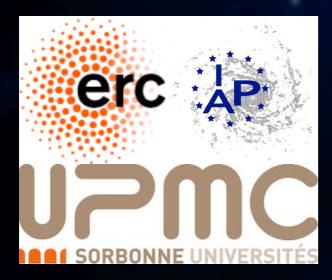
Bayesian statistical approach to dark matter direct detection experiments

Chiara Arina



PASCOS 2013

19th International Symposium on Particles, Strings and Cosmology

Taipei, November 20-26, 2013

Oulline

Bayesian analysis of direct detection data motivated by

(i) Tension between experiments (4 hints of detection and exclusion bounds)
(ii) Experimental systematics (e.g. L_{eff}, quenching factors) and backgrounds
(iii) Astrophysical uncertainties in both the halo parameters and velocity distribution

Bayesian Evidence for model comparison and compatibility

- Best scenario that accommodates XENON100 and the hints of detection (DAMA, CoGeNT, CDMS-Si, CRESST)
- Best particle physics scenario for hints of detection
- Quantitative measure of incompatibility between XENON100 and hints of detection

Conclusions

- CA, J.Hamann and Y.Wong, JCAP 1109 (2011)
- CA, J.Hamann, R.Trotta and Y.Wong, JCAP 1203 (2012)
- CA, Phys.Rev. D86 (2012)
- CA, arXiv: 1310.5718, invited review for special issue of PDU

X data

 $\theta = \{\theta_1, \dots, \theta_n, \psi_a, \dots, \psi_z\}$

 $heta_i$ theoretical model parameters

 ψ_k nuisance parameters = $_{\rm astrophysics}$ and systematics

 $\mathcal{P}(\theta|X) d\theta \propto \mathcal{L}(X|\theta) \cdot \pi(\theta) d\theta$

Posterior probability function (PDF)

Likelihood (proper of each EXP) Prior

X data $\theta = \{\theta_1, ..., \theta_n, \psi_a, ..., \psi_z\}$ θ_i theoretical model parameters ψ_k nuisance parameters = ψ_k astrophysics and systematics

Common prior choices that do not

favour any parameter region

Observable	Prior
WIMP mass (θ_1)	$\log(m_{\rm DM}/{\rm GeV}): 0 \rightarrow 3$
SI cross-section (θ_2)	$\log(\sigma_n^{\rm SI}/{\rm cm}^2): -44(-46) \to -38$

X data $\theta = \{\theta_1, ..., \theta_n, \psi_a, ..., \psi_z\}$ θ_i theoretical model parameters ψ_k nuisance parameters = ψ_k astrophysics and systematics

Common prior choices that do not

favour any parameter region

θ

Observable	Prior
	$\log(m_{ m DM}/{ m GeV}): \ 0 ightarrow 3$
SI cross-section (θ_2)	$\log(\sigma_n^{\rm SI}/{\rm cm}^2): -44(-46) \to -38$

Posterior sampled with nested sampling techniques (MultiNest) given the likelihood and the prior and marginalized over nuisance parameters

$$\mathcal{P}_{\max}(\theta_1, ..., \theta_n | X) \propto \int d\psi_1 ... d\psi_m \ \mathcal{P}(\theta_1, ..., \theta_n, \psi_1 ..., \psi_m | X)$$

X data $\theta = \{\theta_1, ..., \theta_n, \psi_a, ..., \psi_z\}$ θ_i theoretical model parameters ψ_k nuisance parameters = ψ_k astrophysics and systematics

Common prior choices that do not

favour any parameter region

$$\mathcal{P}(\theta|X)d\theta \propto \mathcal{L}(X|\theta) \cdot \pi(\theta)d\theta$$

$$\downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow$$
Posterior probability
function (PDF)
$$\begin{array}{c} \text{Likelihood} & \text{Prior} \\ \text{(proper of} \\ \text{each EXP)} \end{array}$$

$$\pi_{\log}(\log \theta) d\log \theta = \begin{cases} d\log \theta, \text{ if } \theta_{\min} \leq \theta \leq \theta_{\max}, \\ 0, \text{ otherwise,} \end{cases}$$

$$\pi_{\text{flat}}(\theta)d\theta \propto \begin{cases} d\theta, \text{ if } \theta_{\min} \leq \theta \leq \theta_{\max}, \\ 0, \text{ otherwise,} \end{cases}$$

Observable	Prior
WIMP mass (θ_1)	$\log(m_{\rm DM}/{ m GeV}): 0 \rightarrow 3$
SI cross-section (θ_2)	$\log(\sigma_n^{\rm SI}/{\rm cm}^2): -44(-46) \to -38$

Posterior sampled with nested sampling techniques (MultiNest) given the likelihood and the prior and marginalized over nuisance parameters

$$\mathcal{P}_{\max}(\theta_1, ..., \theta_n | X) \propto \int d\psi_1 ... d\psi_m \ \mathcal{P}(\theta_1, ..., \theta_n, \psi_1 ..., \psi_m | X)$$

Profile Likelihood is prior independent (comparison with frequentist approach)

