Supersymmetrc branes on the conifold with magnetic fluxes

Akane Oikawa (Waseda U.)

Ongoing work with Hiroyuki Abe, Hajime Otsuka(Waseda U.)

November 21, 2013@PASCOS 2013, Taipei

Mass hierarchy problem

The Standard Model is very successful model, but

Quark and lepton masses and mixings

	Observed							
m_u, m_c, m_t	$(2.3 \times 10^{-3}, 1.28 \times 10^{0}, 1.74 \times 10^{2})$							
m_d, m_s, m_b	$(4.8 \times 10^{-3}, 0.95 \times 10^{-1}, 4.18 \times 10^{0})$							
$m_e, m_\mu, m_ au$	$(5.11 \times 10^{-4}, 1.06 \times 10^{-1}, 1.78 \times 10^{0})$							
$m_{ u_1},m_{ u_2},m_{ u_3}$	$< 2 \times 10^{-9}$							
$ m_{\nu_1}^2 - m_{\nu_2}^2 $	7.50×10^{-23}							
$ m_{\nu_1}^2 - m_{\nu_3}^2 $	2.32×10^{-21}							
$ V_{CKM} $	$ \begin{pmatrix} 0.97 & 0.23 & 0.0035 \\ 0.23 & 0.97 & 0.041 \\ 0.0087 & 0.040 & 1.0 \end{pmatrix} $							
$ V_{PMNS} $	$ \begin{pmatrix} 0.82 & 0.55 & 0.16 \\ 0.51 & 0.58 & 0.64 \\ 0.26 & 0.61 & 0.75 \end{pmatrix} $							

Hierarchical!

Superstring theory

- gravitational interaction
- few free parameters

Low energy effective theory:

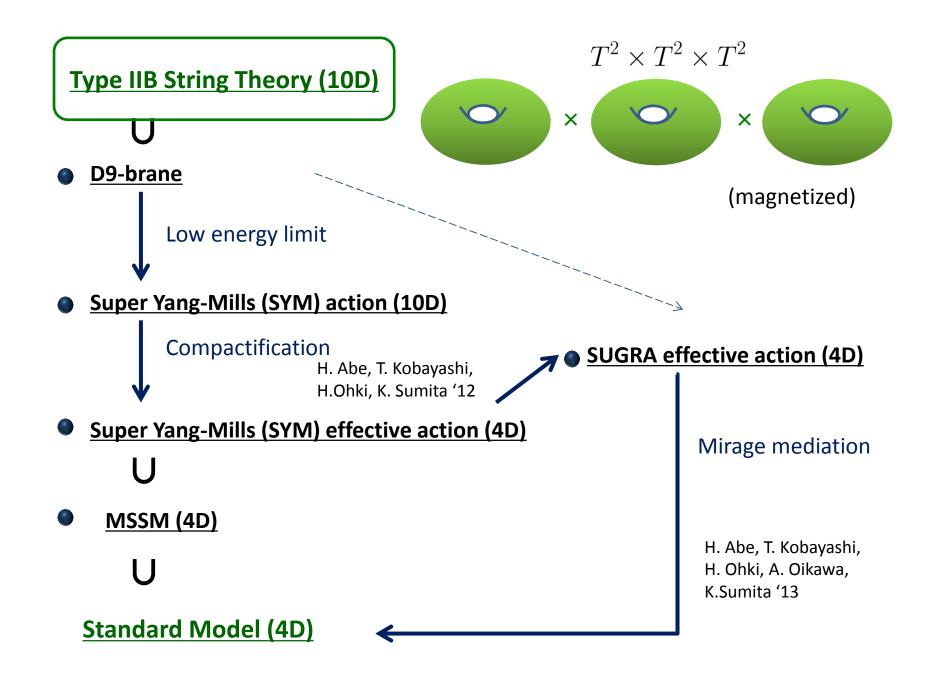
Super Yang-Mills(SYM) theory

Extra dimentson (4+6)=10 dim.

