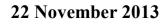
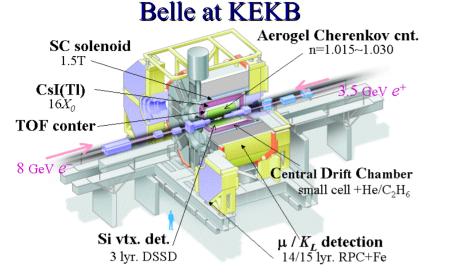


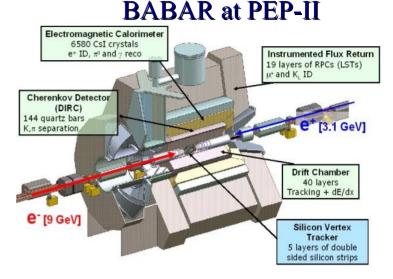
Status of Belle II and SuperKEKB

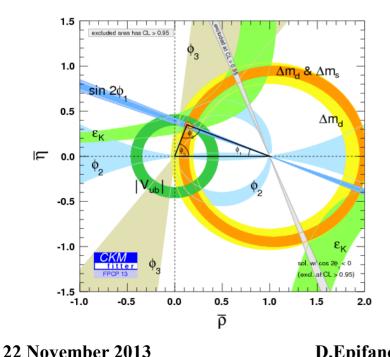

D. Epifanov, The University of Tokyo

on behalf of Belle II collaboration

Outline:


- Achievements at e⁺e⁻ B factories
- Physics at the Super B Factory
- SuperKEKB collider
- Belle II detector
- Summary and Plans





Achievements at e⁺e⁻ B factories

Both experiments were operated mostly at Y(4S) resonance ($\sqrt{s} = 10.58 \, GeV$) and collected the world largest statistics with $\int Ldt \approx 1.5 \, ab^{-1}$

- Discovery of CPV in B meson decays
- Confirmation of the Kobayashi-Maskawa mechanism for CPV in the Standard Model
- Precise measurement of CKM matrix elements

2008

Lots of important results from B factories:

- Observation of direct CPV in B decays
- b \rightarrow s transitions: probe for new sources of CPV and constraints from the b \rightarrow s γ branching fraction
- Forward-backward asymmetry in b→s l⁺ l⁻ has become a powerful tool to search for physics beyond SM
- Search for the charged Higgs in the rare decays $B \rightarrow \tau v$, $D^{(*)} \tau v$
- Study of B_s decays
- Observation of new bottomonium-like states
- Observation of D⁰-D⁰ mixing
- Search for CPV in D and D_{e} decays
- Observation of exotic charmonium states
- Search for lepton flavor violation (LFV) in τ decays
- Search for CPV and study of hadronic τ decays
- Precise measurement of the cross sections and dynamics of $\gamma\gamma$ -> hadrons and e⁺ e⁻ \rightarrow hadrons $\gamma_{_{ISR}}$ processes
- Search for CPTV in B and τ decays
- Search for heavy neutrinos in B decays 22 November 2013 D.Epifanov Status of Belle II and SuperKEKB PASCOS 2013

Talks from Belle & BaBar:

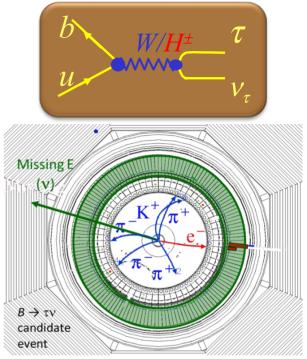
C. Park: Rare B meson decays from **Belle**

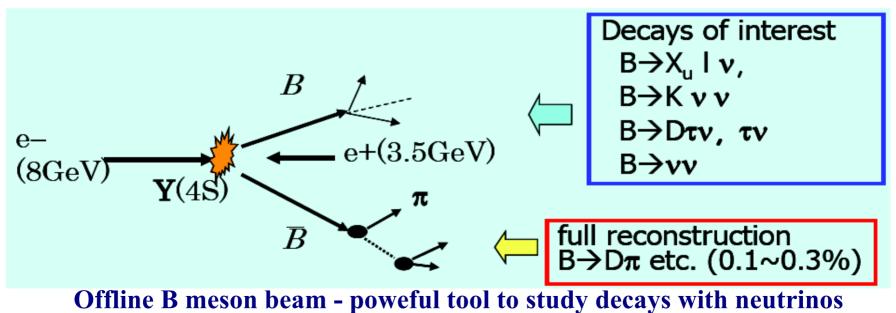
Z. Drasal: Time-dependent CPV in B mesons from **Belle**

R. Glattauer: Semileptonic B decays, Vub and Vcb from **Belle**

M. Nayak: CKM angle ϕ_3 from **Belle**

G. Mohanty: Charm mixing and CPV from **Belle**


V. Bhardwaj: Quarkonium(-like) exotic particles from **Belle**


F. Bernlochner: B-> D^(*)TV from **BaBar**

K.Flood: Low-mass Higgs, dark-sector bosons from **BaBar**

Advantages of e⁺e⁻ B factories

- Two B mesons of different flavors are produced with precisely known momenta and energies, high flavor tagging efficiency.
- Reconstruction of $\pi^0 \rightarrow \gamma \gamma$, $K_s \rightarrow \pi \pi$, $\Lambda \rightarrow p \pi^-$. Detection of K_L . Particle identification capabilities for e^{\pm} , π^{\pm} , μ^{\pm} , K^{\pm} , p^{\pm} with high ID and low misID efficiencies.
- Clean detector environment, low level of background. Distinct signature and high trigger efficiency for signal events. No multiple interactions per event.
- Well studied detector. Developed calibration techniques, lots of methods to evaluate/calibrate systematic effects using experimental control samples.

Search for New Physics at the Super B factory

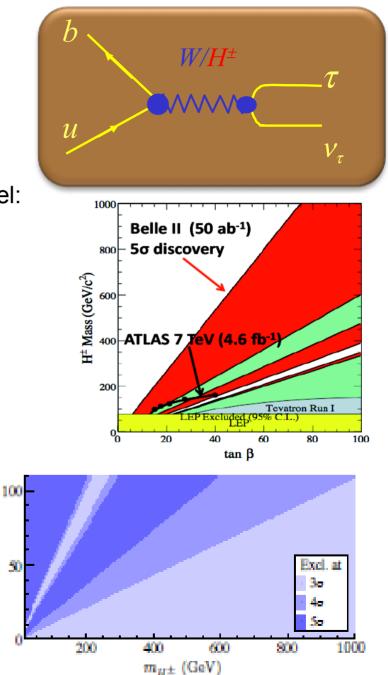
- Precision CKM unitarity tests (better accuracy → overconstrain of unitarity triangle → search for deviations from SM)
- Effects of New Physics in B decays with missing energy: $B \rightarrow \tau v, B \rightarrow D^{(*)} \tau v, B \rightarrow h v v, ...$
- Flavor changing neutral currents (virtual contribution of new heavy particles in loops)
- Search for lepton flavor violation in B and τ decays
- Search for CPV in D and τ decays
- Charm studies (exotic states)
- Study of bottomonium and search for the dark matter in its transitions
- Study of the Lorentz structure of charged weak current in τ decays

Lots of measurements were statistically limited at B factories, ×100 increase in statistics is needed for the tests of the SM on the new level of precision.