 $\mathcal{L}_{\text{prof}}(X|\theta_1, \dots, \theta_n) \propto \max_{\psi_1 \dots \psi_m} \mathcal{L}(X|\theta_1, \dots, \theta_n, \psi_1 \dots, \psi_m) \qquad \Delta \chi^2_{\text{eff}}(m_{\text{DM}}, \sigma_n^{\text{SI}}) \equiv -2\ln \mathcal{L}_{\text{prof}}(m_{\text{DM}}, \sigma_n^{\text{SI}})$

Marginalization over all nuisance/new physics parameters

D	D	D :
Experiment	Parameter	Prior
DAMA	$q_{ m Na}$	$0.2 \rightarrow 0.4$
DAMA	q_{I}	0.06 ightarrow 0.1
CoGeNT	C	$0 \rightarrow 10 \text{ cpd/kg/keVee}$
CoGeNT	\mathcal{E}_0	$0 \rightarrow 30 \text{ keVee}$
CoGeNT	G_n	$0 \rightarrow 10 \text{ cpd/kg/keVee}$
CRESST	N_{lpha}	$5 \rightarrow 17 \text{ counts}$
CRESST	$C_{ m Pb}$	$1 \rightarrow 7 \text{ counts/keV}$
CRESST	N_n	$3.3 \rightarrow 34 \text{ counts}$
CDMS-Si	N_e	$0 \rightarrow 2$
XENON100	$L_{ m eff}$	-0.01 ightarrow 0.18

Background and systematics

Observable	Constraint
Local standard of rest	$v_0^{ m obs} = 230 \pm 24.4 { m ~km~s^{-1}}$
Escape velocity	$v_{ m esc}^{ m obs} = 544 \pm 39 { m km s^{-1}}$
Local DM density	$ ho_\odot^{ m obs}=0.4\pm0.2~{ m GeV}~{ m cm}^{-3}$
Virial mass	$\widetilde{M}_{ m vir}^{ m obs}=2.7\pm0.3 imes10^{12}M_{\odot}$

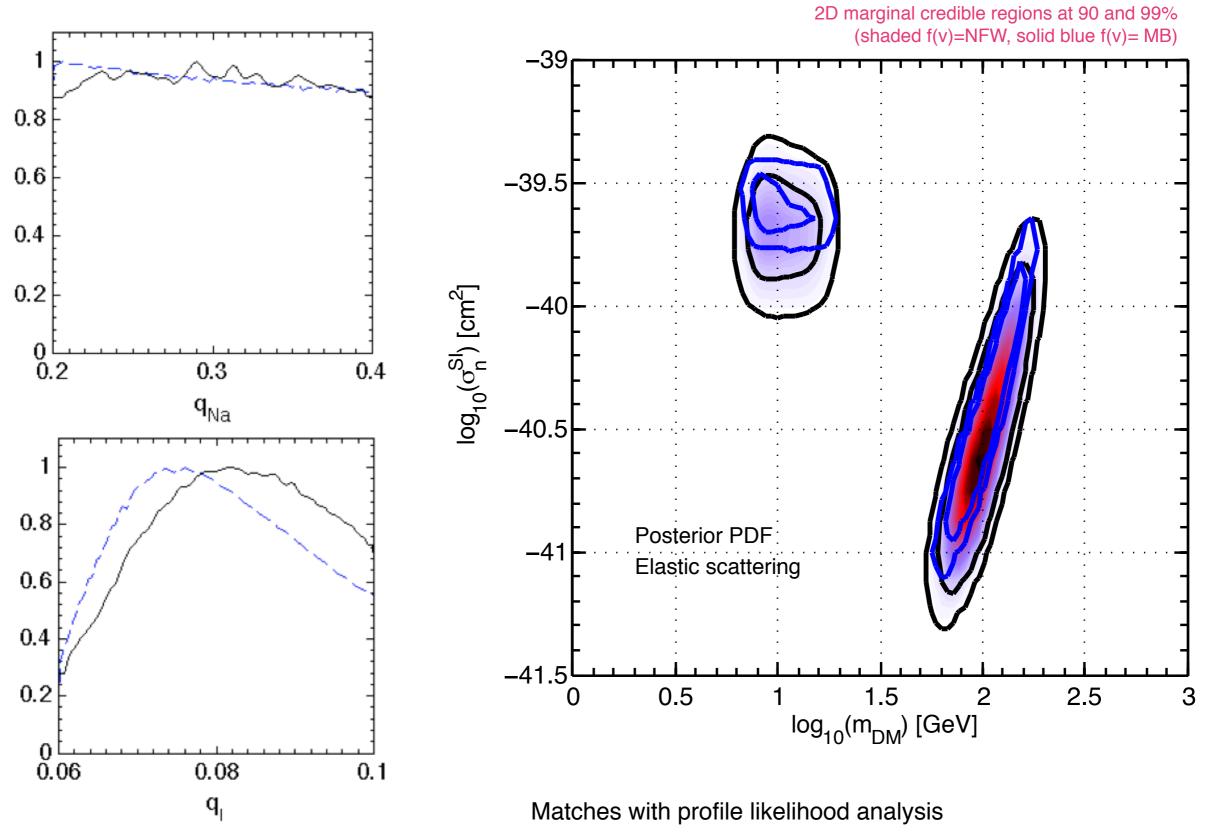
Model	Parameter	Prior
Inelastic	$\delta/(\text{keV})$	$0 \rightarrow 300$
Inelastic	$\delta/(\text{keV})$	$-100 \rightarrow 0$
Isospin violating	f_n/f_p	$-2 \rightarrow 1$

