{4}{3}$	1	flavon
T	$(\mathbf{3}, \mathbf{1}, \mathbf{1}, \mathbf{1} ; \mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1})$	$-\frac{1}{3}$	1	
T	$(\mathbf{3}, \mathbf{1}, \mathbf{1}, \mathbf{1} ; \mathbf{3}, \mathbf{1}, \mathbf{1}, \mathbf{1})$	$\frac{2}{3}$	1	
T	$(\mathbf{3}, \mathbf{1}, \mathbf{1}, \mathbf{1} ; \mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{4})$	$-\frac{1}{3}$	1	
T	$(\mathbf{3}, \mathbf{1}, \mathbf{1}, \mathbf{1} ; \mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1})$	$\frac{4}{3}$	1	
T	$(\overline{\mathbf{3}, \mathbf{1}, \mathbf{1}, \mathbf{1} ; \mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1})}$	$\frac{1}{3}$	1	
T	$(\mathbf{3}, \mathbf{1}, \mathbf{1}, \mathbf{1} ; \mathbf{3}, \mathbf{1}, \mathbf{1}, \mathbf{1})$	$-\frac{2}{3}$	1	
T	$(\overline{\mathbf{3}, \mathbf{1}, \mathbf{1}, \mathbf{1} ; \mathbf{1}, \mathbf{1}, \mathbf{4}, \mathbf{1})}$	$\frac{1}{3}$	1	
T	$(\mathbf{1}, \mathbf{2}, \mathbf{2}, \mathbf{1} ; \mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1})$	1	1	
T	$(\mathbf{1}, \mathbf{2}, \mathbf{2}, \mathbf{1} ; \mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1})$	-1	1	
T	$(\mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{2} ; \mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1})$	-1	1	
T	$(\mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{2} ; \mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1})$	1	1	
T	$(\mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{2} ; \mathbf{1}, \mathbf{1}, \mathbf{4}, \mathbf{1})$	-1	1	

- Three-generation $\operatorname{SU}(3)_{\mathrm{C}} \times S U(2)_{\mathrm{L}} \times S U(2)_{\mathrm{R}} \times U(1)_{\mathrm{B}-\mathrm{L}}$ model
- Additional fields are vector-like
- Gauge flavor symmetry $\operatorname{SU}(2)_{F}$

Three generation left-right symmetric model

Massless spectrum ($\left.S U(3)_{\mathrm{C}} \times S U(2)_{\mathrm{L}} \times S U(2)_{\mathrm{R}} \times S U(2)_{\mathrm{F}} \times S U(3)^{2} \times S U(4)^{2}\right)$

U / T					U / T	Irrep.	Q_{B-L}	Deg.
		Irrep.	Q_{B-L}	Deg.	T	$(\mathbf{1}, 1,1,2 ; 1,1,1,1)$	0	1
U	Q_{R}	$(\overline{3}, 1,2,1 ; 1,1,1,1)$	$-\frac{1}{6}$	3	T	$(1,1,1,2 ; 1,1,1,1)$	0	1
U		$(1,2,1,1 ; \overline{3}, 1,1,1)$	$-\frac{1}{2}$	3	T	$(1,1,1,2 ; 1,1,1,1)$	0	1
T	\bar{Q}_{R}	$(3,1,2,1 ; 1,1,1,1)$	$\frac{1}{6}$	1	T	$(1,1,1,2 ; 1,1,1,1)$	0	1
T	Q_{R}	$(\overline{3}, 1,2,1 ; 1,1,1,1)$	$-\frac{1}{6}$	1	T	$(1,1,1,2 ; 1,1,1,1)$	0	1
T	$Q_{\mathrm{L} 2}$	$(3,2,1,2 ; 1,1,1,1)$	$\frac{1}{6}$	1	T	$(1,1,1,2 ; 1,1,1,1)$	0	1
T	$Q_{\mathrm{L} 1}$	$(3,2,1,1 ; 1,1,1,1)$	$\frac{1}{6}$	1	T	$(1,1,1,2 ; 1,1,1,4)$	0	1
T	H	$(1,2,2,1 ; 1,1,1,1)$	0	1	T	$(3,1,1,1 ; 1,1,1,1)$	$-\frac{4}{3}$	1
T	H	$(1,2,2,1 ; 1,1,1,1)$	0	1	T	$(3,1,1,1 ; 1,1,1,1)$	$-\frac{1}{3}$	1
T		$(1,2,1,1 ; 3,1,1,1)$	$\frac{1}{2}$	1	T	$(3,1,1,1 ; \overline{3}, 1,1,1)$	$\frac{2}{3}$	1
T		$(1,2,1,1 ; \overline{3}, 1,1,1)$	$-\frac{1}{2}$	1	T	$(3,1,1,1 ; 1,1,1, \overline{4})$	$-\frac{1}{3}$	1
T		$(1,2,1,1 ; 1,1,6,1)$	$\frac{1}{2}$	1	T	$(\overline{\mathbf{3}}, \mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1})$	$\frac{4}{3}$	1
T		$(1,2,1,1 ; 1,1,1,4)$	$\frac{1}{2}$	1	T	$(\overline{3}, 1,1,1 ; 1,1,1,1)$	$\frac{1}{3}$	1
T		$(1,2,1,1 ; 1,1,1, \overline{4})$	$-\frac{1}{2}$	1	T	$(\overline{3}, 1,1,1 ; 3,1,1,1)$	$-\frac{2}{3}$	1
T		$(1,1,2,2 ; 3,1,1,1)$	$\frac{1}{2}$	1	T	$(\overline{3}, 1,1,1 ; 1,1, \overline{4}, 1)$	$\frac{1}{3}$	1
T		$(1,1,2,1 ; 3,1,1,1)$	$\frac{1}{2}$	1	T	$(\mathbf{3}, 1,1,1,1,1,4,1)$	$\overline{3}$ 1	1
T		$(1,1,2,1 ; 1,1,4,1)$	$-\frac{1}{2}$	1	T	$(1,2,2,1 ; 1,1,1,1)$	-1	1
T		$(1,1,2,1 ; 1,1, \overline{4}, 1)$	$\frac{1}{2}$	1	T	$(1,1,1,2 ; 1,1,1,1)$	-1	1
T		$(1,1,2,1 ; 1,1,1,6)$	$-\frac{1}{2}$	1	T	$(1,1,1,2 ; 1,1,1,1)$	1	1
					T	$(1,1,1,2 ; 1,1, \overline{4}, 1)$	-1	1

