An analytical treatment of neutrino oscillation probabilities

Tokyo Metropolitan University (首都大学東京)

Osamu Yasuda (安田修)

Nov. 22, 2013 @ Pascos 2013

1. Introduction

- 1.1 Scheme of 3 flavor ν oscillation
- 1.2 Exact oscillation probability in matter with constant density
- **1.3 Formulation by Kimura-Takamura-Yokomakura**
- 2. Extension of KTY's formulation
- An example of non-adiabatic cases
 Summary

Revised version of arxiv:0704.1531v2 (to appear in future)

1. Introduction

1.1 Scheme of 3 flavor v oscillation

Mixing matrix

Functions of mixing angles $\theta_{12}, \theta_{23}, \theta_{13},$ and CP phase δ

$$\begin{pmatrix} \mathbf{v}_{e} \\ \mathbf{v}_{\mu} \\ \mathbf{v}_{\tau} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu1} & U_{\mu2} & U_{\mu3} \\ U_{\tau1} & U_{\tau2} & U_{\tau3} \end{pmatrix} \begin{pmatrix} \mathbf{v}_{1} \\ \mathbf{v}_{2} \\ \mathbf{v}_{3} \end{pmatrix}$$

All 3 mixing angles have been measured (2012):

V _{solar} +KamLAND (reactor)	$\theta_{12} \cong \frac{\pi}{6}, \Delta m_{21}^2 \cong 8 \times 10^{-5} eV^2$
v _{atm} +K2K,MINOS(accelerators)	$\theta_{23} \cong \frac{\pi}{4}, \Delta m_{32}^2 \cong 2.5 \times 10^{-3} eV^2$
DCHOOZ+Daya Bay+Reno (reactors), T2K+MINOS, others	$\theta_{13} \cong \pi / 20$ 3/18

Analytical expressions for v oscillation probability are useful to discuss qualitative behaviors in various cases.

v oscillation probability in matter is complicated beyond the 2-flavor case.
The results which are obtained so far are mainly for the case of matter with constant density

In this talk treatment of more generalized cases is discussed.

1.2 Exact oscillation probability in
matter with constant density

$$i\frac{d}{dt} \begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \left(U\mathcal{E}U^{-1} + \mathcal{A} \right) \begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} \quad \text{matter} \\ effect \end{pmatrix} \quad \mathcal{E} \equiv \operatorname{diag}(E_1, E_2, E_3) \\ \mathcal{A} \equiv \operatorname{diag}(\tilde{E}_1, \tilde{E}_2, \tilde{E}_3) \\ \mathcal{A} \equiv \sqrt{2}G_F N_e \\ \Delta \tilde{E}_{jk} \equiv \tilde{E}_j - \tilde{E}_k \end{pmatrix}$$

$$U\mathcal{E}U^{-1} + \mathcal{A} = \widehat{U}\widetilde{\mathcal{E}}\widetilde{U}^{-1} \quad \mathbf{E}_{\mathbf{j}} \equiv \sqrt{\mathbf{p}^2 + \mathbf{m}_{\mathbf{j}}^2} \quad \mathbf{U} = \begin{bmatrix} \mathbf{U}_{\mathbf{e}1} & \mathbf{U}_{\mathbf{e}2} & \mathbf{U}_{\mathbf{e}3} \\ \mathbf{U}_{\mathbf{j}1} & \mathbf{U}_{\mathbf{j}2} & \mathbf{U}_{\mathbf{j}3} \\ \mathbf{U}_{\mathbf{j}1} & \mathbf{U}_{\mathbf{j}3} & \mathbf{U}_{\mathbf{j}3} \\ \mathbf{U}_{\mathbf{j}3} & \mathbf{U}_{\mathbf{j}3} \\ \mathbf{U}_{\mathbf{j}3} & \mathbf{U}_{\mathbf{j}3} & \mathbf{U}_{\mathbf{j}3} \\ \mathbf{U}_{\mathbf{j}3} & \mathbf{U}_{\mathbf{j}3} & \mathbf{U}_{\mathbf{j}3} \\ \mathbf{U}_{\mathbf{j}3} & \mathbf{U}_{\mathbf{j}3} \\ \mathbf{U}_{\mathbf{j}3} & \mathbf{U}_{\mathbf{j}3} & \mathbf{U}_{\mathbf{j}3} \\ \mathbf{U}_{\mathbf{j}3} &$$

