Three-generation models in heterotic asymmetric orbifolds

Shogo Kuwakino (Chung Yuan Christian U., Taiwan)

Based on arXiv:1304.5621 [hep-th] and 1311.4687 [hep-th]

Collaborator : Florian Beye (Nagoya university) Tatsuo Kobayashi (Kyoto university)

PASCOS 2013, Taiwan 2013/11/21

Plan of Talk

- 1. Introduction
- 2. Heterotic asymmetric orbifold models
- 3. Narain lattices, group breaking patterns
- 4. Three-generation models
- 5. Conclusion

Introduction

- String → Standard Model ----- String compactification : 10-dim → 4-dim
 Orbifold compactification, Calabi-Yau, Intersecting D-brane, Magnetized D-brane,
 F-theory, M-theory, ...
- (Symmetric) orbifold compactification
 - SM or several GUT gauge symmetries
 - N=1 supersymmetry
 - Chiral matter spectrum

 MSSM searches in symmetric orbifold vacua : Embedding higher dimensional GUT into string

Three generations,

Quarks, Leptons and Higgs,

No exotics,

Top Yukawa,

Proton longetivity,

R-parity,

Doublet-triplet splitting,

Dixon, Harvey, Vafa, Witten '85,'86 Ibanez, Kim, Nilles, Quevedo '87

Kobayashi, Raby, Zhang '04 Buchmuller, Hamaguchi, Lebedev, Ratz '06 Lebedev, Nilles, Raby, Ramos-Sanchez, Ratz, Vaudrevange, Wingerter '07 Kim, Kyae '07

Introduction

• Asymmetric orbifold compactification of heterotic string theory Narain, Sarmadi, Vafa '87

Generalization of orbifold action (Non-geometric compactification)

- SM or several GUT gauge symmetries
- N=1 supersymmetry
- Chiral matter spectrum
- Increase the number of possible models (symmetric \rightarrow asymmetric)

All Yukawa hierarchies ?

• A few/no moduli fields (non-geometric)

Moduli stabilization ?

However, in asymmetric orbifold construction, a systematic search for SUSY SM or other GUT extended models has not been investigated so far.

Goal : Search for SUSY SM in heterotic asymmetric orbifold vacua

SUSY SM in asymmetric orbifold vacua

First step for model building : Gauge symmetry

Four-dimensions, N=1 supersymmetry, Standard model group(SU(3)xSU(2)xU(1)) Three generations, Quarks, Leptons and Higgs, No exotics, Yukawa hierarchy, Proton stability, R-parity, Doublet-triplet splitting, Moduli stabilization,

. . .

What types of gauge symmetries can be derived in these vacua ?

- •SM group ?
- •GUT group ?
- Flavor symmetry ?
- Hidden sector ?

Heterotic asymmetric orbifold models

Asymmetric Orbifold Compactification

• Asymmetric orbifold compactification

- We start from (22,6)-dimensional Narain lattices $\ \Gamma_{22.6}$
- General flat compactification of heterotic string
 - --- Left : 22 dim
 - --- Right : 6 dim
- 4D N=4 SUSY
- Left-right combined momentum $(p_{
 m L},p_{
 m R})$ are quantized.
- Modular invariance → The even and self-dual conditions

Asymmetric Orbifold Compactification

Asymmetric orbifold compactification

- We start from (22,6)-dimensional Narain lattices $\Gamma_{22.6}$
- Narain lattice is not necessarily "left-right symmetric"

Orbifold actions for left and right movers can be chosen independently

$$\theta = (\theta_{\mathsf{L}}, \theta_{\mathsf{R}}) \quad \theta_{\mathsf{L}} \neq \theta_{\mathsf{R}}$$

• N=4 SUSY \rightarrow N=1 SUSY

Modular invariance

Z3 Asymmetric Orbifold Compactification

In this work, we consider

- Z3 orbifold action
- Abelian orbifolds
- No twist action for the left-mover $\, heta_{
 m L} = 1 \,$

A Z3 asymmetric orbifold model is specified by

• a (22,6)-dimensional Narain lattice Γ which contains a right-moving \overline{E}_6 or \overline{A}_2^3 lattice (compatible with Z3 automorphism)

• a Z3 shift vector
$$V=(V_{
m L},0)$$

• a Z3 twist vector
$$t_{
m R} = (0, \frac{1}{3}, \frac{1}{3}, -\frac{2}{3})$$

• Modular invariance condition: $\ \frac{3V_{
m L}^2}{2}\in {f Z}$

Narain lattices and group breaking patterns

Lattice and gauge symmetry

Our starting point \rightarrow Narain lattice

Gauge groups realized by the shift (automorphism) of E_8 lattice are denoted by 24

Lattice Engineering Technique

Lattice engineering technique

Lerche, Schellekens, Warner '88

 $G_{\rm R}$

 A_2

 \overline{D}_{4}

 \overline{E}_6

 \overline{A}_2^2

 $\overline{D}_4 \times \overline{A}_2$

 $c_{\rm R}$

(1)

(v)

(s)

(1)

(1, 2)

(2, 0)

(s, 1)

(c,0)

- We can construct new Narain lattice from known one.
- We can replace one of the left-moving group factor with a suitable right-moving group factor.