B decays with τ lepton

- Recent study of $B \rightarrow \tau \nu$ using full reconstruction method at Belle: <u>PRL 110 131801 (2013)</u>
- Result is consistent with SM:

$$Br(B^{-} \to \tau^{-} \bar{\nu_{\tau}}) = (0.72 \pm \frac{0.27}{0.25} (stat) \pm 0.11 (syst)) \times 10^{-4}$$


• Sensitive to the charged Higgs (type II 2HDM) model:

$$r_{H} = \frac{Br(B^{-} \to \tau^{-} \overline{\nu_{\tau}})}{Br(B^{-} \to \tau^{-} \overline{\nu_{\tau}})_{SM}} = \left(1 - \frac{M_{B}^{2}}{M_{H}^{2}} \tan^{2}\beta\right)^{2}$$

With B->D^(*)TV BaBar excluded type II 2HDM in the full parameter space on the level of 3σ

3.4 σ tension between measured $R(D^{(*)})$ and SM expectation

PRD 88, 031102(R) (2013)

tans?

CPV in charm and T

- In charm sector of SM CPV is expected to be ≤ 0.1%.
 Observation of large CPV in charm will be clear sign of New Physics.
- Example: Search for direct CPV in $D^+ \rightarrow K_s \pi^+$ at Belle. *PRL 109 021601 (2012)*

 $A_{CP} = \frac{\Gamma(D^+ \to K_S \pi^+) - \Gamma(D^- \to K_S \pi^-)}{\Gamma(D^+ \to K_S \pi^+) + \Gamma(D^- \to K_S \pi^-)} = A_{CP}^{\Delta C} + A_{CP}^{\bar{K}^0}, \quad A_{CP}^{\bar{K}^0} = (-0.345 \pm 0.008)\% \to \text{CPV in } K^0 - \bar{K}^0 \text{ mixing}$ $A_{CP}^{\Delta C} = (-0.018 \pm 0.094 \pm 0.068)\%$ agrees with SM **CPV** in **charm** CPV is strongly suppressed in τ decays in the SM ($A_{SM}^{CP} \le 10^{-12}$) • and τ at Belle II Observation of large CPV in T decays is clean sign at 10⁻⁴ level of New Physics Example: Search for CPV in T decays with K_s in the final state • **BABAR**: $A_{CP} = \frac{\Gamma(\tau^+ \to K_S \pi^+ (\ge 0 \pi^0) \bar{\nu_{\tau}}) - \Gamma(\tau^- \to K_S \pi^- (\ge 0 \pi^0) \bar{\nu_{\tau}})}{\Gamma(\tau^+ \to K_S \pi^+ (\ge 0 \pi^0) \bar{\nu_{\tau}}) + \Gamma(\tau^- \to K_S \pi^- (\ge 0 \pi^0) \bar{\nu_{\tau}})} = (-0.36 \pm 0.23 \pm 0.11)\%,$ PRD 85 031102 (2012) **2.80 deviation** from SM expectation: $A_{CP}^{K^0} = (+0.36 \pm 0.01)\%$ (b) Belle: PRL 107 131801 (2011) Angular distributions were analyzed, $A_{CP}(W=M_{Ks\pi})$ τ $m_{\tau}Z$ was measured MUDN(1) control sample 0.01 was measured. MHDM has been constrained: -0.01

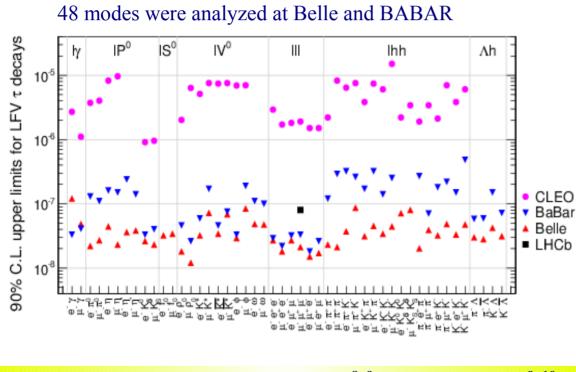
$$|\Im(XZ^*)| < 0.15 \frac{M_H^2}{1 \; GeV^2/c^4}$$

22 November 2013

D.Epifanov Status of Belle II and SuperKEKB PASCOS 2013

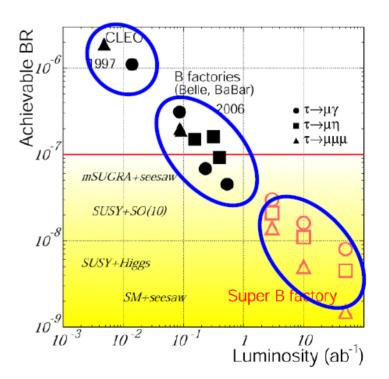
-0.02

-0.03


W (GeV/c²)

LFV in τ decays

• In the SM:
$$BF(\tau \rightarrow l^{-}\gamma) \sim \left(\frac{\Delta m_{\nu}^{2}}{M_{W}^{2}}\right)^{2} < 10^{-54}$$


• Models beyond SM predict LFV with BF up to ~10⁻⁷

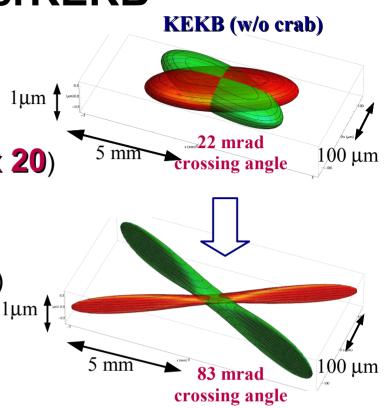
- Advantage of τ : enhanced couplings to new particles, lots of decays \rightarrow tests of different NP models

Expected sensitivity: $\tau \rightarrow l\gamma$: BF~10⁻⁸⁺⁹ $\tau \rightarrow lll$: BF~10⁻⁹⁺¹⁰

τ	×	γ
$\nu_{ au}$	$v_{\mu(e)}$	μ(e)
model	B r(τ→μγ)	Br(τ→III)
mSUGRA+seesaw	10-7	10 -9
SUSY+SO(10)	10 ⁻⁸	10 ⁻¹⁰
SM+seesaw	10 -9	10 ⁻¹⁰
Non-Universal Z'	10 -9	10 -8
SUSY+Higgs	10 ⁻¹⁰	10 ⁻⁷