Probability of v oscillation can be expressed in terms of the energy eigenvalues \tilde{E}_j and bilinear forms $\tilde{X}_j^{\alpha\beta} \equiv \tilde{U}_{\alpha j}\tilde{U}_{\beta j}^*$ of effective mixing matrix elements in matter

Thus the problem of obtaining the exact analytical oscillation probability is reduced to obtaining only the eigenvalues $|\tilde{E}_j|$!

2.Extension of KTY's formulation

● It can be generalized to the case with adiabatically varying mass matrix in L=∞ limit:

$$\begin{split} i\frac{d}{dt}\psi(t) &= \tilde{U}(t)\,\tilde{\mathcal{E}}(t)\,\tilde{U}^{-1}(t) \quad \psi(t_2) &= \tilde{U}(t_2)\,\exp\left(-i\int_{t_1}^{t_2}\,\tilde{\mathcal{E}}(t)dt\right)\,\tilde{U}^{-1}(t_1)\psi(t_1) \\ A(\nu_{\alpha}\to\nu_{\beta}) &= \left[\tilde{U}(t_2)\,\exp\left(-i\int_{t_1}^{t_2}\,\tilde{\mathcal{E}}(t)dt\right)\,\tilde{U}^{-1}(t_1)\right]_{\beta\alpha} \\ &= \sum_j \tilde{U}(t_2)_{\beta j}\exp\left(-i\int_{t_1}^{t_2}\,\tilde{E}_j(t)dt\right)\tilde{U}(t_1)^*_{\alpha j} \end{split}$$
 Average over rapid oscillations

$$P(\nu_{\alpha} \to \nu_{\beta}) = |A(\nu_{\alpha} \to \nu_{\beta})|^{2}$$

$$= \sum_{j,k} \tilde{U}(t_{2})_{\beta j} \tilde{U}(t_{2})_{\beta k}^{*} \tilde{U}(t_{1})_{\alpha j}^{*} \tilde{U}(t_{1})_{\alpha k} \exp\left(-i \int_{t_{1}}^{t_{2}} \Delta \tilde{E}_{jk}(t) dt\right)$$

$$\to \sum_{j} \left|\tilde{U}(t_{1})_{\alpha j}\right|^{2} \left|\tilde{U}(t_{2})_{\beta j}\right|^{2} \qquad \left(\exp\left(-i \int_{t_{1}}^{t_{2}} \Delta \tilde{E}_{jk}(t) dt\right) \to \delta_{jk}\right)$$

$$= \left(|U_{\beta 1}|^{2}, |U_{\beta 2}|^{2}, |U_{\beta 3}|^{2}\right) \left(\begin{array}{c}|\tilde{U}_{\alpha 1}|^{2}\\|\tilde{U}_{\alpha 3}|^{2}\\|\tilde{U}_{\alpha 3}|^{2}\end{array}\right) \qquad \text{(in vacuum at t=t_{2})}$$

$$= \left(|U_{\beta 1}|^{2}, |U_{\beta 2}|^{2}, |U_{\beta 3}|^{2}\right) \left(\begin{array}{c}|\tilde{U}_{\alpha 3}|^{2}\\|\tilde{U}_{\alpha 3}|^{2}\\|\tilde{U}_{\alpha 3}|^{2}\end{array}\right) \qquad (in vacuum at t=t_{2})$$

•To generalize to the nonadiabatical cases, the mixing matrix element $\tilde{U}_{\alpha j}$ itself is required.

In KTY's formulation the bilinear form $\tilde{X}_{j}^{\alpha\beta} \equiv \tilde{U}_{\alpha j}\tilde{U}_{\beta j}^{*}$ can be obtained, but $\tilde{U}_{\alpha j}$ itself cannot be.