Lattice Engineering Technique

• Lattice engineering technique

Lerche, Schellekens, Warner '88

- We can construct new Narain lattice from known one.
- We can replace one of the left-moving group factor with a suitable right-moving group factor.
- Left-right replacement can be done in repeating fashion, Narain lattice 1 \rightarrow Narain lattice 2 \rightarrow Narain lattice 3 \rightarrow ... \rightarrow Narain lattice $\Gamma_{22.6}$
- We can construct various Narain lattices $\ \Gamma_{22,6}$ systematically.
- Advantage : Various gauge symmetries.

Easy to find out discrete symmetries of the lattices. \rightarrow Orbifold

(22,6)-dim lattices from 8, 16, 24-dim lattices

 We construct (22,6)-dim Narain lattices from 8, 16, 24-dim lattices by lattice engineering technique.

(22,6)-dim lattices from 8, 16, 24-dim lattices

Example :

 $A_{11} \times D_7 \times E_6$ 24-dim lattice Generator of conjugacy classes : (1, s, 1)Gauge symmetry : SU(12) x SO(14) x E6 A11 **E6 D7** Left U1 A2 **A8 E6 D7** Left $E_8 \rightarrow E_6 \times A_2$ Dual **A8 U1 D7 E6** Left V Right **E6** $D_7 \times E_6 \times A_8 \times U(1) \times \overline{E}_6$ (22,6)-dim lattice Generator of conjugacy classes : (0, 0, 1, 1/9, 1), (s, 1, 1, 1/36, 0)15 Gauge symmetry : $SO(14) \times E6 \times SU(9) \times U(1)$

Gauge symmetry breaking by Z3 action

Z3 asymmetric orbifold compactification

Z3 action :

Right mover \rightarrow twist action \rightarrow N=1 SUSY

Left mover \rightarrow shift action \rightarrow Gauge symmetry breaking

Modular invariance

- SO(14) x E6 x SU(9) x U(1) Gauge group breaks to Several gauge symmetries.
- Some group combinations lead to modular invariant models.
- SM group, Flipped SO(10)xU(1), Flipped SU(5)xU(1), Trinification SU(3)^3 group can be realized.
- Important data for model building.

Group	Group breaking patterns	Group breaking patterns
Shift	(0, 0, 0, 0, 0)	(s, 1, 1, 1/36, 0)
	D ₇	D ₇
	$A_6 \times U(1)$	$A_6 imes U(1)$
	$D_6 imes U(1)$	$D_6 imes U(1)$
	$A_1 imes D_5 imes U(1)$	$A_1 imes D_5 imes U(1)$
D_7	$A_2 \times D_4 \times U(1)$	$A_2 \times D_4 \times U(1)$
	$A_3^2 imes U(1)$	$A_3^2 imes U(1)$
	$A_5 imes U(1)^2$	$A_5 imes U(1)^2$
	$A_1^2 \times A_4 \times U(1)$	$A_1^2 \times A_4 \times U(1)$
	E_6	
	$A_5 \times U(1)$	
E_6	$A_2 imes A_2 imes A_2$	$D_5 imes U(1)$
126	$D_4 imes U(1)^2$	$A_4 \times A_1 \times U(1)$
	$D_5 imes U(1)$	
	$A_4 \times A_1 \times U(1)$	
	A_8	$A_7 \times U(1)$
	$A_6 imes U(1)^2$	$A_6 \times A_1 \times U(1)$
A_8	$A_5 \times A_2 \times U(1)$	$A_5 \times A_1 \times U(1)^2$
218	$A_4 imes A_1^2 imes U(1)^2$	$A_4 \times A_3 \times U(1)$
	$A_3^2 imes U(1)^2$	$A_4 \times A_2 \times U(1)^2$
==()	$A_2^3 \times U(1)^2$	$A_3 \times A_2 \times A_1 \times U(1)^2$
U(1)	U(1)	U(1)

Result: Lattice and gauge symmetry

Our starting point \rightarrow Narain lattice

Symmetric orbifolds

Lattice

Gauge symmetry

E8 x E8, SO(32)

 Z_4 Z_6 Z_7

AS AS

AS

 \boldsymbol{S}

AS \boldsymbol{S} S

AS AS

AS AS AS

 \boldsymbol{S} AS $AS \parallel 30$

S ASAS 33

AS AS AS

AS

Classified

Gauge Group

Es

 $E_7 \times SU_2$

 $E_7 \times U_1$

 $E_6 \times SU_3$

 $E_6 \times SU_2 \times U_1$

 $E_6 \times U_1^2$

 SO_{16}

 $SO_{14} \times U_1$

No.