Astrophysical parameters (common to all exp)

Beyond elastic SI scattering (common to all exp)

Inference for constraining data, example with DAMA

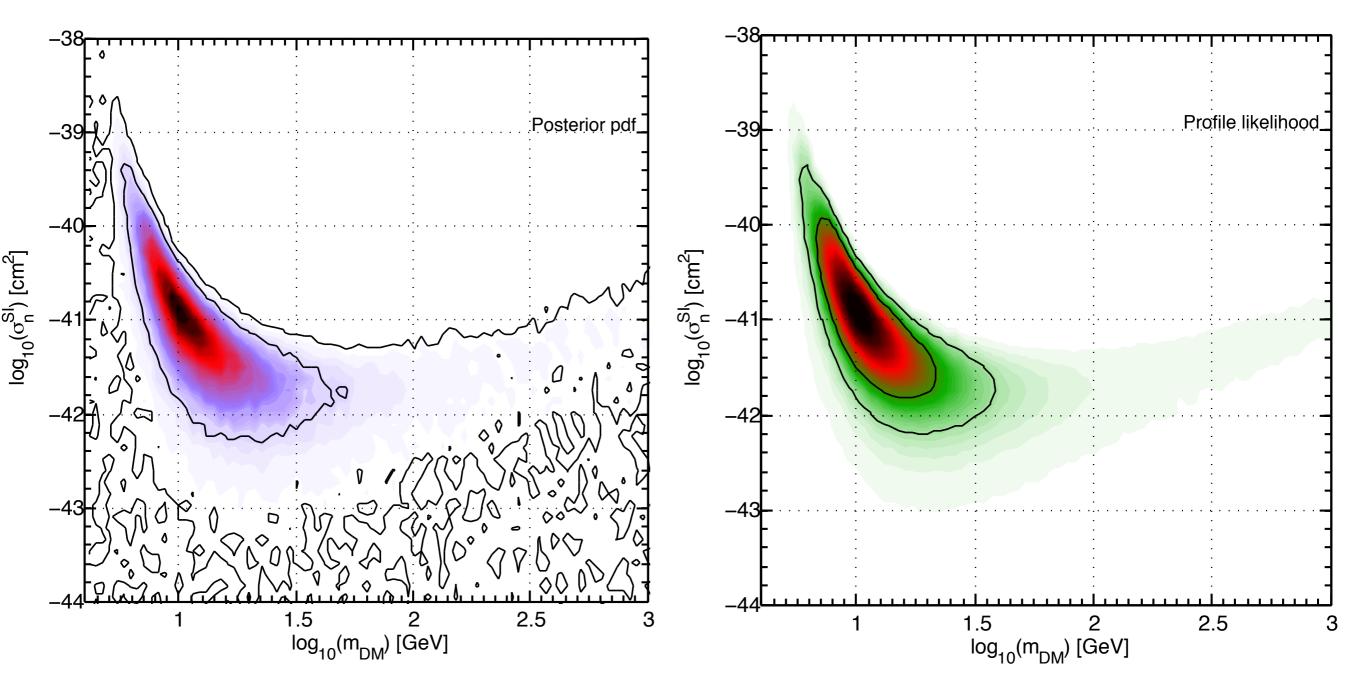
1D marginalized posterior PDF quenching factors (nuisance)