In the following, the notation $|\tilde{X}_{j}^{\alpha\beta}| \equiv \tilde{U}_{\alpha j}\tilde{U}_{\beta j}^{*}|$

is

used; we assume $|\tilde{X}_{i}^{\alpha\beta}|$ is known from KTY

From trivial identities, we have:

$$\tilde{U}_{ej} = \sqrt{\tilde{X}_{j}^{ee}} e^{i \arg \tilde{U}_{ej}},$$
$$\tilde{U}_{\mu j} = \frac{\tilde{X}_{j}^{\mu e}}{\sqrt{\tilde{X}_{j}^{ee}}} e^{i \arg \tilde{U}_{ej}},$$
$$\tilde{U}_{\tau j} = \frac{\tilde{X}_{j}^{\tau e}}{\sqrt{\tilde{X}_{j}^{ee}}} e^{i \arg \tilde{U}_{ej}}$$

\rightarrow Up to phases, we obtain the following $|\tilde{U}_{\alpha i}|$:

$$\tilde{U}_{0} \equiv \left(\begin{pmatrix} \sqrt{\tilde{X}_{1}^{ee}} \\ \tilde{X}_{1}^{\mu e} / \sqrt{\tilde{X}_{1}^{ee}} \\ \tilde{X}_{1}^{\tau e} / \sqrt{\tilde{X}_{1}^{ee}} \end{pmatrix}, \begin{pmatrix} \sqrt{\tilde{X}_{2}^{ee}} \\ \tilde{X}_{2}^{\mu e} / \sqrt{\tilde{X}_{2}^{ee}} \\ \tilde{X}_{2}^{\tau e} / \sqrt{\tilde{X}_{2}^{ee}} \end{pmatrix}, \begin{pmatrix} \sqrt{\tilde{X}_{3}^{ee}} \\ \tilde{X}_{3}^{\mu e} / \sqrt{\tilde{X}_{3}^{ee}} \\ \tilde{X}_{3}^{\tau e} / \sqrt{\tilde{X}_{3}^{ee}} \end{pmatrix} \right)$$

9/18

To get the standard parameterization, we multiply a
diagonal phase matrix both from left and right as
follows:

$$\widetilde{U} \equiv e^{i\alpha} e^{i\beta\lambda_3} e^{i\gamma\lambda'_8} \widetilde{U}_0 e^{i\gamma'\lambda'_8} e^{i\beta'\lambda_3}$$

$$\stackrel{arg \widetilde{U}_{e1} = 0}{arg \widetilde{U}_{e2} = 0}$$

$$arg \widetilde{U}_{e3} = 0$$

$$arg \widetilde{U}_{r3} = 0$$

$$arg det \widetilde{U}_{\alpha j} = 0$$

$$\stackrel{\alpha}{\longrightarrow} = \frac{1}{2} \operatorname{arg det} \widetilde{U}_0 - \frac{1}{2} \operatorname{arg} \widetilde{X}_3^{\pi e},$$

$$\beta' = 0,$$

$$\gamma = \frac{1}{6} \operatorname{arg det} \widetilde{U}_0 - \frac{1}{3} \operatorname{arg} \widetilde{X}_3^{\mu e} + \frac{1}{6} \operatorname{arg} \widetilde{X}_3^{\pi e},$$

$$\gamma' = -\frac{1}{3} \operatorname{arg det} \widetilde{U}_0 + \frac{1}{3} \operatorname{arg} \widetilde{X}_3^{\mu e} + \frac{1}{3} \operatorname{arg} \widetilde{X}_3^{\pi e},$$

$$\gamma' = -\frac{1}{3} \operatorname{arg det} \widetilde{U}_0 + \frac{1}{3} \operatorname{arg} \widetilde{X}_3^{\mu e} + \frac{1}{3} \operatorname{arg} \widetilde{X}_3^{\pi e},$$

$$\gamma' = -\frac{1}{3} \operatorname{arg det} \widetilde{U}_0 + \frac{1}{3} \operatorname{arg} \widetilde{X}_3^{\mu e} + \frac{1}{3} \operatorname{arg} \widetilde{X}_3^{\pi e},$$

$$\gamma' = -\frac{1}{3} \operatorname{arg det} \widetilde{U}_0 + \frac{1}{3} \operatorname{arg} \widetilde{X}_3^{\mu e} + \frac{1}{3} \operatorname{arg} \widetilde{X}_3^{\pi e},$$