0

1

2

3

4

5

6

7

8

9

10

Asymmetric orbifolds

90 lattices

(with right-moving non-Abelian factor, from 24 dimensional lattices)

Classified

Gauge Group

 $SU_6 \times SU_3 \times U_1$

 $SU_6 \times SU_2^2 \times U_1$

 $SU_6 \times SU_2 \times U_1^2$

 $SU_6 \times U_1^3$

 $SU_5 \times SU_4 \times U_1$

 $SU_5 \times SU_3 \times SU_2 \times U_1$

 $SU_5 \times SU_3 \times U_1^2$

 $SU_5 \times SU_2^2 \times U_1^2$

 $SU_5 \times SU_2 \times U_1^3$

 $SU_4^2 \times \overline{SU_2 \times U_1}$

 SU_5

Z8 Z12 No.

* 26

 $AS \parallel 29$

AS 31

AS 32

AS34

AS36

SAS 35

AS AS 27

S |AS |AS | 28

AS

Gauge group patterns of models

SM or GUT group patterns of Z3 asymmetric orbifold models from 90 Narain lattices

Group	SM	Flipped $SO(10)$	Flipped $SU(5)$	Pati-Salam	Left-right symmetric
#1		\checkmark	\checkmark		
#2	√	√	√		\checkmark
#3	\checkmark	\checkmark	\checkmark		\checkmark
#4					
#5	\checkmark		\checkmark		
#6	\checkmark	\checkmark	\checkmark	√	\checkmark
#7	\checkmark	\checkmark	\checkmark		\checkmark
#8	\checkmark		\checkmark	√	\checkmark
#9	\checkmark	√	✓	√	\checkmark
#10	\checkmark	√	✓	√	√
#11	√	 ✓ 	 ✓ 	V	√
#12	 ✓ 	 ✓ 	 ✓ 	V	√
#13	 ✓ 	√	 ✓ 	√ 	√
#14	V		 ✓ 	√	√
#15	√	√	 ✓ 	√	√
#16	√	√	√	√	√
#17	√	√	√	√	√
#18	V	√	√		√

+ also for the other lattices.

Three-generation asymmetric orbifold models

Z3 asymmetric orbifold compactification

- Narain lattice: $A_1^2 \times A_4^4 \times U(1)^2 \times \overline{A}_2^2$ lattice $\oplus A_2 \times \overline{A}_2$ lattice
- $\begin{array}{ll} \text{LET:} & A_4^6 \xrightarrow[\text{decompose}]{} \left(A_2 \times A_1 \times U(1)\right)^2 \times A_4^4 \xrightarrow[\text{replace}]{} A_1^2 \times A_4^4 \times U(1)^2 \times \overline{A}_2^2 \\ & E_8 \xrightarrow[\text{decompose}]{} E_6 \times A_2 \xrightarrow[\text{replace}]{} A_2 \times \overline{A}_2 \\ \text{ Z3 shift vector:} & V = (0, \omega_1^{A_1}, 2\omega_1^{A_4} + \omega_3^{A_4} 3\alpha_1^{A_4} 4\alpha_2^{A_4} 2\alpha_3^{A_4} \alpha_4^{A_4}, -\omega_1^{A_4} + \alpha_1^{A_4} + \alpha_2^{A_4} + \alpha_3^{A_4} + \alpha_4^{A_4}, \\ & -\omega_3^{A_4} 2\omega_4^{A_4} + 2\alpha_4^{A_4}, \omega_2^{A_4} + 2\omega_4^{A_4} 2\alpha_3^{A_4} 2\alpha_4^{A_4}, \frac{\sqrt{30}}{5}, \frac{3\sqrt{30}}{10}, 0, 0, 0, 0)/3 \\ \text{ Group breaking:} & SU(5)^4 \times SU(3) \times SU(2)^2 \times U(1)^2 \rightarrow SU(4)^2 \times SU(3)^3 \times SU(2)^3 \times U(1)^7 \end{array}$
- One anomalous $U(1)_A$ gauge symmetry