Rich physics program at Belle II

Observable	SM	Theory	Present	Future	Future	G. Isidori et al, Ann. Rev. Nucl. Part. Sci. 60, 355 (2010)
Observable	prediction	error	result	error	Facility	0. 131001 et al, Ann. Nev. Nucl. 1 alt. 301. 00, 333 (2010)
$ V_{us} $ $[K \rightarrow \pi \ell \nu]$	input	$0.5\% \rightarrow 0.1\%_{\rm Latt}$	0.2246 ± 0.0012	0.1%	K factory	
$ V_{cb} [B \to X_c \ell \nu]$	input	1%	$(41.54\pm0.73)\times10^{-3}$	1%	$\operatorname{Super}-B$	Super B factory
$ V_{ub} $ $[B \to \pi \ell \nu]$	input	$10\% \to 5\%_{\rm Latt}$	$(3.38\pm0.36)\times10^{-3}$	4%	$\operatorname{Super} B$	
γ [$B \rightarrow DK$]	input	< 1°	$(70^{+27}_{-30})^{\circ}$	3°	LHCb	LHCb
$S_{B_d \to \psi K}$	$\sin(2\beta)$	$\lesssim 0.01$	0.671 ± 0.023	0.01	LHCb	K footom.
$S_{B_s \to \psi \phi}$	0.036	$\lesssim 0.01$	$0.81\substack{+0.12 \\ -0.32}$	0.01	LHCb	K factory
$S_{B_d \to \phi K}$	$\sin(2\beta)$	$\lesssim 0.05$	0.44 ± 0.18	0.1	LHCb	
$S_{B_s \to \phi \phi}$	0.036	$\lesssim 0.05$		0.05	LHCb	Complementarity to the other
$S_{B_d \to K^* \gamma}$	few \times 0.01	0.01	-0.16 ± 0.22	0.03	$\operatorname{Super-}B$	1 v
$S_{B_s \to \phi \gamma}$	few \times 0.01	0.01		0.05	LHCb	intensity frontier experiments
$A^d_{ m SL}$	-5×10^{-4}	10^{-4}	$-(5.8\pm3.4)\times10^{-3}$	10^{-3}	LHCb	(LHCb, BES-III, Super C-Tau)
$A_{ m SL}^s$	2×10^{-5}	$< 10^{-5}$	$(1.6\pm 8.5) imes 10^{-3}$	10-3	LHCb	
$A_{CP}(b \rightarrow s\gamma)$	< 0.01	< 0.01	-0.012 ± 0.028	0.005	Super-B	
$\mathcal{B}(B \to \tau \nu)$	1×10^{-4}	$20\% \rightarrow 5\%_{\rm Latt}$	$(1.73 \pm 0.35) \times 10^{-4}$	5%	Super- B	 arXiv: 1002.5012
$\mathcal{B}(B \to \mu \nu)$	4×10^{-7}	$20\% \rightarrow 5\%_{\rm Latt}$	$< 1.3 \times 10^{-6}$	6%	Super-B	
$\mathcal{B}(B_s \to \mu^+ \mu^-)$	3×10^{-9}	$20\% \rightarrow 5\%_{\rm Latt}$	$< 5 imes 10^{-8}$	10%	LHCb	a = arViv + 1000 + 15/1
$\mathcal{B}(B_d \to \mu^+ \mu^-)$	1×10^{-10}	$20\% \rightarrow 5\%_{\rm Latt}$	$<1.5\times10^{-8}$	[?]	LHCb	 arXiv: 1008.1541
$A_{\rm FB}(B\to K^*\mu^+\mu^-)_{q_0^2}$	0	0.05	(0.2 ± 0.2)	0.05	LHCb	
$B \to K \nu \bar{\nu}$	4×10^{-6}	$20\% \rightarrow 10\%_{\rm Latt}$	$< 1.4 \times 10^{-5}$	20%	Super-B	
$ q/p _{D-\text{mixing}}$	1	$< 10^{-3}$	$(0.86^{+0.18}_{-0.15})$	0.03	Super-B	
ϕ_D	0	$< 10^{-3}$	$(9.6^{+8.3}_{-9.5})^{\circ}$	2°	Super-B	
$\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu})$	8.5×10^{-11}	8%	$(1.73^{+1.15}_{-1.05}) \times 10^{-10}$	10%	K factory	
$\mathcal{B}(K_L \to \pi^0 \nu \bar{\nu})$	2.6×10^{-11}	10%	$< 2.6 \times 10^{-8}$	[?]	K factory	
$R^{(e/\mu)}(K \to \pi \ell \nu)$	2.477×10^{-5}	0.04%	$(2.498 \pm 0.014) \times 10^{-5}$		K factory	
$\mathcal{B}(t \to c Z, \gamma)$	$O(10^{-13})$	$O(10^{-13})$	$< 0.6 imes 10^{-2}$	$O(10^{-5})$	LHC (100	(fb^{-1})


22 November 2013

Design concept of SuperKEKB

Beam current

 $\frac{I_{e^{\pm}}\xi^{\epsilon}}{1-\xi^{\epsilon}}$

- Nano-beam scheme proposed by
 P. Raimondi provides X 40 luminosity
- Vertical β function (β^*_{γ}) at IP: **5.9** \rightarrow **0.27/0.30 mm** (**x 20**)
- Beam current: $1.7/1.4 \rightarrow 3.6/2.6 \text{ A} (\mathbf{\times 2})$
- Beam-beam parameter: $0.13/0.09 \rightarrow 0.09/0.08$ (x 1)
- Beam size (σ_x/σ_y): 100/2 μ m \rightarrow 10 μ m/60 nm
- Beam energy (LER/HER): $3.5/8.0 \rightarrow 4.0/7.0 \text{ GeV}$

SuperKEKB

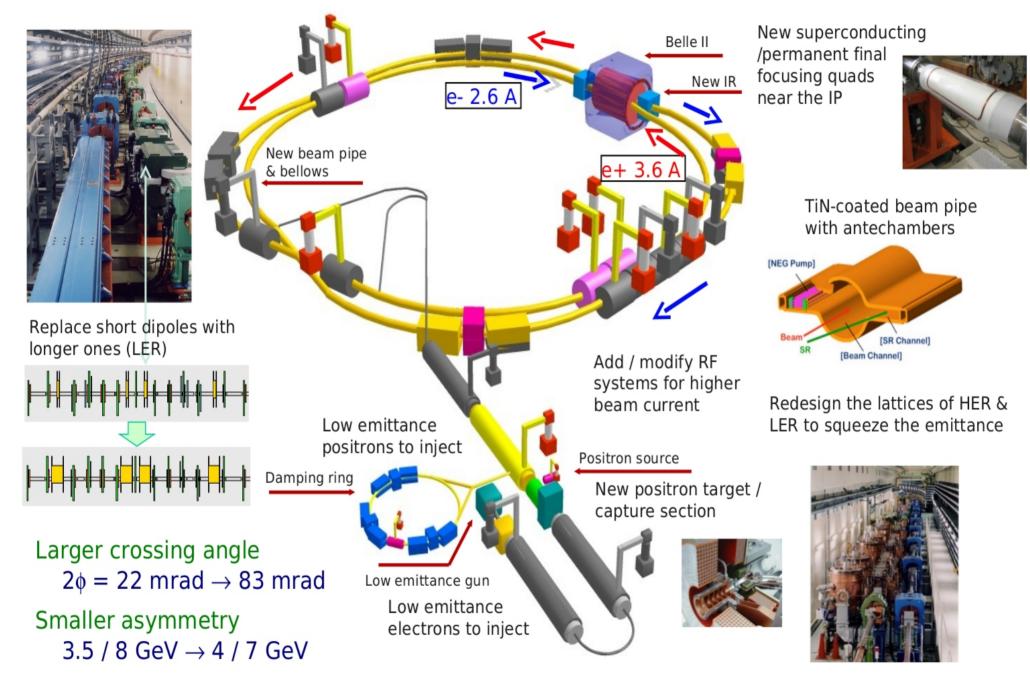
Geometrical reduction factors (crossing angle, hourglass effect)

Classical electron Beam size ratio at IP radius 1-2% (flat beam)

 $L = \frac{\gamma_{e^{\pm}}}{2er_e} \left(1 + \frac{\sigma_y^*}{\sigma_x^*} \right)$