$$\gamma' = -\frac{1}{3} \operatorname{arg det} \widetilde{U}_0 + \frac{1}{3} \operatorname{arg} \widetilde{X}_3^{\mu e} + \frac{1}{3} \operatorname{arg} \widetilde{X}_3^{\pi e},$$

$$\gamma' = -\frac{1}{3} \operatorname{arg det} \widetilde{U}_0 + \frac{1}{3} \operatorname{arg} \widetilde{X}_3^{\mu e} + \frac{1}{3} \operatorname{arg} \widetilde{X}_3^{\pi e},$$

$$\gamma' = -\frac{1}{3} \operatorname{arg det} \widetilde{U}_0 + \frac{1}{3} \operatorname{arg} \widetilde{X}_3^{\mu e} + \frac{1}{3} \operatorname{arg} \widetilde{X}_3^{\pi e},$$

$$\gamma' = -\frac{1}{3} \operatorname{arg det} \widetilde{U}_0 + \frac{1}{3} \operatorname{arg} \widetilde{X}_3^{\mu e} + \frac{1}{3} \operatorname{arg} \widetilde{X}_3^{\pi e},$$

$$\gamma' = -\frac{1}{3} \operatorname{arg det} \widetilde{U}_0 + \frac{1}{3} \operatorname{arg} \widetilde{X}_3^{\mu e} + \frac{1}{3} \operatorname{arg} \widetilde{X}_3^{\pi e},$$

$$\gamma' = -\frac{1}{3} \operatorname{arg det} \widetilde{U}_0 - \operatorname{arg} \widetilde{X}_3^{\mu e} + \frac{1}{3} \operatorname{arg} \widetilde{X}_3^{\pi e},$$

$$\gamma' = -\frac{1}{3} \operatorname{arg det} \widetilde{U}_0 - \operatorname{arg} \widetilde{X}_3^{\mu e} - \operatorname{arg} \widetilde{X}_3^{\pi e},$$

$$\gamma' = -\frac{1}{3} \operatorname{arg} \operatorname{det} \widetilde{U}_0 - \operatorname{arg} \widetilde{X}_3^{\mu e} - \operatorname{arg} \widetilde{X}_3^{\pi e},$$

$$\gamma' = -\frac{1}{3} \operatorname{arg} \operatorname{det} \widetilde{U}_0 - \operatorname{arg} \widetilde{X}_3^{\mu e} - \operatorname{arg} \widetilde{X}_3^{\pi e},$$

$$\gamma' = -\frac{1}{3} \operatorname{arg} \operatorname{det} \widetilde{U}_0 - \operatorname{arg} \widetilde{X}_3^{\mu e} - \operatorname{arg} \widetilde{X}_3^{\pi e},$$

$$\delta = \alpha + \beta + \gamma - 2\gamma' = \operatorname{arg} \operatorname{det} \widetilde{U}_0 - \operatorname{arg} \widetilde{X}_3^{\mu e} - \operatorname{arg} \widetilde{X}_3^{\pi e},$$

$$\gamma' = -\frac{1}{3} \operatorname{arg} \operatorname{det} \widetilde{U}_0 - \operatorname{arg} \widetilde{X}_3^{\mu e} - \operatorname{arg} \widetilde{X}_3^{\pi e},$$

$$\gamma' = -\frac{1}{3} \operatorname{arg} \operatorname{det} \widetilde{U}_0 - \operatorname{arg} \widetilde{X}_3^{\mu e} - \operatorname{arg} \widetilde{X}_3^{\mu e},$$

3. An example of non-adiabatic cases

Two flavor case

Adiabatic case

$$P(\nu_{\alpha} \to \nu_{\beta}) = \left(|U_{\beta 1}|^2, |U_{\beta 2}|^2 \right) \left(\begin{array}{c} |\tilde{U}_{\alpha 1}|^2 \\ |\tilde{U}_{\alpha 2}|^2 \end{array} \right)$$

Non-adiabatic case: we can describe it by inserting the probability of jumping

 $P(\nu_{\alpha} \to \nu_{\beta}) = \left(|U_{\beta 1}|^2, |U_{\beta 2}|^2 \right) \left(\begin{array}{cc} 1 - \bar{P}_c & \bar{P}_c \\ \bar{P}_c & 1 - \bar{P}_c \end{array} \right) \left(\begin{array}{cc} 1 - \bar{P}_c & \bar{P}_c \\ \bar{P}_c & 1 - \bar{P}_c \end{array} \right)$