	•	. ()0	($(-)_{\mathrm{F}} \times \mathcal{O}(0) \times \mathcal{O}$			
		-			U/T	Irrep.	Q_{B-L}	Deg.	+ other
U/T		Irrep.	Q_{B-L}	Deg.	Т	$({f 1},{f 1},{f 1},{f 2};{f 1},{f 1},{f 1},{f 1},{f 1})$	0	1	fields
U	Q_{R}	$({f 3},{f 1},{f 2},{f 1};{f 1},{f 1},{f 1},{f 1},{f 1})$	$-\frac{1}{6}$	3	T	$({f 1},{f 1},{f 1},{f 2};{f 1},{f 1},{f 1},{f 1},{f 1})$	0	1	neids
U		$(1,2,1,1;\overline{3},1,1,1)$	$-\frac{1}{2}$	3	T	$({f 1},{f 1},{f 1},{f 2};{f 1},{f 1},{f 1},{f 1},{f 1})$	0	1	
T	$\overline{Q}_{\mathrm{R}}$	$({f 3},{f 1},{f 2},{f 1};{f 1},{f 1},{f 1},{f 1},{f 1})$	$\frac{1}{6}$	1	T	(1, 1, 1, 2; 1, 1, 1, 1)	0	1	
T	$Q_{\rm R}$	$(\overline{\bf 3},{f 1},{f 2},{f 1};{f 1},{f 1},{f 1},{f 1},{f 1})$	$-\frac{1}{6}$	1	T	(1, 1, 1, 2; 1, 1, 1, 1)	0	1	
T	Q_{L2}	(3, 2, 1, 2; 1, 1, 1, 1)	$\frac{1}{6}$	1	T	(1, 1, 1, 2; 1, 1, 1, 1)	0	1	
T	Q_{L1}	(3, 2, 1, 1; 1, 1, 1, 1)	$-\frac{1}{6} -\frac{1}{2}$ $-\frac{1}{6} -\frac{1}{6}$ $-\frac{1}{6} -\frac{1}{6}$ $\frac{1}{6} -\frac{1}{6} = 0$	1	T	(1, 1, 1, 2; 1, 1, 1, 4)	0	1	
T	H	(1, 2, 2, 1; 1, 1, 1, 1)	Õ	1	T	(3 , 1 , 1 , 1 ; 1 , 1 , 1 , 1)	$-\frac{4}{2}$	1	
T	H	(1, 2, 2, 1; 1, 1, 1, 1)	0	1	T	(3, 1, 1, 1; 1, 1, 1, 1)	$-\frac{1}{2}$	1	
T		(1, 2, 1, 1; 3, 1, 1, 1)	$\frac{1}{2}$	1	T	$(3, 1, 1, 1; \overline{3}, 1, 1, 1)$	$\frac{2}{2}^{3}$	1	
T		$(1, 2, 1, 1; \overline{3}, 1, 1, 1)$	$-\frac{1}{2}$	1	T	$(3, 1, 1, 1; 1, 1, 1, \overline{4})$	$ \begin{array}{c} -\frac{4}{3} \\ -\frac{1}{3} \\ -\frac{1}{3} \\ -\frac{1}{3} \\ -\frac{4}{3} \\ -\frac{1}{3} \\ -\frac{1}{3} \\ -\frac{1}{3} \\ -\frac{1}{3} \\ 1 \\ 1 \\ 1 \end{array} $	1	
T		(1, 2, 1, 1; 1, 1, 6, 1)	$\frac{1}{2}^{2}$	1	T	$(\overline{3}, 1, 1, 1; 1, 1, 1, 1)$	$\underline{4}^3$	1	
T		(1, 2, 1, 1; 1, 1, 1, 4)	$\frac{1}{2}$	1		$(\overline{3}, 1, 1, 1, 1, 1, 1, 1)$	$\frac{3}{1}$	1	
T		$(1, 2, 1, 1; 1, 1, 1, \overline{4})$	$-\frac{2}{3}$	1		<u> </u>	$\overline{3}_2$	1	
T		(1, 1, 2, 2; 3, 1, 1, 1)	$\frac{1}{2}^2$	1		$(\overline{3}, 1, 1, 1; 3, 1, 1, 1)$	13		
T		(1, 1, 2, 1; 3, 1, 1, 1)	$\frac{2}{1}$	1		$(\overline{3}, 1, 1, 1; 1, 1, \overline{4}, 1)$	3		
T		(1, 1, 2, 1; 3, 1, 1, 1) (1, 1, 2, 1; 1, 1, 4, 1)	$^{2}_{1}$	1		(1, 2, 2, 1; 1, 1, 1, 1)			
T		(1, 1, 2, 1, 1, 1, 4, 1) $(1, 1, 2, 1; 1, 1, \overline{4}, 1)$	$\underline{1}^2$			(1, 2, 2, 1; 1, 1, 1, 1)	-1		
T		(1, 1, 2, 1; 1, 1, 4, 1) (1, 1, 2, 1; 1, 1, 1, 6)	$\frac{1}{2} \frac{1}{2} \frac{1}$			(1, 1, 1, 2; 1, 1, 1, 1)	-1		
1		(1 , 1 , 2 , 1 , 1 , 1 , 1 , 0)	$-\frac{1}{2}$	1	T	(1 , 1 , 1 , 2 ; 1 , 1 , 1 , 1 , 1)	1	1	
						$({f 1},{f 1},{f 1},{f 2};{f 1},{f 1},{f 4},{f 1})$	-1	1	