+ other fields
- Three-generation $S U(3)_{\mathrm{C}} \times S U(2)_{\mathrm{L}} \times S U(2)_{\mathrm{R}} \times U(1)_{\text {B-L }}$ model
- Additional fields are vector-like
- Gauge flavor symmetry $S U(2)_{F}$
- No Top Yukawa from twisted sector ($H Q_{\mathrm{L} 1} Q_{\mathrm{R}}$)

Three generation $\operatorname{SU}(3) \times S U(2) \times U(1)$ model

Z3 asymmetric orbifold compactification

- Narain lattice: $A_{3}^{7} \times \bar{E}_{6} \times U(1)$ lattice
- LET: $\quad A_{3}^{8} \xrightarrow[\text { decompose }]{ } A_{3}^{7} \times A_{2} \times U(1) \underset{\text { replace }}{\longrightarrow} A_{3}^{7} \times \bar{E}_{6} \times U(1)$
- $\mathrm{Z3}$ shift vector: $\quad V=\left(\alpha_{1}^{A_{3}}+2 \alpha_{2}^{A_{3}}, \alpha_{1}^{A_{3}}+2 \alpha_{2}^{A_{3}},-\alpha_{1}^{A_{3}}-2 \alpha_{2}^{A_{3}}, \alpha_{3}^{A_{3}}, 0, \alpha_{3}^{A_{3}}, \alpha_{3}^{A_{3}}, 0,0\right) / 3$
- Group breaking: $S U(4)^{7} \times U(1) \rightarrow S U(4) \times S U(3)^{3} \times S U(2)^{3} \times U(1)^{10}$
- One anomalous $U(1)_{A}$ gauge symmetry

Three generation $\mathrm{SU}(3) \times \mathrm{SU}(2) \mathrm{xU}(1)$ model

Massless spectrum $\left(S U(3)_{\mathrm{C}} \times S U(2)_{\mathrm{L}} \times S U(2)^{2} \times S U(3)^{2} \times S U(4)\right)$

U / T		Irrep.	Q_{Y}	Deg.
U	l^{u}	$(\mathbf{1}, \mathbf{2} ; \mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1})$	$-\frac{1}{2}$	3
U	\bar{l}^{u}	$(\mathbf{1}, \mathbf{2} ; \mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1})$	$\frac{1}{2}$	3
U	\bar{d}	$(\overline{\mathbf{3}}, \mathbf{1} ; \mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1})$	$\frac{1}{3}$	3
T	c_{1}	$(\mathbf{3}, \mathbf{1} ; \mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1})$	$-\frac{1}{3}$	3
T	c_{2}	$(\mathbf{3}, \mathbf{1} ; \mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1})$	$\frac{2}{3}$	3
T	\bar{c}_{1}	$(\overline{\mathbf{3}}, \mathbf{1} ; \mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1})$	$\frac{1}{3}$	3
T	\bar{c}_{2}	$(\overline{\mathbf{3}}, \mathbf{1} ; \mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1})$	$-\frac{2}{3}$	3
T		$(\mathbf{1}, \mathbf{2} ; \mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1})$	$-\frac{1}{2}$	3
T		$(\mathbf{1}, \mathbf{2} ; \mathbf{2}, \mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1})$	$\frac{1}{2}$	3
T		$(\mathbf{1}, \mathbf{2} ; \mathbf{1}, \mathbf{1}, \mathbf{3}, \mathbf{1}, \mathbf{1})$	$-\frac{1}{2}$	3
T	q	$(\mathbf{3}, \mathbf{2} ; \mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1})$	$\frac{1}{6}$	3
T	\bar{u}	$(\overline{\mathbf{3}}, \mathbf{1} ; \mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1})$	$-\frac{2}{3}$	3
T	h_{u}	$(\mathbf{1}, \mathbf{2} ; \mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1})$	$\frac{1}{2}$	3