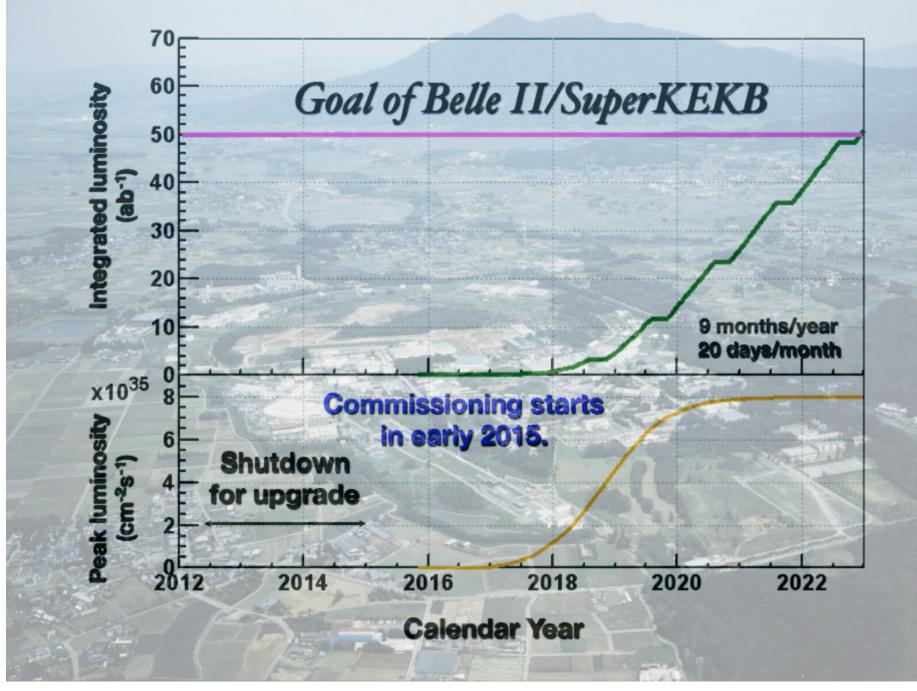
Vertical beta function at IP

Beam-beam


 $\frac{R_L}{R_c}$)