Massless spectrum ($SU(3)_{\rm C} \times SU(2)_{\rm L} \times SU(2)_{\rm R} \times SU(2)_{\rm F} \times SU(3)^2 \times SU(4)^2$)

- Three-generation $SU(3)_{\rm C} \times SU(2)_{\rm L} \times SU(2)_{\rm R} \times U(1)_{\rm B-L}$ model

- Three-generation $SU(3)_{\rm C} \times SU(2)_{\rm L} \times SU(2)_{\rm R} \times U(1)_{\rm B-L}$ model
- Additional fields are vector-like

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccc} T & (1,1,1,2;1,1,1,1) & 0 & 1 \\ \end{array} \right] $	ther
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	elds
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	cias
$T = \begin{bmatrix} (1, 1, 1, 2; 1, 1, 1, 1) \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
T (3,1,1,1;1,1,1) $-\frac{1}{3}$ 1	
T $(3, 1, 1, 1; \overline{3}, 1, 1, 1)$ $\frac{2}{3}$ 1	
T $(3, 1, 1, 1; 1, 1, 1, \overline{4})$ $-\frac{1}{3}$ 1	
T $(3,1,1,1;1,1,1)$ $-\frac{4}{3}$ 1 T $(3,1,1,1;1,1,1)$ $-\frac{1}{3}$ 1 T $(3,1,1,1;\overline{3},1,1,1)$ $\frac{2}{3}$ 1 T $(3,1,1,1;1,1,1,1,1)$ $-\frac{1}{3}$ 1 T $(3,1,1,1;1,1,1,1,1)$ $\frac{2}{3}$ 1 T $(3,1,1,1;1,1,1,1,1)$ $\frac{4}{3}$ 1 T $(\overline{3},1,1,1;1,1,1,1,1)$ $\frac{4}{3}$ 1 T $(\overline{3},1,1,1;1,1,1,1,1)$ $\frac{1}{3}$ 1 T $(\overline{3},1,1,1;1,1,1,1,1)$ $\frac{1}{3}$ 1 T $(\overline{3},1,1,1;1,1,1,1,1)$ $\frac{1}{3}$ 1 T $(\overline{3},1,1,1;1,1,1,1,1,1)$ 1 1	
T $(\overline{3}, 1, 1, 1; 1, 1, 1, 1)$ $\frac{1}{3}$ 1	
Vector-like fields $ T$ $ $ $(\overline{3}, 1, 1, 1; 3, 1, 1, 1)$ $ $ $-\frac{2}{3}$ $ $ 1	
T $(\overline{\bf 3}, {\bf 1}, {\bf 1}, {\bf 1}; {\bf 1}, {\bf 1}, \overline{\bf 4}, {\bf 1})$ $\frac{1}{3}$ 1	
T (1,2,2,1;1,1,1,1) -1 1	
$T \qquad (1, 1, 1, 2; 1, 1, 1, 1) \qquad -1 \qquad 1$	
T (1, 1, 1, 2; 1, 1, 1, 1) 1 1	
$T (1, 1, 1, 2; 1, 1, \overline{4}, 1) -1 1$	

I (OTT(0)) $\alpha TT(\alpha)$ (TTT()) $\alpha TT(\alpha)$ $\alpha \tau \tau (\alpha)$ att (1) 21

- Three-generation $SU(3)_{\rm C} \times SU(2)_{\rm L} \times SU(2)_{\rm R} \times U(1)_{\rm B-L}$ model
- Additional fields are vector-like

Massless spectrum ($SU(3)_{\rm C} \times SU(2)_{\rm L} \times SU(2)_{\rm R} \times SU(2)_{\rm F} \times SU(3)^2 \times SU(4)^2$)

- Three-generation $SU(3)_{\rm C} \times SU(2)_{\rm L} \times SU(2)_{\rm R} \times U(1)_{\rm B-L}$ model
- Additional fields are vector-like
- Gauge flavor symmetry $SU(2)_F$