Inference for non constraining data: CDMS-Si

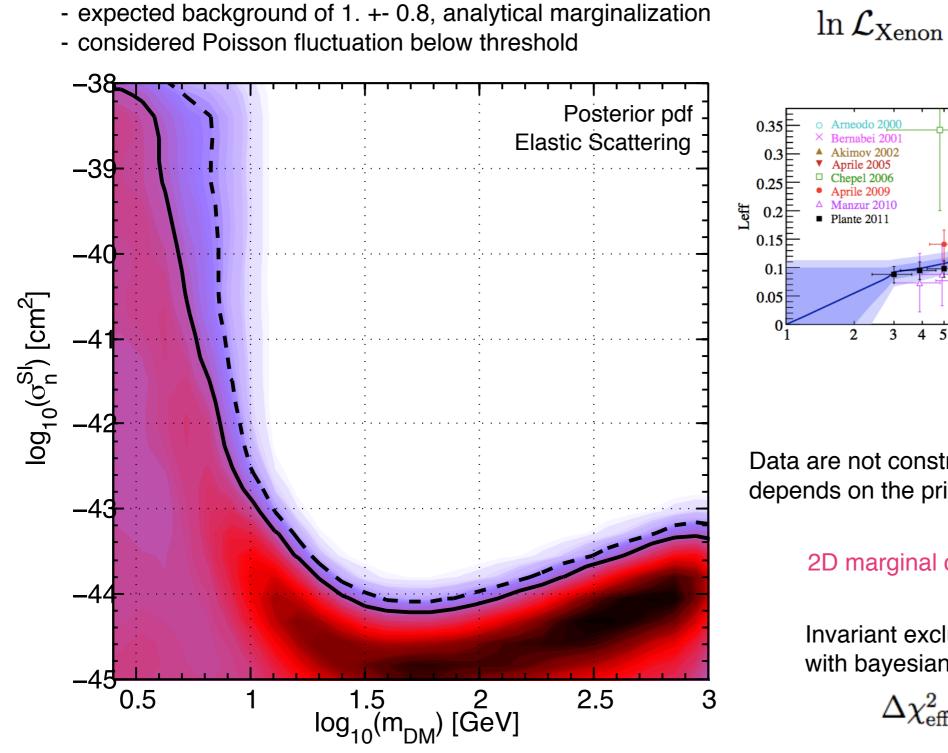
data from CDMS-Si collaboration arXiv:1304.4279

- Likelihood follows a Poisson distribution with spectral information
- 3 events seen with estimated bckg of 0.7: not constraining data



2D marginal credible regions at 68 and 90% for fixed astrophysics

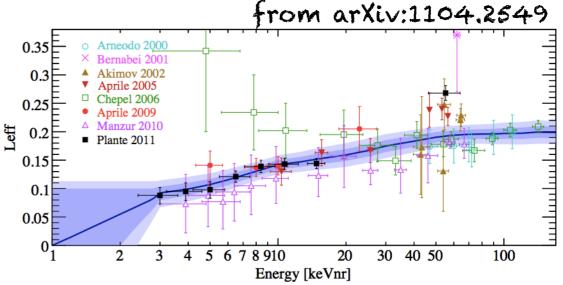
Inference for exclusion bounds: XENON100



data from XENON100 collaboration, arXiv:1207.5988

- 2 events seen, likelihood follows a Poisson distribution

$$\ln \mathcal{L}_{\mathrm{Xenon}} = \ln \mathcal{L}_{\mathrm{Events}} + \ln \mathcal{L}_{\mathrm{L_{eff}}}$$



Data are not constraining therefore the upper bound depends on the prior choice:

2D marginal credible regions at 90% +

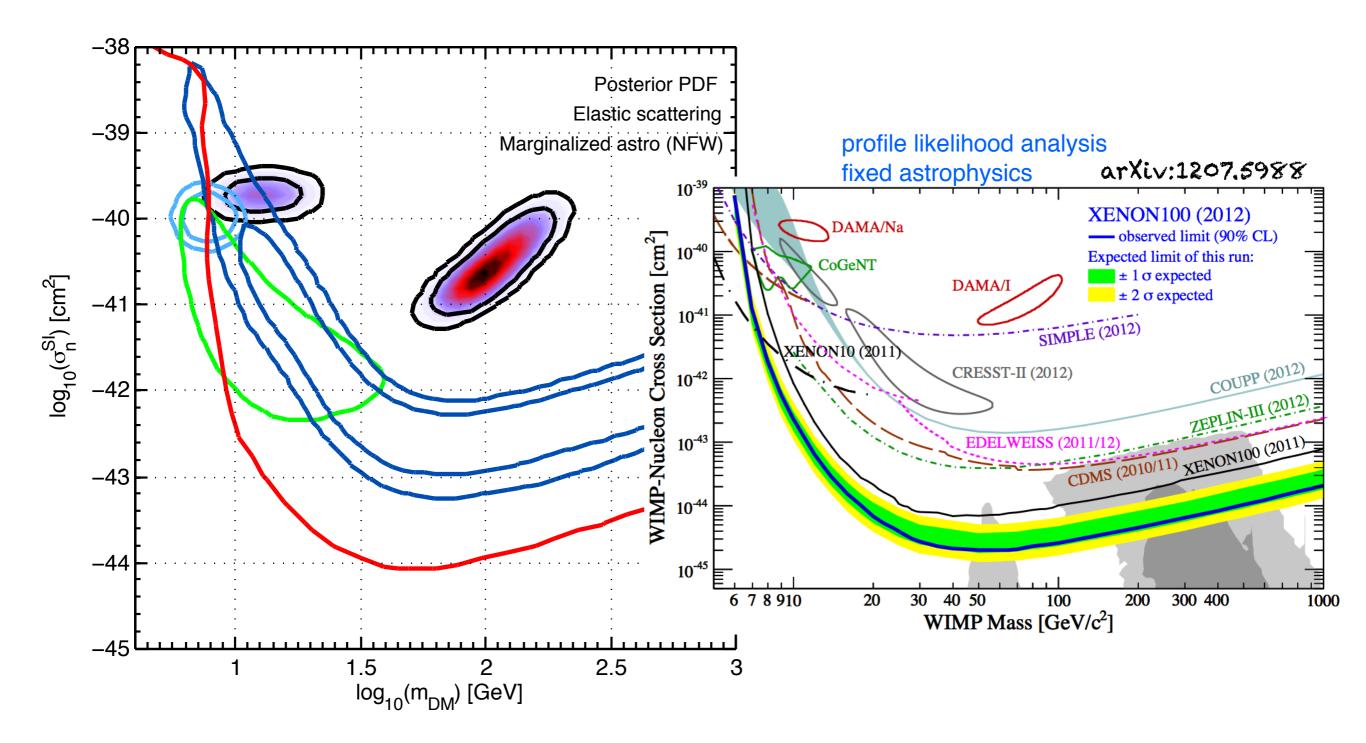
 $---90_S\%$

Invariant exclusion bound based on the S signal with bayesian interpretation:

$$\Delta\chi^2_{
m eff} \le 2.7$$

$$\mathcal{P}_{ ext{mar}}(m_{ ext{DM}}, \sigma_n^{ ext{SI}} | X) \; = \; \mathcal{P}_{ ext{mar}}(S_x | X)$$

Inference for elastic SI scattering

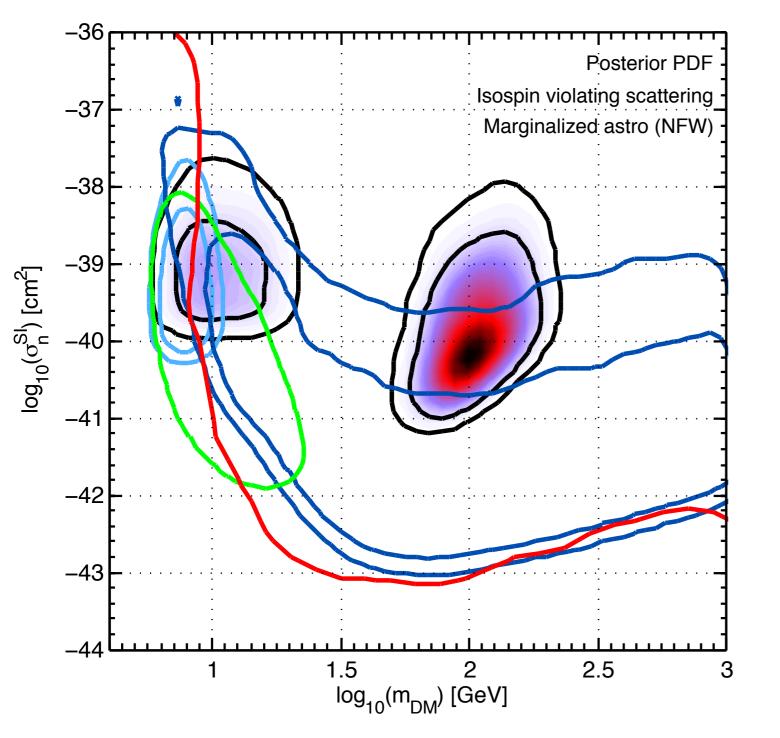


- The marginalization over astrophysics does not improve the compatibility between XENON100 and all detection hints

- The XENON100 bound is less stringent at masses larger than 30 GeV than the one of the collaboration because of the approximate likelihood

- Same analysis can be done with LUX, more difficult to reconcile low mass regions, as its threshold is at 2 PE

Inference for isospin violating scattering



Assumption that interaction of WIMP with proton and neutron is of different strength:

 $f_n \neq f_p$

$$\frac{\mathrm{d}\sigma}{\mathrm{d}E} = \frac{M_{\mathcal{N}}\sigma_n^{\mathrm{SI}}}{2\mu_n^2 v^2} \frac{\left(f_p Z + (A-Z)f_n\right)^2}{f_n^2} \mathcal{F}^2(E)$$

- The extra parameter is not supported/ constrained by current data
- The marginalization over the parameter causes a volume effect: detection regions becomes larger and the exclusion bound moves to the right
- Within the Bayesian approach the hint regions become compatible with the 90% CL of XENON100
- Inelastic and exothermic dark matter have same volume effect, however the agreement between detection regions and exclusion bounds is worst than isospin violating scenario

Bayesian evidence for model comparison $\mathcal{P}(\theta \mid X) = \pi(\theta) \ \frac{\mathcal{L}(X|\theta)}{\mathcal{Z}(X)}$

$$\mathcal{Z} = \int \mathcal{L}(X|\theta) \pi(\theta) d^D \theta$$

Bayesian evidence

1. model averaged likelihood

2. contains notion of Occam's razor principle

3. used for model comparison and statistical test

Posterior pdf for a model:

$$\mathcal{P}(\mathcal{M}|X) \propto \mathcal{Z} \ \pi(\mathcal{M})$$

 $\pi(\mathcal{M}_0) = \pi(\mathcal{M}_1)$

(non committal prior)