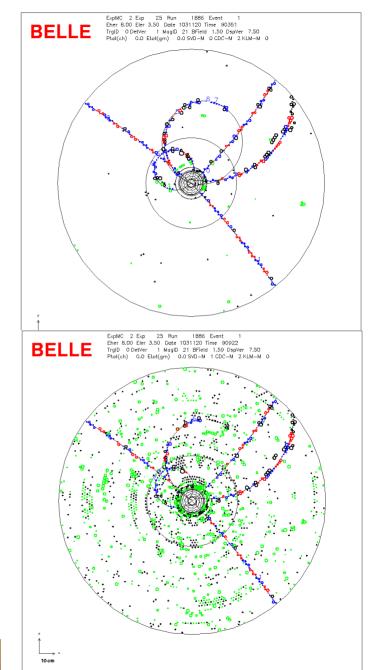
parameter

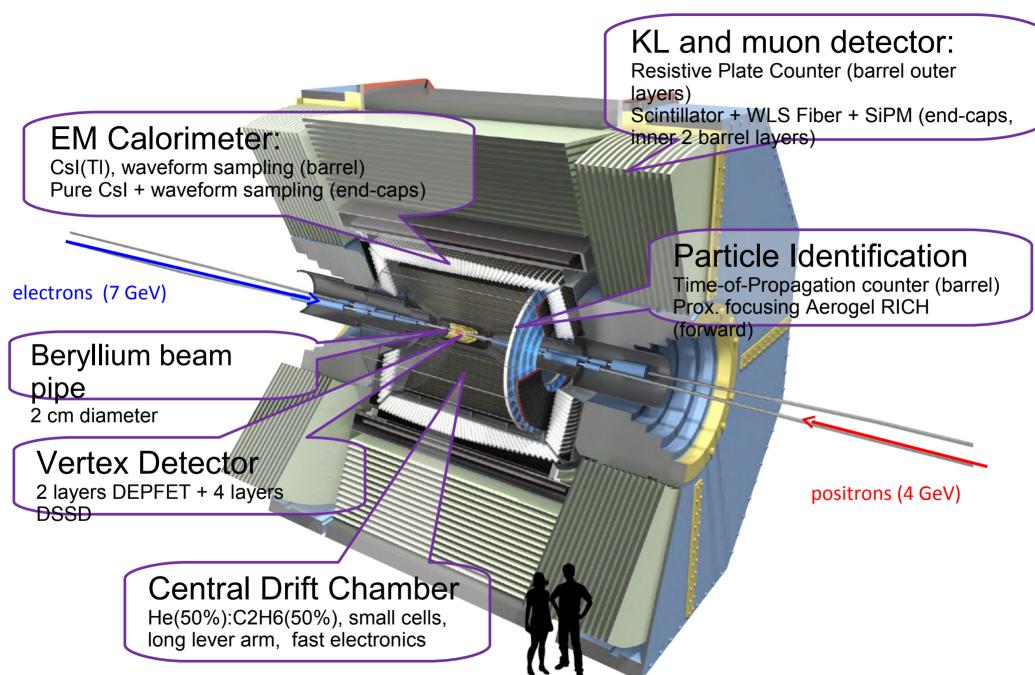
22 November 2013


Lorentz factor

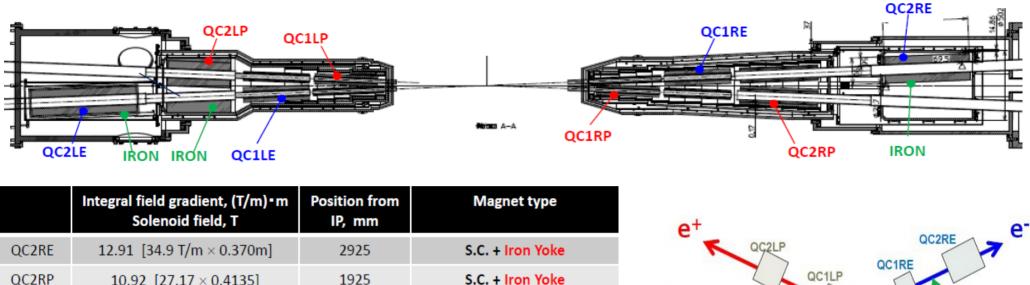
SuperKEKB

22 November 2013

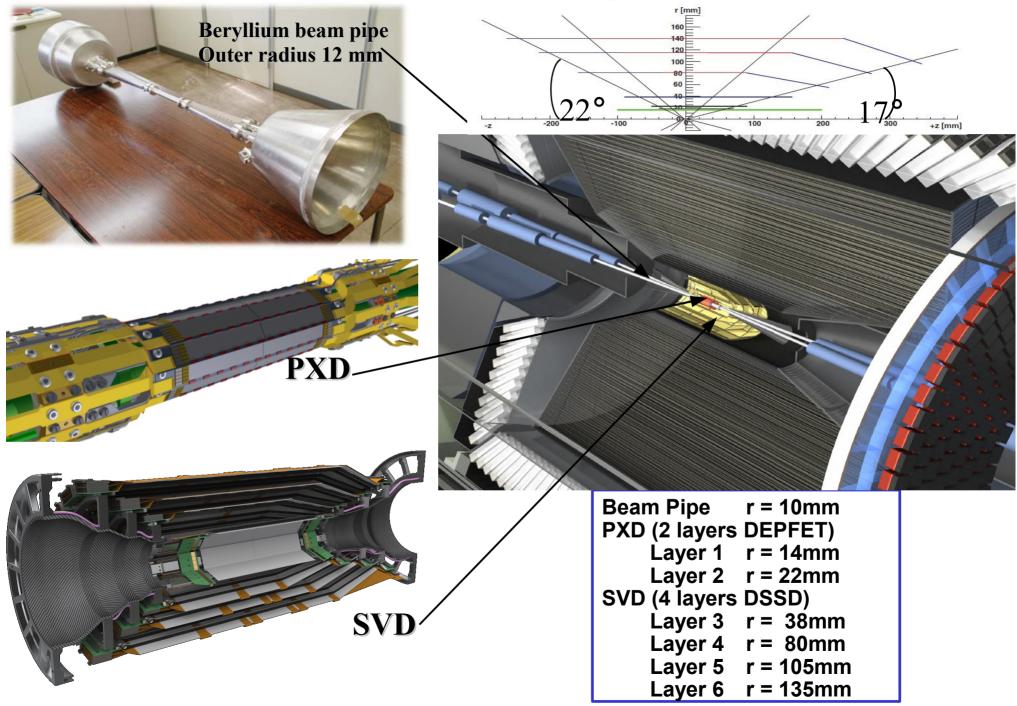

SuperKEKB luminosity projection

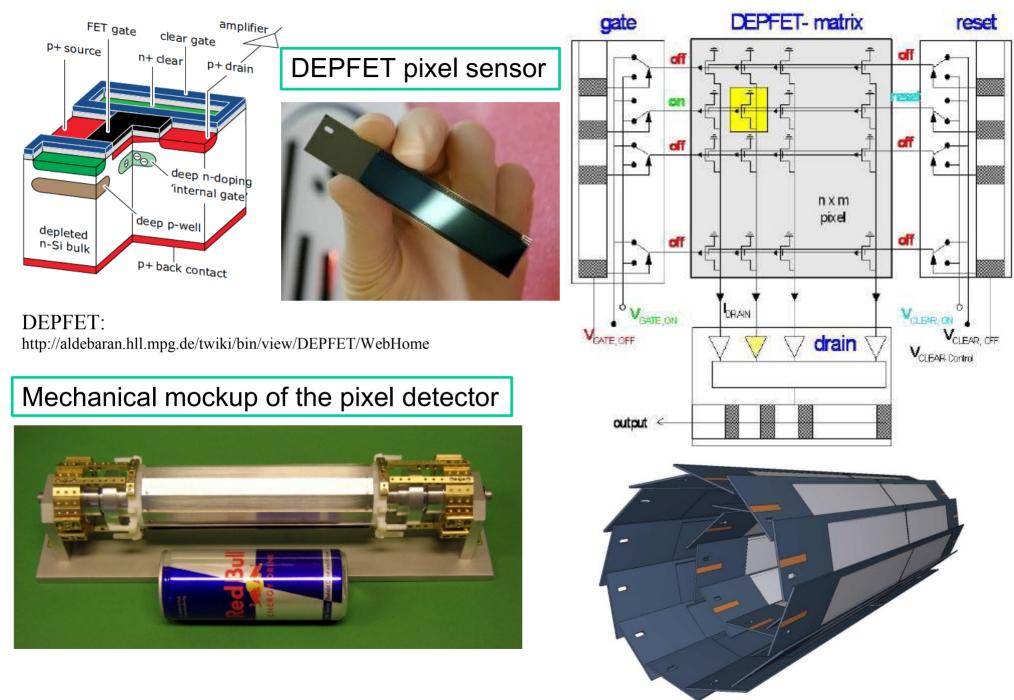

Experimental challenges at L=8x10³⁵ 1/cm²/s

- Higher background (x10÷20)
 - Radiative Bhabha events dominate
 - Fake hits and pileup noise in EM calorimeter
 - Radiation damage and higher occupancy
- Higher trigger rates (x40)
 - ✓ Level1 trigger (0.5→20 KHz)
 - High performance DAQ, computing
- Important improvements
 - Hermeticity of the detector
 - IP and secondary vertex resolution
 - \sim K_s and π^{0} reconstruction efficiency
 - \checkmark K[±]/ π [±] separation
 - PID in the end-cap parts


Belle II TDR arXiv: 1011.0352

Belle-II detector


Interaction region


QC2RE	12.91 [34.9 T/m × 0.370m]	2925	S.C. + Iron Yoke	K QC2LP	QC1RE
QC2RP	$10.92 \hspace{.2in} [27.17 \times 0.4135]$	1925	S.C. + Iron Yoke	QC1LP	
QC1RE	24.99 [66.22×0.3774]	1410	S.C. + Iron Yoke	Detector Solenoid axis	41.5mrad
QC1RP	22.43 [66.52×0.3372]	935	S.C.	QC2LE	QCIRP
QC1LP	22.91 [67.94×0.3372]	-935	S.C.	QC1LE	OC2RP
QC1LE	26.67 [70.68×0.3774]	-1410	S.C. + Iron Yoke		
QC2LP	10.96 [27.15 × 0.4135]	-1925	S.C. + Iron Yoke		
QC2LE	14.13 [20.2×0.700]	-2700	S.C. + Iron Yoke		

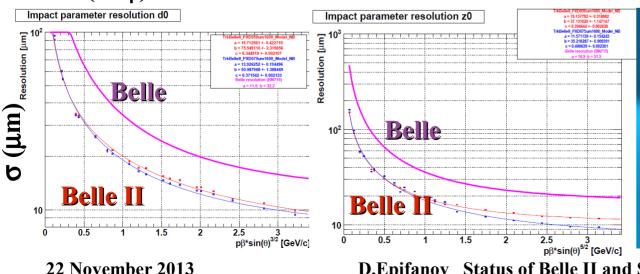
New final focusing system has been designed. It consists of 8 quadrupole superconducting magnets. Crossing angle of 83 mrad was chosen to bring magnets closer to IP.

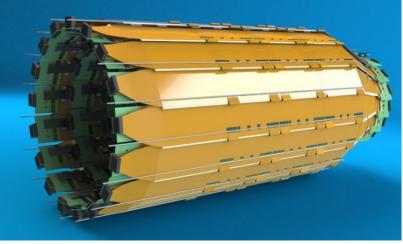
Belle II vertex region

Pixel Vertex Detector (PXD)

Silicon Vertex Detector (SVD)

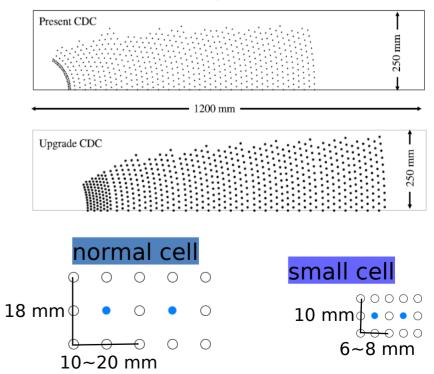

4 layers of double-sided silicon strip detectors (DSSDs)


Origami chip-on-sensor

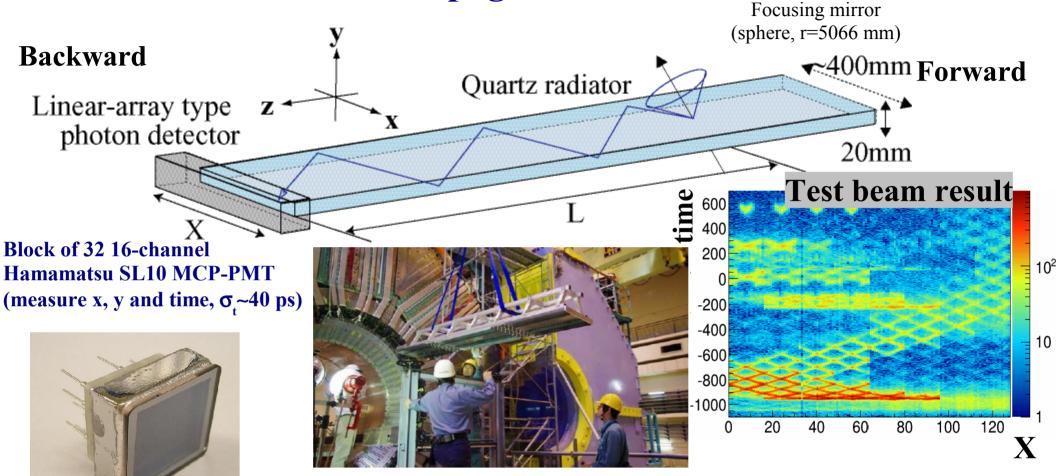

A low-mass solution for double-sided readout
 Flex fan-out pieces wrapped to the opposite side