Probability of jumping

Kuo-Pantaleone, RMP61 ('89) 937

12/18

$$P_c = \frac{\exp\left[-(\pi/2)F\gamma\right] - \exp\left[-(\pi/2)F\gamma/\sin^2\theta\right]}{1 - \exp\left[-(\pi/2)F\gamma/\sin^2\theta\right]}$$

 $\Delta E \sin^2 2\theta$

 $\cos 2\theta |d\log N_e/dx|_{res}$

The probability of jumping depends on details of the density profile

A (density profile)	F
$A \propto \exp(-r)$	$1-\tan^2\theta$
$A \propto r$	1
$A \propto 1/r$	$(1-\tan^2\theta)^2/(1+\tan^2\theta)$
$A \propto r^n$	$2\sum_{m=0}^{\infty} {\binom{1/n}{-1} \choose \frac{1}{2m}} {\binom{1}{2m}} {(\tan 2\theta)^{2m}}$

Three flavor case

Adiabatic case

$$P(\nu_{\alpha} \to \nu_{\beta}) = \left(|U_{\beta 1}|^2, |U_{\beta 2}|^2, |U_{\beta 3}|^2 \right) \begin{pmatrix} |\tilde{U}_{\alpha 1}|^2 \\ |\tilde{U}_{\alpha 2}|^2 \\ |\tilde{U}_{\alpha 3}|^2 \end{pmatrix}$$

Non-adiabatic case: we can describe it by inserting the probability of jumping at two regions

$$P(\nu_{\alpha} \to \nu_{\beta}) = (|U_{\beta 1}|^2, |U_{\beta 2}|^2, |U_{\beta 3}|^2)$$

 $\begin{array}{ccc} -\bar{P}_{c}^{L} & \bar{P}_{c}^{L} & 0\\ \bar{P}_{c}^{L} & 1-\bar{P}_{c}^{L} & 0\\ 0 & 0 & 1 \end{array} \right) \begin{pmatrix} 1 & 0 & 0\\ 0 & 1-\bar{P}_{c}^{H} & \bar{P}_{c}^{H}\\ 0 & \bar{P}_{c}^{H} & 1-\bar{P}_{c}^{H} \end{cases}$

X

 $U_{\alpha 1}$ $\tilde{U}_{\alpha 2}$ To describe nonadiabatic transitions, the expressions for the effective mixing angles are useful.

The expression for θ_{23} can be used for $\tilde{E}_3 \simeq \tilde{E}_2$

The expression for $\hat{\theta}_{12}$ can be used for $\tilde{E}_2 \simeq \tilde{E}_1$

Example:Supernova v with Non-Standard Interactions in matter

A∝ρ

For simplicity self interactions of v are not considered

$$\mathcal{A}_{NP} = A \begin{pmatrix} 1 + \epsilon_{ee} & 0 & \epsilon_{e\tau} \\ 0 & 0 & 0 \\ \epsilon_{e\tau}^* & 0 & \epsilon_{\tau\tau} \end{pmatrix}$$

From other v experiments μ components can be ignored.

X

$$\mathcal{A}_{NP} = A \begin{pmatrix} 1 + \epsilon_{ee} & 0 & \epsilon_{e\tau} \\ 0 & 0 & 0 \\ \epsilon_{e\tau}^* & 0 & \epsilon_{\tau\tau} \end{pmatrix} = A e^{i\gamma\lambda_9} e^{-i\beta\lambda_5} \operatorname{diag}(\lambda_{e'}, 0, 0) e^{i\beta\lambda_5} e^{-i\gamma\lambda_9}$$
$$\tan \beta = \frac{|\epsilon_{e\tau}|}{1 + \epsilon_{ee}} \lambda_{e'} = \frac{A(1 + \epsilon_{ee})}{\cos^2 \beta} \left[\epsilon_{\tau\tau} = \frac{|\epsilon_{e\tau}|_{e}^2}{1 + \epsilon_{ee}} \right] - Constraints from high energy v_{atm}$$

$$U\mathcal{E}U^{-1} + \mathcal{A}_{NP} = e^{i\gamma\lambda_9}e^{-i\beta\lambda_5}\operatorname{diag}(1, 1, e^{i\arg U'_{\tau^3}}) \left[U''\mathcal{E}U''^{-1} + \operatorname{diag}(\lambda_{e'}, 0, 0) \right]$$

$$\times \operatorname{diag}(1, 1, e^{-i\arg U'_{\tau^3}}) e^{i\beta\lambda_5}e^{-i\gamma\lambda_9}$$