	•	•••••(*)0	(-	/1					
	T	_			U/T	Irrep.	Q_{B-L}	Deg.	+ other
U/T		Irrep.	Q_{B-L}	Deg.	T	(1, 1, 1, 2; 1, 1, 1, 1)	0	1	fields
	$Q_{\mathbf{R}}$	$(\overline{f 3}, f 1, f 2, f 1; f 1, f 1, f 1, f 1)$	$-\frac{1}{6}$	3	T	(1, 1, 1, 2; 1, 1, 1, 1)	0	1	neids
U		$({f 1},{f 2},{f 1},{f 1};{f \overline 3},{f 1},{f 1},{f 1},{f 1})$	$-\frac{1}{2}$	3	T	(1, 1, 1, 2; 1, 1, 1, 1)	0	1	
	$\overline{Q}_{\mathrm{R}}$	(3 , 1 , 2 , 1 ; 1 , 1 , 1 , 1)	$\frac{1}{6}$	1	T	(1, 1, 1, 2; 1, 1, 1, 1)	0	1	
	$Q_{\rm R}$	$(\overline{\bf 3},{\bf 1},{\bf 2},{\bf 1};{\bf 1},{\bf 1},{\bf 1},{\bf 1})$	$-\frac{1}{c}$	1	T	(1, 1, 1, 2; 1, 1, 1, 1)	0	1	
	Q_{L2}	(3, 2, 1, 2; 1, 1, 1, 1)	$\frac{1}{c}^{0}$	1	T	(1, 1, 1, 2; 1, 1, 1, 1)	0	1	
	Q_{L1}	(3, 2, 1, 1; 1, 1, 1, 1)	$-\frac{1}{6} -\frac{1}{2}$ $-\frac{1}{6} -\frac{1}{6}$ $-\frac{1}{6} -\frac{1}{6}$ $\frac{1}{6} -\frac{1}{6} = 0$	1	T	(1, 1, 1, 2; 1, 1, 1, 4)	0	1	
	H	(1, 2, 2, 1; 1, 1, 1, 1)	Ő	1	T	(3, 1, 1, 1; 1, 1, 1, 1)	$-\frac{4}{2}$	1	
	H	(1, 2, 2, 1; 1, 1, 1, 1)	0	1	T	(3, 1, 1, 1; 1, 1, 1, 1)	$-\frac{2}{3}$	1	
		(1, 2, 1, 1; 3, 1, 1, 1)	$\frac{1}{2}$	1	T	$(3, 1, 1, 1; \overline{3}, 1, 1, 1)$	$\frac{2}{2}^{3}$	1	
		$(1, 2, 1, 1; \overline{3}, 1, 1, 1)$	$-\frac{1}{2}$	1		$(3, 1, 1, 1; 1, 1, 1, \overline{4})$	$-\frac{4}{3}$ $-\frac{4}{3}$ $-\frac{2}{3}$ $-\frac{4}{3}$ $-\frac{3}{3}$ $-\frac{4}{3}$ $-\frac{3}{3}$ $-\frac{1}{3}$ 1 1	1	
		(1, 2, 1, 1; 1, 1, 6, 1)	$\frac{1}{2}^{2}$	1		$(\overline{3}, 1, 1, 1; 1, 1, 1, 1)$	$\underline{4}^3$	1	
		(1, 2, 1, 1; 1, 1, 1, 4)	$\frac{1}{2}$	1		$(\overline{3}, 1, 1, 1; 1, 1, 1, 1)$	$\frac{3}{1}$	1	
		$({f 1},{f 2},{f 1},{f 1};{f 1},{f 1},{f 1},{f 1},{f 3})$	$-\frac{2}{2}$	1		$(\overline{3}, 1, 1, 1, 1, 1, 1, 1)$ $(\overline{3}, 1, 1, 1; 3, 1, 1, 1)$	$\overline{3}_2$	1	
		(1, 1, 2, 2; 3, 1, 1, 1)	$\frac{1}{2}^2$	1			$-\frac{3}{1}$	1	
		(1, 1, 2, 1; 3, 1, 1, 1)	$\frac{1}{2}$	1		$(\overline{3}, 1, 1, 1; 1, 1, \overline{4}, 1)$	3		
		(1, 1, 2, 1; 1, 1, 4, 1)	$-\frac{2}{1}$	1	$\begin{array}{c} T \\ T \end{array}$	(1,2,2,1;1,1,1,1) (1,2,2,1;1,1,1,1)			
		(1, 1, 2, 1; 1, 1, 4, 1) $(1, 1, 2, 1; 1, 1, \overline{4}, 1)$	$\frac{1}{2}^2$			(1, 2, 2, 1; 1, 1, 1, 1)	-1		
		(1, 1, 2, 1; 1, 1, 1, 1, 1) (1, 1, 2, 1; 1, 1, 1, 6)	$ \begin{array}{c} 0 \\ \frac{1}{2} \\ -\frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ -\frac{1}{2} \\ \frac{1}{2} \\ -\frac{1}{2} \\ \frac{1}{2} \\ -\frac{1}{2} \\ \frac{1}{2} \\ -\frac{1}{2} \\ -\frac{1}{2}$			(1,1,1,2;1,1,1,1)	-1		
		(1 , 1 , 2 , 2 , 1 , 1 , 1 , 1 , 0)	2			(1, 1, 1, 2; 1, 1, 1, 1)	1		
						$({f 1},{f 1},{f 1},{f 2};{f 1},{f 1},{f \overline 4},{f 1})$	-1	1	