- Fast strip readout with APV25 chip (50 ns), low occupancy
- Improved IP resolution and low momentum tracking (P_{τ} <0.1 GeV/c), 30% larger efficiency for $K_{s} \rightarrow \pi^{+}\pi^{-}$ reconstruction with vertex information $dr(R-\phi)$ resolution Z resolution

Central Drift Chamber (CDC)

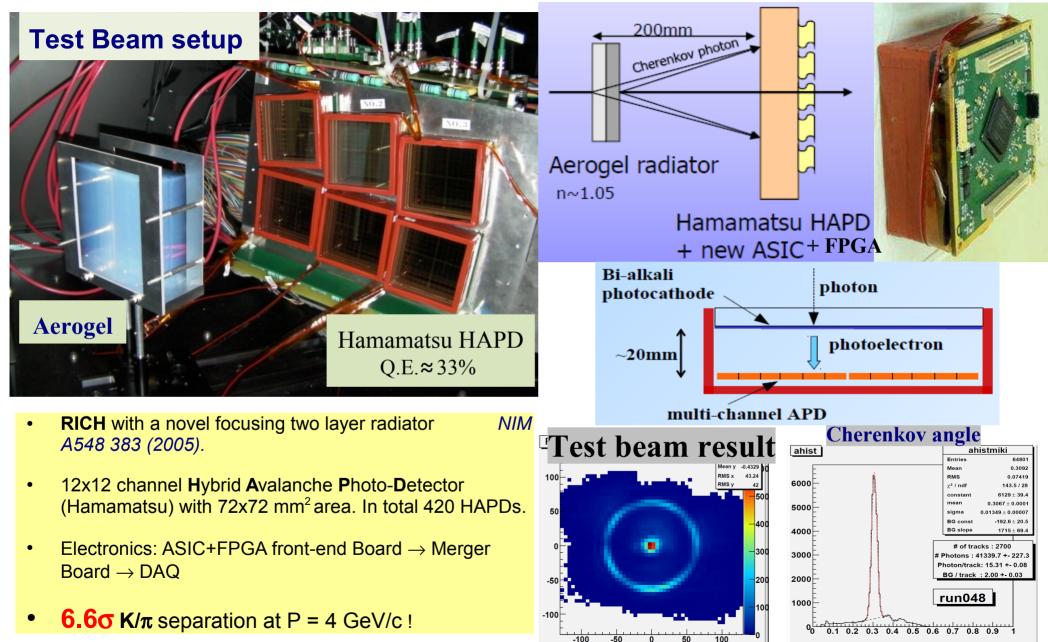

- Larger outer radius
- Smaller cells near the beam pipe
- Faster readout electronics

 $\sigma_{Pt}/P_{t} = 0.11\% P_{t}(GeV/c) \oplus 0.30\%/\beta$ $\sigma(dE/dx) \approx 6\%$


	Belle	Belle II
inner most sense wire	r=88mm	r=168mm
outer most sense wire	r=863mm	r=1111.4mm
Number of layers	50	56
Total sense wires	8400	14336
Gas	He:C ₂ H ₆	He:C ₂ H ₆
sense wire	W(Φ30μm)	W(Φ30μm)
field wire	Al(Φ120μ)	Al(Φ120μm)
Number of wires	41744	56576

Wire Configuration

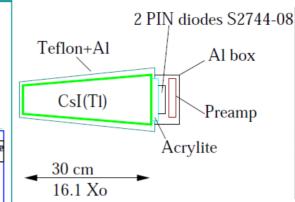
Belle II particle identification (barrel) Time of Propagation Counter



- Cherenkov ring imaging with precise time measurement.
- Measure internally reflected Cherenkov light pattern like in BABAR DIRC. Compact design, improved K/π separation.
- Reconstruct Cherenkov angle from two hit coordinates (X, Y) and time of propagation of photon.
- Focusing system to minimize chromatic effect.

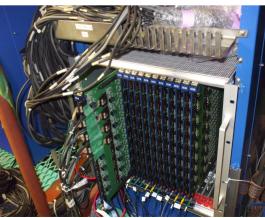
D.Epifanov Status of Belle II and SuperKEKB PASCOS 2013