+ other fields

Three-generation fields of SUSY SM model
$+$
Vector-like fields

- Three-generation $S U(3)_{\mathrm{C}} \times S U(2)_{\mathrm{L}} \times U(1)_{\mathrm{Y}}$ model
- "3"-generation is come from a degeneracy "3"
- Additional fields are vector-like

Three generation $\mathrm{SU}(3) \times \mathrm{SU}(2) \mathrm{xU}(1)$ model

Massless spectrum ($S U(3)_{\mathrm{C}} \times S U(2)_{\mathrm{L}} \times S U(2)^{2} \times S U(3)^{2} \times S U(4)$)

U / T		Irrep.	Q_{Y}	Deg.
U	l^{u}	$(\mathbf{1}, \mathbf{2} ; \mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1})$	$-\frac{1}{2}$	3
U	\bar{l}^{u}	$(\mathbf{1}, \mathbf{2} ; \mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1})$	$\frac{1}{2}$	3
U	\bar{d}	$(\overline{\mathbf{3}}, \mathbf{1} ; \mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1})$	$\frac{1}{3}$	3
T	c_{1}	$(\mathbf{3}, \mathbf{1} ; \mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1})$	$-\frac{1}{3}$	3
T	c_{2}	$(\mathbf{3}, \mathbf{1} ; \mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1})$	$\frac{2}{3}$	3
T	\bar{c}_{1}	$(\overline{\mathbf{3}}, \mathbf{1} ; \mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1})$	$\frac{1}{3}$	3
T	\bar{c}_{2}	$(\overline{\mathbf{3}}, \mathbf{1} ; \mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1})$	$-\frac{2}{3}$	3
T		$(\mathbf{1}, \mathbf{2} ; \mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1})$	$-\frac{1}{2}$	3
T		$(\mathbf{1}, \mathbf{2} ; \mathbf{2}, \mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1})$	$\frac{1}{2}$	3
T		$(\mathbf{1}, \mathbf{2} ; \mathbf{1}, \mathbf{1}, \mathbf{3}, \mathbf{1}, \mathbf{1})$	$-\frac{1}{2}$	3
T	q	$(\mathbf{3}, \mathbf{2} ; \mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1})$	$\frac{1}{6}$	3
T	\bar{u}	$(\overline{\mathbf{3}}, \mathbf{1} ; \mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1})$	$-\frac{2}{3}$	3
T	h_{u}	$(\mathbf{1}, \mathbf{2} ; \mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1})$	$\frac{1}{2}$	3

+ other fields

Three-generation fields of SUSY SM model
$+$
Vector-like fields

- Three-generation $S U(3)_{\mathrm{C}} \times S U(2)_{\mathrm{L}} \times U(1)_{\mathrm{Y}}$ model
- "3"-generation is come from a degeneracy "3"
- Additional fields are vector-like
- Top Yukawa from twisted sector
- Charm quark becomes heavy (Tree level superpotential)

$$
y_{123} q_{1} h_{u 2} \bar{u}_{3}+y_{231} q_{3} h_{u 1} \bar{u}_{2}+y_{312} q_{2} h_{u 3} \bar{u}_{1}+y_{132} q_{1} h_{u 3} \bar{u}_{2}+y_{213} q_{2} h_{u 1} \bar{u}_{3}+y_{321} q_{3} h_{u 2} \bar{u}_{1}
$$

SUSY SM in asymmetric orbifold vacua

- At this stage, we did model buildings from several lattices of 90 lattices, and get models with

> Four-dimensions,
$\mathrm{N}=1$ supersymmetry,
Standard model group(SU(3)*SU(2)*U(1)), LR symmetric group
Three generations,
Quarks, Leptons and Higgs,
No exotics (vector-like)
Top quark mass
Other quark masses (Charm quark mass)
Proton stability,
R-parity,
Doublet-triplet splitting,
Moduli stabilization,

Conclusion

Conclusion and outlook

- Conclusion :
-- Z3 asymmetric orbifold compactification of heterotic string
-- Our starting point : Narain lattice
-- 90 lattices with right-moving non-Abelian factor can be constructed from 24 dimensional lattices
-- We calculate group breaking patterns of Z3 models
-- Three generation SUSY SM / left-right symmetric models
-- Gauge flavor symmetry is possible
- Outlook: Search for a realistic model
-- Search for $\mathrm{Z3}$ models from other lattices
-- Other orbifolds Z6, Z12, Z3xZ3...
-- Yukawa hierarchy, (Gauge or discrete) Flavor symmetry,
-- Moduli stabilization, etc.

Back up

Lattice Engineering Technique

- Lattice engineering technique
- Simple example

$$
G=E_{6} \underset{\text { Dual }}{\longleftrightarrow} G^{\prime}=A_{2}
$$

$$
A_{2}=S U(3)
$$