Supersymmetry

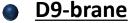
If standard model is embedded in SYM

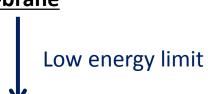
The Standard Model as low energy effective theory of the superstring theory



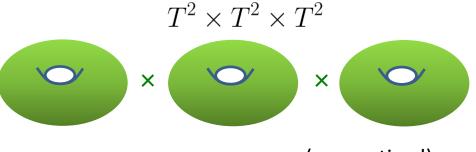
II. Model Building

Type IIB String Theory (10D)





Super Yang-Mills (SYM) action (10D)



(magnetized)

Torus number i, j = 1, 2, 3(1), (2), (3)

$_{\ell}$ Zero-mode wavefunction with magnetic flux $\,M\,$ and wilson line $\,\zeta\,$

$$\phi(x, z_1, z_2, z_3) = \sum_{I^{(1)}, I^{(2)}, I^{(3)}} \Theta^{I^{(1)}, M^{(1)}} \left(z_1 + \frac{\zeta^{(1)}}{M^{(1)}} \right) \Theta^{I^{(2)}, M^{(2)}} \left(z_2 + \frac{\zeta^{(2)}}{M^{(2)}} \right) \Theta^{I^{(3)}, M^{(3)}} \left(z_3 + \frac{\zeta^{(3)}}{M^{(3)}} \right)$$

$$\Theta^{I,M}(z+\eta) = \mathcal{N}e^{i\pi M(z+\eta)\frac{\mathrm{Im}(z+\eta)}{\mathrm{Im}\tau}}\vartheta\begin{bmatrix}I/M\\0\end{bmatrix}(M(z+\eta),M\tau)$$

Jacobi-theta function

$$\Theta^{I,M}(z+\eta) = \mathcal{N}e^{i\pi M(z+\eta)\frac{\mathrm{Im}(z+\eta)}{\mathrm{Im}\tau}}\vartheta\begin{bmatrix}I/M\\0\end{bmatrix}(M(z+\eta),M\tau)$$

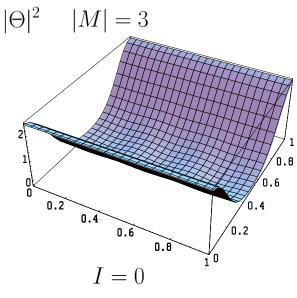
$$I^{(r)} = 0, 1, \cdots, |M^{(r)}| - 1$$

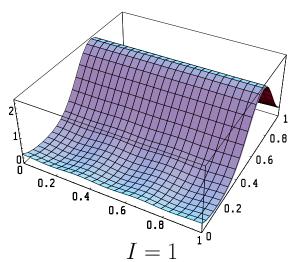
$\vartheta \begin{bmatrix} a \\ b \end{bmatrix} (\nu, \tau) = \sum_{l \in \mathbf{Z}} e^{\pi i (a+l)^2 \tau} e^{2\pi i (a+l)(\nu+b)}$

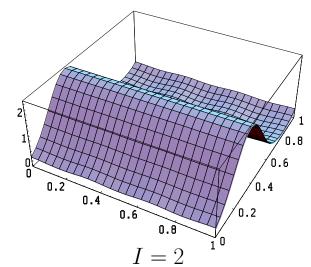
Generation = # of magnetic flux

Wavefunction localization

D. Cremades, L. E. Ibanez, F. Marchesano, JHEP 0405, 079 (2004)

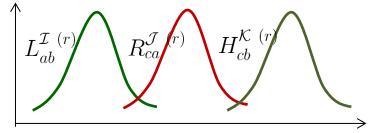






$$\mathcal{L}_{\text{Yukawa}} = Y_{\mathcal{I}\mathcal{J}\mathcal{K}} L_{ab}^{\mathcal{I}} R_{ca}^{\mathcal{J}} H_{cb}^{\mathcal{K}}$$

$$Y_{\mathcal{I}\mathcal{J}\mathcal{K}} = \int dz_i dar{z}_i \, \left| egin{matrix} L_{ab}^{\mathcal{I}\ (r)} \end{pmatrix}
ight.$$