Massless spectrum ($SU(3)_{\rm C} \times SU(2)_{\rm L} \times SU(2)_{\rm R} \times SU(2)_{\rm F} \times SU(3)^2 \times SU(4)^2$)

- Three-generation $SU(3)_{\rm C} \times SU(2)_{\rm L} \times SU(2)_{\rm R} \times U(1)_{\rm B-L}$ model
- Additional fields are vector-like
- Gauge flavor symmetry $SU(2)_F$
- No Top Yukawa from twisted sector ($HQ_{L1}Q_{R}$)

Three generation SU(3)xSU(2)xU(1) model

Z3 asymmetric orbifold compactification

• Narain lattice: $A_3^7 \times \overline{E}_6 \times U(1)$ lattice

- LET: $A_3^8 \xrightarrow[decompose]{} A_3^7 \times A_2 \times U(1) \xrightarrow[replace]{} A_3^7 \times \overline{E}_6 \times U(1)$
- Z3 shift vector: $V = (\alpha_1^{A_3} + 2\alpha_2^{A_3}, \alpha_1^{A_3} + 2\alpha_2^{A_3}, -\alpha_1^{A_3} 2\alpha_2^{A_3}, \alpha_3^{A_3}, 0, \alpha_3^{A_3}, \alpha_3^{A_3}, 0, 0)/3$
- Group breaking: $SU(4)^7 \times U(1) \rightarrow SU(4) \times SU(3)^3 \times SU(2)^3 \times U(1)^{10}$
- One anomalous $U(1)_A$ gauge symmetry

Three generation SU(3)xSU(2)xU(1) model

Massless spectrum ($SU(3)_{\rm C} \times SU(2)_{\rm L} \times SU(2)^2 \times SU(3)^2 \times SU(4)$)

U/T		Irrep.	Q_Y	Deg.
U	l^u	$({f 1},{f 2};{f 1},{f 1},{f 1},{f 1},{f 1},{f 1})$	$-\frac{1}{2}$	3
U	\overline{l}^u	$({f 1},{f 2};{f 1},{f 1},{f 1},{f 1},{f 1},{f 1})$	$\frac{1}{2}$	3
U	\overline{d}	$(\overline{f 3}, {f 1}; {f 1}, {f 1}, {f 1}, {f 1}, {f 1}, {f 1})$	$\frac{1}{3}$	3
	c_1	$({f 3},{f 1};{f 1},{f 1},{f 1},{f 1},{f 1},{f 1})$	$\frac{1}{2}$	3
	c_2	$({f 3},{f 1};{f 1},{f 1},{f 1},{f 1},{f 1},{f 1})$	$\frac{2}{3}$	3
	\overline{c}_1	$(\overline{f 3}, {f 1}; {f 1}, {f 1}, {f 1}, {f 1}, {f 1}, {f 1})$	$\frac{1}{3}$	3
T	\overline{c}_2	$(\overline{f 3}, {f 1}; {f 1}, {f 1}, {f 1}, {f 1}, {f 1}, {f 1})$	$-\frac{2}{3}$	3
T		$({f 1},{f 2};{f 1},{f 1},{f 1},{f 1},{f 1},{f 1})$	$-\frac{1}{2}$	3
T		$({f 1},{f 2};{f 2},{f 1},{f 1},{f 1},{f 1},{f 1})$	$\frac{1}{2}$	3
		$(1,2;1,1,\overline{3},1,1)$	$ \begin{array}{c} \frac{1}{2} \\ -\frac{1}{2} \\ \frac{1}{6} \\ -\frac{2}{3} \end{array} $	3
	q	$({f 3},{f 2};{f 1},{f 1},{f 1},{f 1},{f 1},{f 1})$	$\frac{1}{6}$	3
	\overline{u}	$(\overline{f 3}, {f 1}; {f 1}, {f 1}, {f 1}, {f 1}, {f 1}, {f 1})$	$-\frac{2}{3}$	3
	h_u	$({f 1},{f 2};{f 1},{f 1},{f 1},{f 1},{f 1},{f 1})$	$\frac{1}{2}$	3

+ other fields

Three-generation fields of SUSY SM model + Vector-like fields

- Three-generation $SU(3)_{\rm C} \times SU(2)_{\rm L} \times U(1)_{\rm Y}$ model
- "3"-generation is come from a degeneracy "3"
- Additional fields are vector-like