Due to NSI, the effective mixing angles are modified:

$$\sin \theta_{13}'' = |U_{e3}''| = |c_{\beta}e^{-i\gamma}U_{e3} + s_{\beta}e^{i\gamma}U_{\tau3}|$$

$$\tan \theta_{12}'' = |U_{e2}''|/|U_{e1}''| = |c_{\beta}e^{-i\gamma}U_{e2} + s_{\beta}e^{i\gamma}U_{\tau2}|/|c_{\beta}e^{-i\gamma}U_{e1} + s_{\beta}e^{i\gamma}U_{\tau1}|$$

$$\tan \theta_{23}'' = |U_{\mu3}''|/|U_{\tau3}''| = U_{\mu3}/|c_{\beta}e^{-i\gamma}U_{\tau3} - s_{\beta}e^{i\gamma}U_{e3}|$$

From these, we get the probability which takes into account non-adiabatic transitions

$$P(\nu_e \to \nu_e) = \left(|U_{e1}|^2, |U_{e2}|^2, |U_{e3}|^2\right) \begin{pmatrix} 1 - \bar{P}_c^L & \bar{P}_c^L & 0\\ \bar{P}_c^L & 1 - \bar{P}_c^L & 0\\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0\\ 0 & 1 - \bar{P}_c^H & \bar{P}_c^H\\ 0 & \bar{P}_c^H & 1 - \bar{P}_c^H\\ |\tilde{U}_{e3}|^2 \end{pmatrix} \begin{pmatrix} |\tilde{U}_{e1}|^2\\ |\tilde{U}_{e3}|^2 \end{pmatrix}$$

$$\bar{P}_{c}^{L} = \Theta \left(c_{13}^{2} \lambda_{e'} - \Delta E_{21} \cos 2\theta_{12}'' \right) P_{c}^{L}$$
$$P_{c}^{L} = \frac{\exp(-\frac{\pi}{2}\gamma_{L}) - \exp(-\frac{\pi}{2}\gamma_{L}/s_{12}''^{2})}{\exp(-\frac{\pi}{2}\gamma_{L}/s_{12}''^{2})}$$

$$C_c^L = \frac{\exp(-\frac{\pi}{2}\gamma_L) \exp(-\frac{\pi}{2}\gamma_L/s_{12}')}{1 - \exp(-\frac{\pi}{2}\gamma_L/s_{12}'')}$$

$$\gamma_L = \frac{\Delta E_{21} \sin^2 2\theta_{13}'' \cos 2\theta_{12}''}{c_{12}''^2 |d \log N_e / dx|_{res}}$$

$$\bar{P}_c^H = \Theta \left(\lambda_{e'} - \Delta E_{31} \cos 2\theta_{13}'' \right) P_c^H$$

$$P_{c}^{H} = \frac{\exp(-\frac{\pi}{2}\gamma_{H}) - \exp(-\frac{\pi}{2}\gamma_{H}/s_{13}''^{2})}{1 - \exp(-\frac{\pi}{2}\gamma_{H}/s_{13}''^{2})}$$
$$\gamma_{H} = \frac{\Delta E_{31} \sin^{2} 2\theta_{13}'' \cos 2\theta_{13}''}{c_{13}''^{2} |d \log N_{e}/dx|_{res}}$$

4. Summary

- From trivial identities, we can (in principle) obtain the analytical expression for the mixing angles and the CP phase.
- Using such expressions, probability for v flavor transitions including non-adiabatic processes can be analytically obtained.
- As a demonstration, one example was discussed: Supernova v with Non-Standard Interactions in matter