Mass hierarchy structure

2

We choose Higgs VEVs, moduli VEVs, and wilson lines

At the EW scale through 1-loop MSSM RGEs

Quark / charged lepton masses and CKM mixing

	Sample values	Observed			
(m_u,m_c,m_t)	$(3.1 \times 10^{-3}, 1.01 \times 10^{0}, 1.70 \times 10^{2})$	$(2.3 \times 10^{-3}, 1.28 \times 10^{0}, 1.74 \times 10^{2})$			
(m_d,m_s,m_b)	$(2.8 \times 10^{-3}, 1.48 \times 10^{-1}, 6.46 \times 10^{0})$	$(4.8 \times 10^{-3}, 0.95 \times 10^{-1}, 4.18 \times 10^{0})$			
$(m_e,m_\mu,m_ au)$	$(4.68 \times 10^{-4}, 5.76 \times 10^{-2}, 3.31 \times 10^{0})$	$(5.11 \times 10^{-4}, 1.06 \times 10^{-1}, 1.78 \times 10^{0})$			
$ V_{CKM} $	$ \begin{pmatrix} 0.98 & 0.21 & 0.0023 \\ 0.21 & 0.98 & 0.041 \\ 0.011 & 0.040 & 1.0 \end{pmatrix} $	$ \begin{pmatrix} 0.97 & 0.23 & 0.0035 \\ 0.23 & 0.97 & 0.041 \\ 0.0087 & 0.040 & 1.0 \end{pmatrix} $			

Neutrino masses and PMNS matrix

	Sample values	Observed			
$(m_{ u_1}, m_{ u_2}, m_{ u_3})$	$(3.6 \times 10^{-19}, 8.8 \times 10^{-12}, 2.7 \times 10^{-11})$	$< 2 \times 10^{-9}$			
$ m_{\nu_1}^2 - m_{\nu_2}^2 $	7.67×10^{-23}	7.50×10^{-23}			
$ m_{ u_1}^2 - m_{ u_3}^2 $	7.12×10^{-22}	2.32×10^{-21}			
	$(0.85 \ 0.46 \ 0.25)$	$\int 0.82 \ 0.55 \ 0.16$			
$ V_{PMNS} $	0.50 0.59 0.63	0.51 0.58 0.64			
	$\setminus 0.15 \ 0.66 \ 0.73$	$\left(\begin{array}{ccc} 0.26 & 0.61 & 0.75 \end{array}\right)$			

Semi-realistic pattern

Extending the model to Calabi-Yau

-Mass term like majorana neutrino term may be obtained while torus model cannot.

-We want to look for guiding principle for geometry of string theory

D3-brane

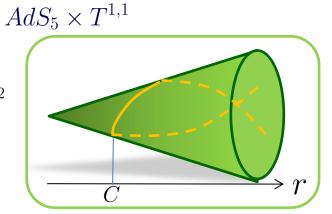
Branes at Singularity

- -Fractional D3/D7-brane at singularity
- -We can know Gauge groups, Yukawa couplings, and flavor structure as Local Model.
 - -Moduli stabilization as Global Model.
- -There are not models which contains realistic CKM or mass hierarchy structure in Type IIB string framework naively.