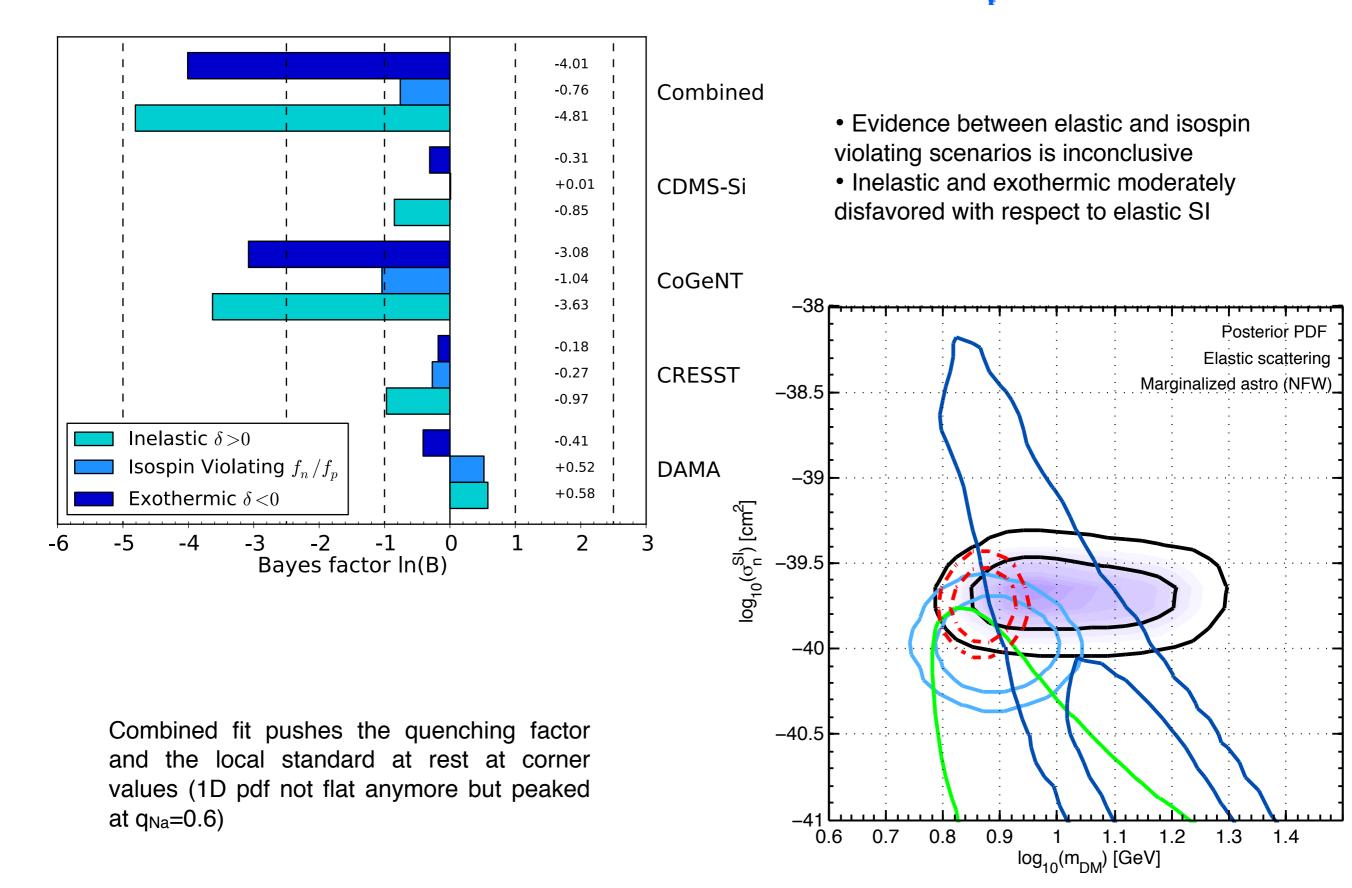
 $\frac{\mathcal{P}(\mathcal{M}_0|X)}{\mathcal{P}(\mathcal{M}_1|X)} = B_{01} \frac{\pi(\mathcal{M}_0)}{\pi(\mathcal{M}_1)}$

Empirical Jeffreys' scale

$\ln B_{10}$	$Odds \ \mathcal{M}_1: \mathcal{M}_0$	Strength of evidence
< -5.0	< 1 : 150	Strong evidence for \mathcal{M}_0
$-5.0 \rightarrow -2.5$	$1:150 \rightarrow 1:12$	Moderate evidence for \mathcal{M}_0
-2.5 ightarrow -1.0	$1:12\rightarrow 1:3$	Weak evidence for \mathcal{M}_0
$-1.0 \rightarrow 1.0$	$1:3\rightarrow 3:1$	Inconclusive
$1.0 \rightarrow 2.5$	$3:1\rightarrow 12:1$	Weak evidence against \mathcal{M}_0
$2.5 \rightarrow 5.0$	$12:1 \rightarrow 150:1$	Moderate evidence against \mathcal{M}_0
> 5.0	> 150:1	Strong evidence against \mathcal{M}_0