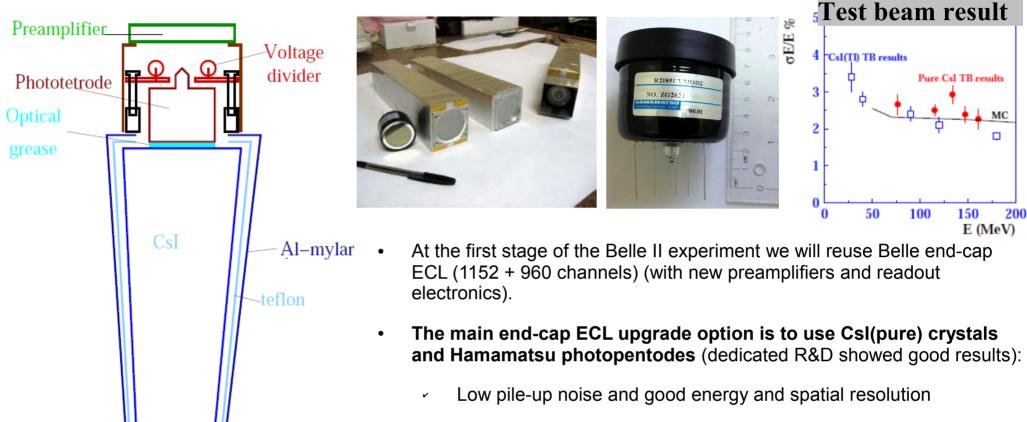

22 November 2013


Belle II particle identification (end-cap) Aerogel RICH

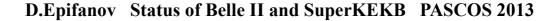
22 November 2013

Electromagnetic calorimeter (ECL), barrel





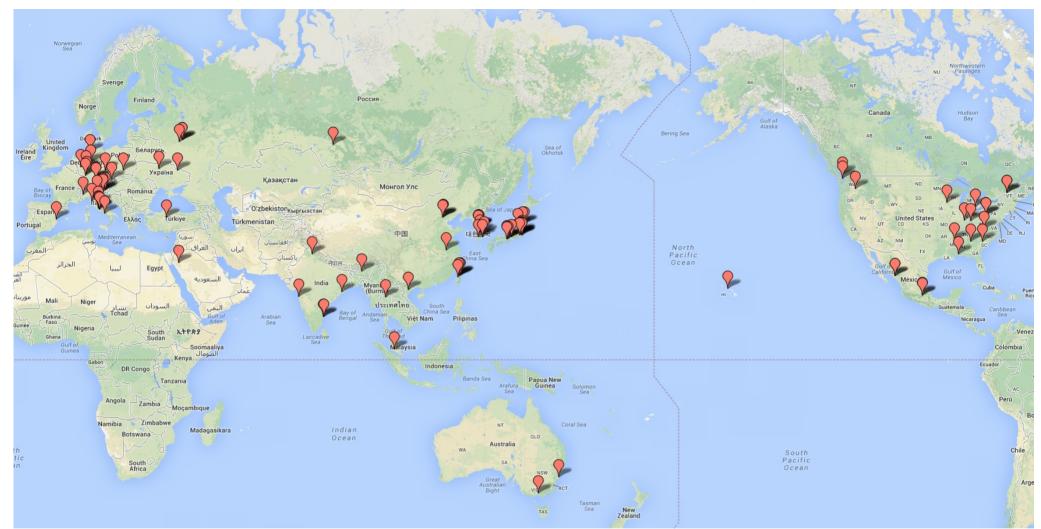
- **Barrel ECL** will be reused, new electronics with pipe-line readout and waveform analysis (16 ch Shaper-DSP board) has been developed and tested. 112 from 432 Shaper-DSP boards were produced, tested and delivered to KEK lab.
- All 6624 ECL barrel channels have been tested with new electronics (all are alive).
- Belle II DAQ electronics has been tested in the ECL data transfer runs with the frequency up to 30 kHz.
- In 2014 ECL electronics will be installed in detector.



ECL end-cap upgrade

- Similar physical characteristics (as for CsI(TI)), better radiation hardness
- There are several crystal producers, acceptable price
- However there are some difficulties: no redundancy, notable dependency on magnetic field, completely new mechanical support is needed. To solve these difficulties **second R&D option was formulated: Csl(pure) + Si APD**
- In the CsI(pure) + Si APD option we are investigating APD from two producers: *Advanced Photonix*, *Hamamatsu Photonics*. The main problem is to reach admissible level of electronic noise.

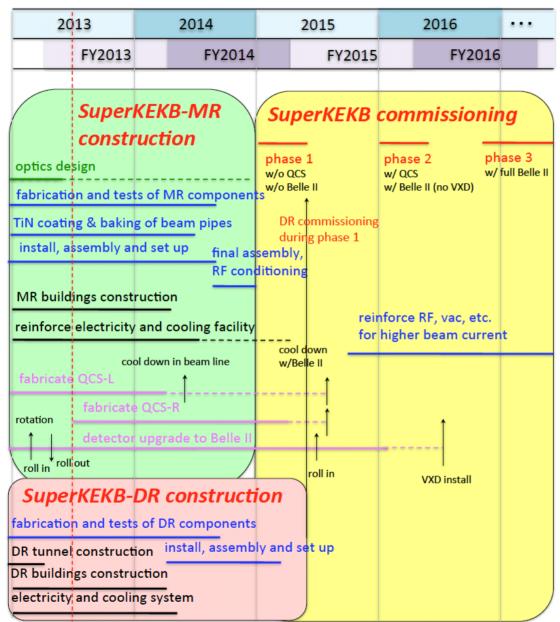
Hamamatsu APD S8664-1010



K_i and μ^{\pm} detector (KLM)

22 November 2013

Belle II collaboration map



579 physicists from 97 institutes, 23 countries/regions http://belle2.kek.jp

22 November 2013

SuperKEKB / Belle II schedule

We are here.

Phase I:

without QCS and Belle II Jan – May, 2015

- Phase II: with QCS and Belle II, without PXD+SVD Feb – June, 2016
- Phase III: Physics run with full Belle II detector starts in October, 2016

K. Akai

Summary and Prospects

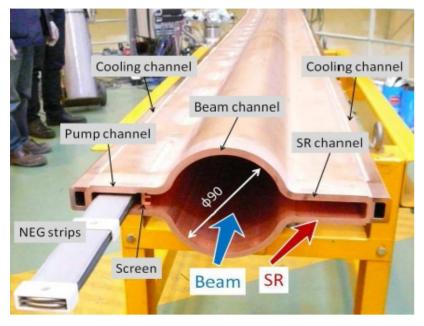
- Successful e⁺e⁻ B Factories, Belle and BABAR, raised lots of new intriguing questions in the flavor sector of the Standard Model. They proved the fruitfulness of the B Factory experimental strategy in the search for New Physics.
- Belle II at SuperKEKB is the only e⁺e⁻ Super B Factory in the nearest future, which is competitive/complementary to the current and coming energy/intensity frontier experiments:
 - 40 times higher luminosity and 50 times larger statistics compared to Belle represent great challenge to both SuperKEKB accelerator and Belle II detector
 - It is fully approved, construction is going on and the first physics run is expected in 2016
 - International Belle II collaboration: 579 physicists, 97 institutes, 23 countries/regions
- Lots of new exiting results are expected from Belle II experiment in the next decade !

Groundbreaking ceremony: 18th November 2011

Backup slides

Accelerator design parameters

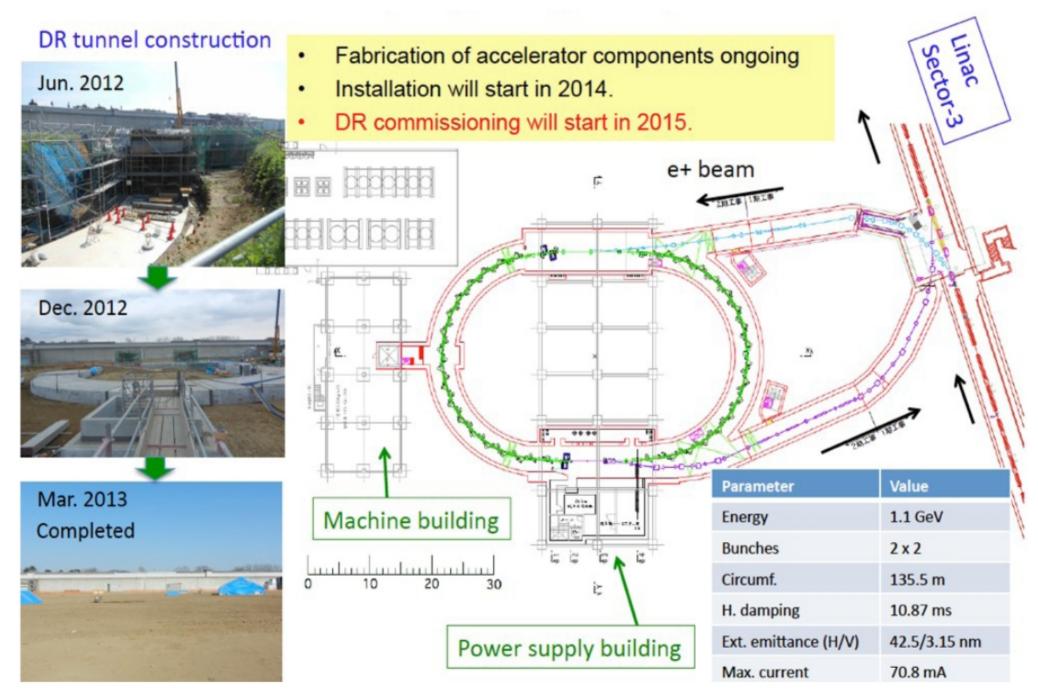
parameters		KE	КВ	SuperKEKB		unite
		LER	HER	LER	HER	units
Beam energy	Eb	3.5	8	4	7	GeV
Half crossing angle	φ	11		41.5		mrad
Horizontal emittance	٤x	18	24	3.2	4.6	nm
Emittance ratio	κ	0.88	0.66	0.37	0.40	%
Beta functions at IP	β_x^*/β_y^*	1200/5.9		32/0.27	25/0.30	mm
Beam currents	lb	1.64	1.19	3.60	2.60	А
beam-beam parameter	ξ _y	0.129	0.090	0.0881	0.0807	
Luminosity	L	2.1 x 10 ³⁴		8 x 10 ³⁵		cm ⁻² s ⁻¹