Local Model - D7-branes on Conifold

$$ds_{T^{1,1}}^2 = \frac{1}{6} \sum_{i=1}^{2} \left(d\theta_i^2 + \sin^2 \theta_i d\phi_i^2 \right) + \frac{1}{9} \left(d\psi + \sum_{i=1}^{2} \cos \theta_i d\phi_i \right)^2$$

J. P. Gauntlett, D. Martelli, J. Sparks, D. Waldram '04



	x_0	x_1	x_2	x_3	θ_1	ϕ_1	$ heta_2$	ϕ_2	ψ	r
dimension	0	1	2	3	4	5	6	7	8	9
D7-brane	0	0	0	0	0	0	0	0		

Kappa symmetry condition (Local SUSY) $\, \Gamma_{\kappa} \epsilon = \epsilon \,$

$$\psi = n_1 \phi_1 + n_2 \phi_2 + const \qquad n_1, n_2 \in \mathbb{Z}$$

$$r^3 = \frac{C^2}{\left(\sin\frac{\theta_1}{2}\right)^{n_1+1} \left(\cos\frac{\theta_1}{2}\right)^{1-n_1} \left(\sin\frac{\theta_2}{2}\right)^{n_2+1} \left(\cos\frac{\theta_2}{2}\right)^{1-n_2}}$$

Induced metric for D7-brane

D. Arean, E. Crooks, V. Ramallo '04

$$g = \frac{1}{6} \sum_{i=1}^{2} (d\theta_i^2 + \sin^2\theta_i d\phi_i^2) + \frac{1}{9} (C_1(\theta_1) d\theta_1 + C_2(\theta_2) d\theta_2)^2 + \frac{1}{9} (C_1(\theta_1) \sin\theta_1 d\phi_1 + C_2(\theta_2) \sin\theta_2 d\phi_2)^2$$

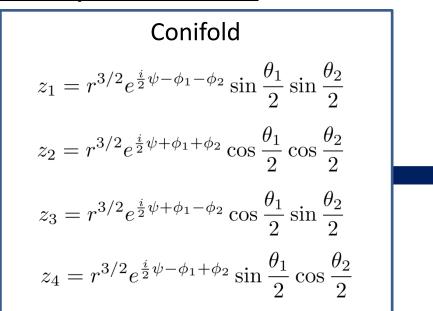
$$C_i(\theta_i) \equiv \frac{n_i + \cos\theta_i}{\sin\theta_i} \quad (i = 1, 2)$$

Mass hierarchy structure is yielded if zero mode wavefunctions of matter fields (quasi-)localize

When $\,(n_1,n_2)=(1,1)\,$, D7-brane has non-zero minimal value of $\,r\,$, $\,r_*=C\,$

D. Arean, E. Crooks, V. Ramallo '04

Holomorphic coordinates



D7-brane

$$z_1 = C$$

$$z_2 = z_3 z_4$$

$$z_3 = C \cot \frac{\theta_1}{2} e^{i\phi_1}$$

$$z_4 = C \cot \frac{\theta_2}{2} e^{i\phi_2}$$

Kahler form

$$J = -\frac{2}{3}Q_1\Omega_{11} - \frac{2}{3}Q_2\Omega_{22} - \frac{2}{9}\cot\frac{\theta_1}{2}\cot\frac{\theta_2}{2}(\Omega_{12} + \Omega_{21})$$

$$F = MQ_1\Omega_{11} - MQ_1\Omega_{22} \qquad Q_i = \frac{3}{2} + \cot^2\frac{\theta_i}{2}$$

$$J \wedge F = 0 \qquad \Omega_{ij} = d\theta_i \wedge \sin\theta_j d\phi_j$$

Laplacian

$$\frac{-g^{\mu\nu}D_{\mu}D_{\nu}\Phi=-2g^{z\bar{z}}D_{\bar{z}}D_{z}\Phi-\underline{g}^{\bar{z}z}[D_{z},D_{\bar{z}}]\Phi}{D_{z}\Phi=0}$$
 Zero mode function
$$\frac{D_{z}\Phi=0}{\mathrm{Li}_{n}(z)\equiv\sum_{k=1}^{\infty}\frac{z^{k}}{k^{n}}}$$

Wavefunction

(PolyLogarithm function)