Bayes factor: ratio of model's evidences

Combined fit and model comparison



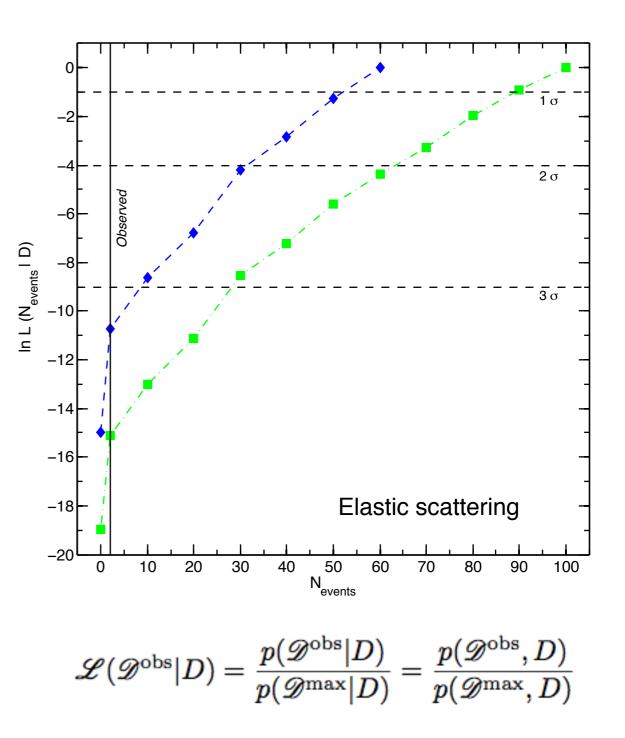
(In)Compatibility between XENON100 and detection hints?

Consider a data set which is given by two subsets: $d = \{\mathscr{D}, D\}$ 1. D = this is the data set which is taken as true, hence fixed 2. \mathscr{D} = data set that we want to

test, that is we want to quantify if it is compatible with D

$$\mathscr{R}(\mathscr{D}^{\mathrm{obs}}) = rac{p(\mathscr{D}^{\mathrm{obs}}, D|\mathcal{H}_0)}{p(\mathscr{D}^{\mathrm{obs}}|\mathcal{H}_1)p(D|\mathcal{H}_1)}$$

$\ln \mathscr{R}(N_{ m obs}=2)$	Interpretation		
-0.32 ± 0.07	Inconclusive evidence against \mathcal{H}_0		
-0.53 ± 0.07	Inconclusive evidence against \mathcal{H}_0		
-0.22 ± 0.07	Inconclusive evidence against \mathcal{H}_0		



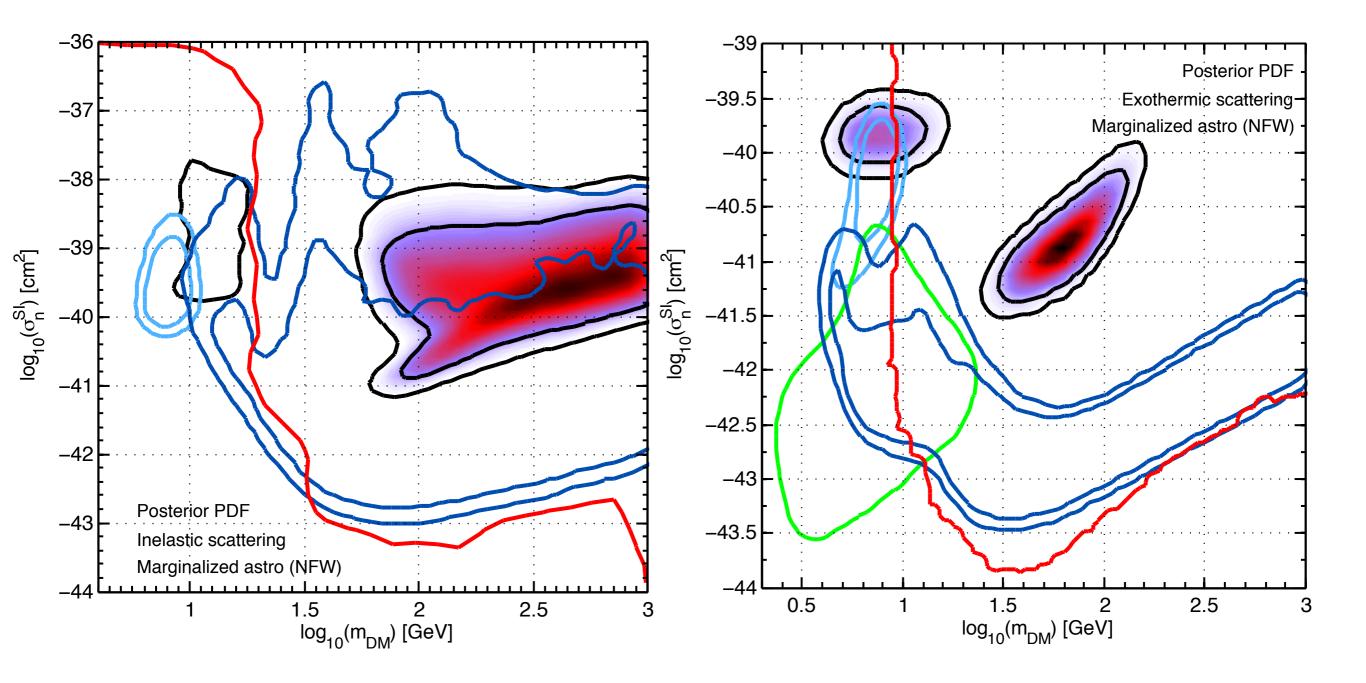
Isospin violating framework: likelihood ratio in data space gives incompatibility at 2σ