Three generation SU(3)xSU(2)xU(1) model

Massless spectrum ($SU(3)_{\rm C} \times SU(2)_{\rm L} \times SU(2)^2 \times SU(3)^2 \times SU(4)$)

U/T		Irrep.	Q_Y	Deg.
U	l^u	(1,2;1,1,1,1,1)		3
	\overline{l}^u	(1, 2; 1, 1, 1, 1, 1)	$ \begin{array}{c} -\frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{3} \\ -\frac{1}{3} \\ \frac{2}{3} \\ \frac{1}{3} \\ \frac{2}{3} \\ \frac{1}{3} \\ \frac{2}{3} \\ \frac{1}{3} \\ \frac{2}{3} \\ \frac{1}{3} \\ \frac{2}{3} \\ \frac{2}{3$	3
U	\overline{d}	$(\overline{f 3}, {f 1}; {f 1}, {f 1}, {f 1}, {f 1}, {f 1}, {f 1})$	$\frac{1}{3}$	3
T	c_1	$({f 3},{f 1};{f 1},{f 1},{f 1},{f 1},{f 1},{f 1})$	$-\frac{1}{3}$	3
T	c_2	$({f 3},{f 1};{f 1},{f 1},{f 1},{f 1},{f 1},{f 1})$	$\frac{2}{3}$	3
T	\overline{c}_1	$(\overline{f 3}, {f 1}; {f 1}, {f 1}, {f 1}, {f 1}, {f 1}, {f 1})$	$\frac{1}{3}$	3
T	\overline{c}_2	$(\overline{f 3}, {f 1}; {f 1}, {f 1}, {f 1}, {f 1}, {f 1}, {f 1})$	$-\frac{2}{3}$	3
T		$({f 1},{f 2};{f 1},{f 1},{f 1},{f 1},{f 1},{f 1})$	$-\frac{1}{2}$	3
T		$({f 1},{f 2};{f 2},{f 1},{f 1},{f 1},{f 1},{f 1})$	$\frac{1}{2}$	3
T		$({f 1},{f 2};{f 1},{f 1},{f \overline 3},{f 1},{f 1})$	$-\frac{1}{12}$	3
T	q	(3 , 2 ; 1 , 1 , 1 , 1 , 1)	$\frac{1}{6}$	3
	\overline{u}	$(\overline{3},1;1,1,1,1,1,1)$	$ \begin{array}{c} \frac{1}{2} \\ -\frac{1}{2} \\ \frac{1}{6} \\ -\frac{2}{3} \\ \frac{1}{2} \end{array} $	3
	h_u	$({f 1},{f 2};{f 1},{f 1},{f 1},{f 1},{f 1},{f 1})$	$\frac{1}{2}$	3

+ other fields

Three-generation fields of SUSY SM model + Vector-like fields

- Three-generation $SU(3)_{\rm C} \times SU(2)_{\rm L} \times U(1)_{\rm Y}$ model
- "3"-generation is come from a degeneracy "3"
- Additional fields are vector-like
- Top Yukawa from twisted sector
- Charm quark becomes heavy (Tree level superpotential)

 $y_{123}q_1h_{u2}\overline{u}_3 + y_{231}q_3h_{u1}\overline{u}_2 + y_{312}q_2h_{u3}\overline{u}_1 + y_{132}q_1h_{u3}\overline{u}_2 + y_{213}q_2h_{u1}\overline{u}_3 + y_{321}q_3h_{u2}\overline{u}_1$

SUSY SM in asymmetric orbifold vacua

 At this stage, we did model buildings from several lattices of 90 lattices, and get models with

Four-dimensions, N=1 supersymmetry, Standard model group(SU(3)*SU(2)*U(1)), LR symmetric group Three generations, Quarks, Leptons and Higgs, No exotics (vector-like) Top quark mass

Other quark masses (Charm quark mass) Proton stability, R-parity, Doublet-triplet splitting, Moduli stabilization,

. . .

Need to consider further model building from other Narain lattices and effective theory analysis

Conclusion

Conclusion and outlook

• Conclusion :

- -- Z3 asymmetric orbifold compactification of heterotic string
- -- Our starting point : Narain lattice
- -- 90 lattices with right-moving non-Abelian factor can be constructed from 24 dimensional lattices
- -- We calculate group breaking patterns of Z3 models
- -- Three generation SUSY SM / left-right symmetric models
- -- Gauge flavor symmetry is possible
- Outlook: Search for a realistic model
 - -- Search for Z3 models from other lattices
 - -- Other orbifolds Z6, Z12, Z3xZ3...
 - -- Yukawa hierarchy, (Gauge or discrete) Flavor symmetry,
 - -- Moduli stabilization, etc.

Back up

Lattice Engineering Technique

- Lattice engineering technique
 - Simple example