- Change beam energies:
 - ✓ LER: 3.5→4.0 GeV to suppress Touschek effect and increase beam lifetime
 - ✓ **HER**: $8.0 \rightarrow 7.0$ GeV to get lower emittance
- Reuse KEKB tunnel and HER magnets
- Replace LER dipole magnets

22 November 2013

SuperKEKB construction progress

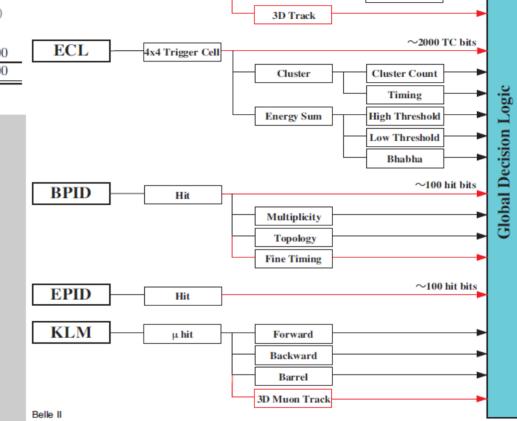
LER beam pipe with ante-chamber and Ti-N coating



100 new LER bending magnets

22 November 2013

New positron damping ring



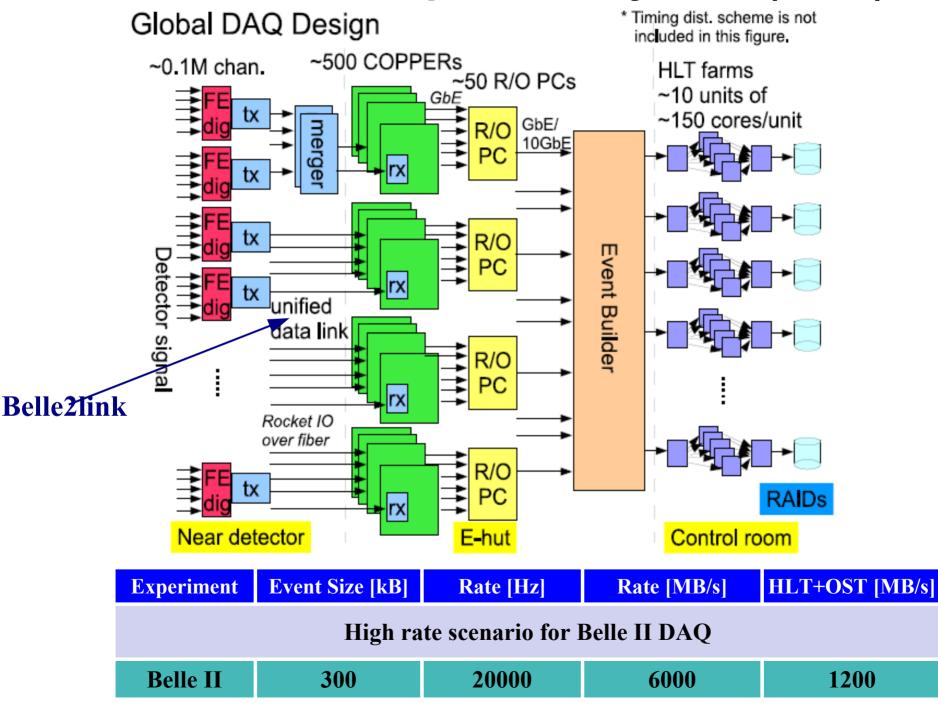
22 November 2013

Belle II Trigger

Physics process	Cross section (nb)	Rate (Hz)	CDC		TSF				~2000 T	SF bits
$\Upsilon(4S) \to B\bar{B}$	1.2	960	L			<u>—</u> г	r-\(2D) Track		Track Count	
Hadron production from continuum	2.8	2200				L	(10) much			
$\mu^+\mu^-$	0.8	640							Opening Angle	
$ au^+ au^-$	0.8	640						Ч	Back-to-back	
Bhabha $(\theta_{\text{lab}} \ge 17^{\circ})$	44	$350^{(a)}$					3D Track			-
$\gamma\gamma \ (\theta_{\rm lab} \ge 17^{\circ})$	2.4	$19^{(a)}$		_					~ 2000	TC bite
$2\gamma \text{ processes } (\theta_{\text{lab}} \ge 17^{\circ}, p_t \ge 0.1 \text{GeV}/c)$	~ 80	~ 15000	ECL		4x4 Trigger Cell				-2000	
Total	~ 130	~ 20000				$\left - \right $	Cluster		Cluster Count	
$^{(a)}$ rate is pre-scaled by a factor of $1/100$							I		Timing	•
-						Lr	Energy Sum		High Threshold	
 Beam collision frequence 	y: 508 MHz					L	Energy Sum		0	
	•								Low Threshold	

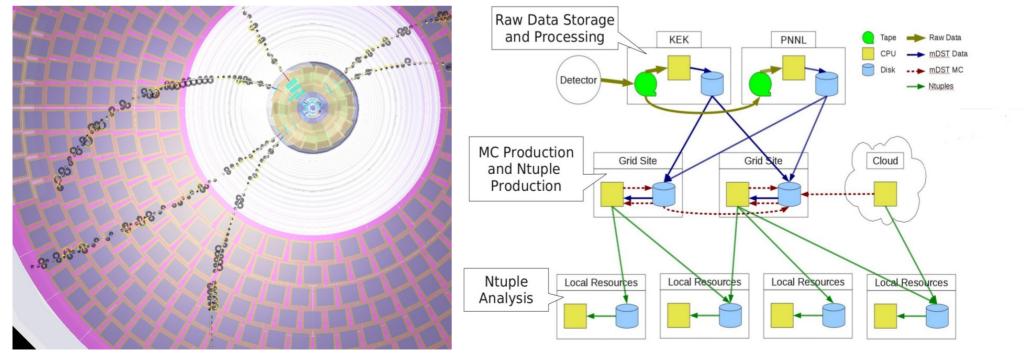
- Bunch separation: ~2 ns
- Good physics event rate: ~20 kHz
- Level-1(L1) trigger max. rate: 30 kHz
- Nominal beam background rate: 10 MHz
- Trigger time uncertainty : ~2 ns
- L1 trigger latency: 5 μs
- Min. L1 time between two events: 200 ns

Three basic triggers:


CDC based "charged" trigger, **ECL based "neutral"** trigger and **TOP based fast trigger**, which provides signal ($\sigma_t < 2$ ns) to get event start time and identify out-of-time hits in PXD+SVD to reduce data volume.

22 November 2013

D.Epifanov Status of Belle II and SuperKEKB PASCOS 2013


L1 Trigger

Belle II Data Acquisition System (DAQ)

Belle II Computing and Software

- New framework with dynamic module loading, parallel processing, python steering, and ROOT I/O
- Full detector simulation with Geant4
- Distributed computing based on DIRAC
- Can efficiently utilize GRID, Cloud and Local resources

22 November 2013