Laplacian

$$\frac{-g^{\mu\nu}D_{\mu}D_{\nu}\Phi=-2g^{z\bar{z}}D_{\bar{z}}D_{z}\Phi-\underline{g}^{\bar{z}z}[D_{z},D_{\bar{z}}]\Phi}{D_{z}\Phi=0}$$
 Zero mode function
$$\frac{D_{z}\Phi=0}{\mathrm{Li}_{n}(z)\equiv\sum_{k=1}^{\infty}\frac{z^{k}}{k^{n}}}$$

Wavefunction

(PolyLogarithm function)

$$\begin{array}{c} D_{z_{3}}\Phi=0 & \stackrel{\bullet}{\longrightarrow} \Phi_{1}(z_{3},\bar{z_{3}}) \propto \left(\frac{z_{3}}{1+z_{3}\bar{z_{3}}}\right)^{\frac{M}{2}}f(\bar{z}_{3})e^{M\text{Li}_{2}(-z_{3}\bar{z_{3}})} & M>0 \\ D_{\bar{z}_{3}}\Phi=0 & \stackrel{\bullet}{\longrightarrow} \Phi_{2}(z_{3},\bar{z_{3}}) \propto \left(\frac{\bar{z}_{3}}{1+z_{3}\bar{z_{3}}}\right)^{-\frac{M}{2}}g(z_{3})e^{-M\text{Li}_{2}(-z_{3}\bar{z_{3}})} & M<0 \\ D_{z_{4}}\Phi=0 & \stackrel{\bullet}{\longrightarrow} \Phi_{3}(z_{4},\bar{z_{4}}) \propto \left(\frac{z_{4}}{1+z_{4}\bar{z_{4}}}\right)^{-\frac{M}{2}}h(\bar{z}_{4})e^{-M\text{Li}_{2}(-z_{4}\bar{z_{4}})} & M>0 \\ D_{\bar{z}_{4}}\Phi=0 & \stackrel{\bullet}{\longrightarrow} \Phi_{4}(z_{4},\bar{z_{4}}) \propto \left(\frac{\bar{z}_{4}}{1+z_{4}\bar{z_{4}}}\right)^{\frac{M}{2}}k(z_{4})e^{M\text{Li}_{2}(-z_{4}\bar{z_{4}})} & M<0 \\ \text{Localize at} & z\to0 & z\to\infty \\ \end{array}$$

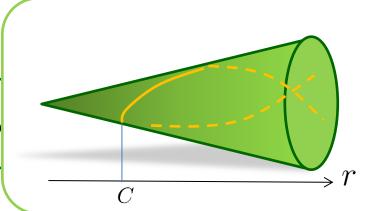
Laplacian

$$-g^{\mu\nu}D_{\mu}D_{\nu}\Phi = -2g^{z\bar{z}}$$

$$D_{z}\Phi=0$$

$$D_{\bar{z}}\Phi = 0$$

Zero mo



Wavefunction

$$D_{z_3}\Phi = 0 \xrightarrow{\bullet} \Phi_1(z_3, \bar{z_3}) \propto \left(\frac{z_3}{1 + z_3 \bar{z_3}}\right)^{\frac{M}{2}} f(\bar{z}_3) e^{M \operatorname{Li}_2(-z_3 \bar{z_3})}$$
 $M > 0$

$$D_{\bar{z}_3}\Phi = 0 \rightarrow \Phi_2(z_3, \bar{z_3}) \propto \left(\frac{\bar{z}_3}{1 + z_3\bar{z_3}}\right)^{-\frac{M}{2}} g(z_3) e^{-M \text{Li}_2(-z_3\bar{z_3})}$$

$$D_{\bar{z}_3} \Phi = 0 \to \Phi_2(z_3, \bar{z_3}) \propto \left(\frac{\bar{z}_3}{1 + z_3 \bar{z_3}}\right)^{-\frac{M}{2}} g(z_3) e^{-M \text{Li}_2(-z_3 \bar{z_3})} \qquad M < 0 \qquad M > 0$$

