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1.1 Scheme of 3 flavor
 

ν
 

oscillation
Mixing matrix

All 3 mixing angles have been measured (2012): 

Functions of 
mixing angles

 θ12 , θ23 , θ13 , 
and

 
CP phase

 
δδ

νatm+K2K,MINOS(accelerators) 232
3223 eV102.5|Δm|,

4
πθ −×≅≅

20/θ13 π≅DCHOOZ+Daya
 Bay+Reno

 
(reactors), 

T2K+MINOS, others

Both hierarchy 
patterns are 
allowed

1. Introduction

Normal 
Hierarchy

Inverted 
Hierarchy
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Analytical expressions for ν
 

oscillation 
probability are useful to discuss 
qualitative behaviors in various cases.

ν oscillation probability in matter is 
complicated beyond the 2-flavor case. 

The results which are obtained so far 
are mainly for the case of matter with 
constant density

In this talk treatment of more 
generalized cases is

 
discussed.
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Probability of
 

ν
 

oscillation can be expressed in terms of the 
energy eigenvalues

 
and bilinear forms                               

of effective mixing matrix elements in matter

2
j

2
j

mpE +≡

effective mixing matrix elements in matter

1.2 Exact oscillation probability in 
matter with constant density

matter 
effect
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Thus the problem of obtaining the exact analytical 
oscillation probability is reduced to obtaining only the 
eigenvalues

 
!

1.3 Formulation by Kimura-Takamura-
 Yokomakura

 
(KTY PLB537:86,2002)

Simultaneous equation for                              can be solved
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It can be generalized to the case with 
adiabatically varying mass matrix in L=∞ limit:

2.Extension of KTY’s
 

formulation

(in vacuum at t=t2
 

)

Average over 
rapid 
oscillations
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In KTY’s
 

formulation the bilinear form
 can be obtained, but itself cannot be.

It turns out that         can be obtained from 
the bilinear form                       
: the main result of this talk

To generalize to the nonadiabatical cases,
the mixing matrix element itself is required.
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In the following, the notation is
 

used; we assume           is known from KTY

From
 

trivial identities, 
we have：

→Up to phases, we obtain the following        ：
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To get the standard parameterization, we multiply a 
diagonal phase matrix both from left and right as 
follows:

At a locally given density, 
we can obtain the analytical 
expression for the effective 
mixing angles.
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Two flavor case

3. An example of non-adiabatic cases

Non-adiabatic case: we can  
describe it by inserting the 
probability of jumping

x

Adiabatic case
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Kuo-Pantaleone, RMP61 (‘89) 937Probability of jumping

The probability of jumping depends on details of the 
density profile

A (density profile)
 
F
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x

Three flavor case

Non-adiabatic case: we 
can describe it by inserting  
the probability of jumping
at two regions

Adiabatic case
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To describe non-
 adiabatic transitions, 

the expressions for 
the effective mixing 
angles are useful.

x

The expression for          
can be used for

The expression for          
can be used for
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A∝ρ

x

L

H
For simplicity self interactions 
of

 
ν

 
are not considered

From other
 

ν experiments μ
 components can be

 
ignored.

Example:Supernova
 

ν
 

with Non-
 Standard Interactions in matter
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Constraints from 
high energy νatm

λ9=diag(1,0,-1) γ=arg(εeτ)

Due to NSI, the effective mixing angles are modified:
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From these, we get the probability which takes into 
account non-adiabatic transitions
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From trivial identities, we can (in principle) 
obtain the analytical expression for the 
mixing angles and the CP phase.

Using such expressions, probability for ν 
flavor transitions including non-adiabatic 
processes can be analytically obtained.

As a demonstration, one example was 
discussed: Supernova ν with Non-Standard 
Interactions in matter

4. Summary
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