$$D_{z_4} \Phi = 0 \to \Phi_3(z_4, \bar{z_4}) \propto \left(\frac{z_4}{1 + z_4 \bar{z_4}}\right)^{-\frac{M}{2}} h(\bar{z_4}) e^{-M \text{Li}_2(-z_4 \bar{z_4})} \qquad M > 0 \qquad M < 0$$

$$M \sim 0$$

$$D_{\bar{z}_4}\Phi = 0 \quad \Longrightarrow_{\Phi_4(z_4,\,\bar{z_4})} \propto \left(\frac{\bar{z}_4}{1 + z_4\bar{z_4}}\right)^{\frac{M}{2}} k(z_4) e^{M \text{Li}_2(-z_4\bar{z_4})} \quad M < 0 \qquad M > 0$$

$$\text{Localize at} \quad z \to 0 \qquad z \to \infty$$

$$z \to 0$$

M < 0

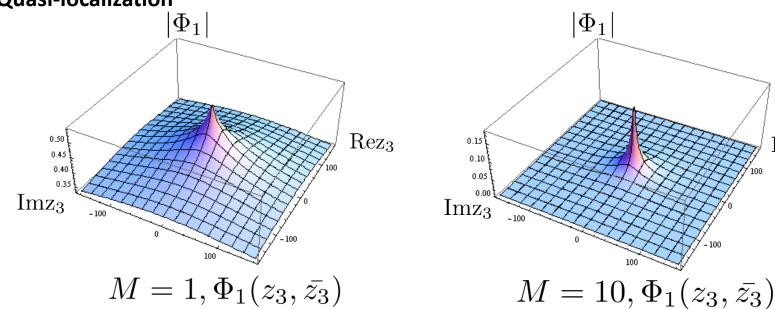
$$z \to 0$$

$$\longleftrightarrow$$

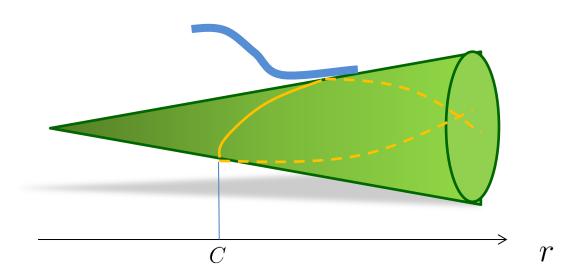
$$\rightarrow C$$
 r –

$$r \rightarrow \infty$$

Quasi-localization



 Rez_3



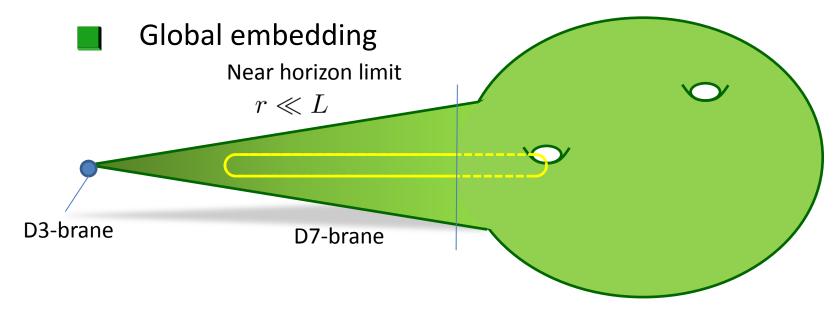
Summary

- We studied 8D SYM theory on supersymmetric D7-brane model in conifold with magnetic flux.
- We obtained analytical solutions of the bosonic zeromode wavefunction on the D7-brane wrapping conifold

Quasi-localization of the wavefunctions may derive mass hierarchy structure

Future Work

- Fermionic wavefunction, Yukawa coupling
 - Phenomenological analysis



Local Model

 $conifold \quad z_1 z_2 - z_3 z_4 = 0$

D7-brane $z_1 = C$

Global Model

Compact CY can be constructed by ambient toric space.

lacksquare D-branes on Sasaki-Einstein manifolds $Y^{p,q}$