Summary

- Bayesian approach for XENON100, DAMA, CoGeNT, CRESST and CDMSI-Si data with marginalization over the systematics and nuisance parameters characteristic of each experiment (can be applied to LUX, similar to XENON100 procedure)
- Inclusion of velocity distributions arising from DM density profile and marginalization over astrophysical variables (NFW)
- Difficult to reconcile at 90% CL all detection hints and XENON100
- Going beyond the elastic SI scattering (isospin violating, inelastic and exothermic scattering) ameliorates the compatibility between experiments: the additional physics parameter is not constrained by the current data
- Astrophysical uncertainties can not be yet constrained by direct detection experiment alone (however combined fit can constrain astrophysics)
- Combined fit implies large value of the quenching factor on Sodium for DAMA and small local standard of rest velocity
- For hints of detection the elastic and isospin violating scenarios have the strongest support form the data; isospin violating framework ameliorate the compatibility between hints of detection and exclusion bounds

Back up slides

Inference for inelastic/exothermic SI scattering



Changing the WIMP physics interaction

Isospin violating interaction

Feng et al. '11

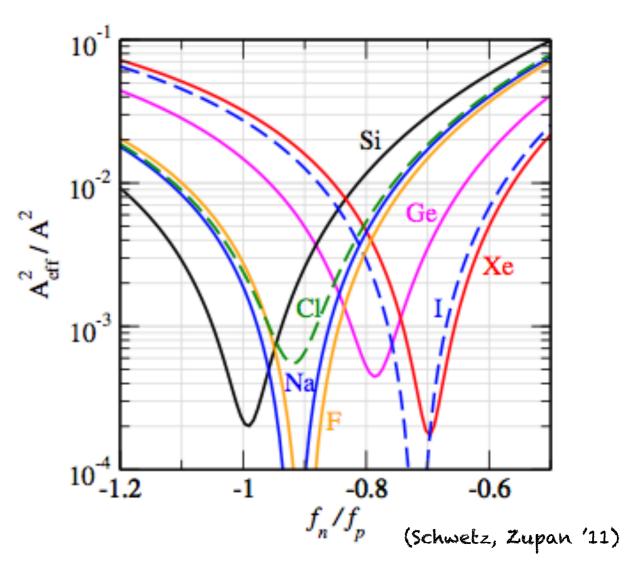
• Assumption that interaction of WIMP with proton and neutron is of different strength:

$$f_n \neq f_p$$

• Defined a mean SI cross-section with an effective couplings to nuclei:

$$\sigma^{\rm SI} = \frac{\sigma_n^{\rm SI} + \sigma_p^{\rm SI}}{2}$$

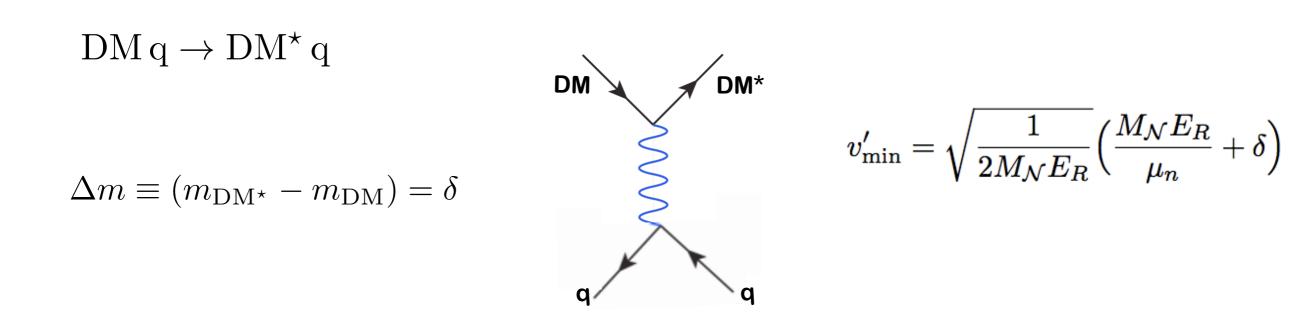
$$A_{ ext{eff}}^2 = \sum_{i=isotopes} 2r_i \left[Zf_p + (A_i - Z)f_n
ight]^2$$



• Example of realization in WIMPs model: The couplings neutralino-squark-quark violate isospin, however in the most common scenarios they are not the dominant contributions to elastic scattering

• Other possibilities: long range interactions, inelastic scattering, spin-dependent interaction

Inelastic scenario



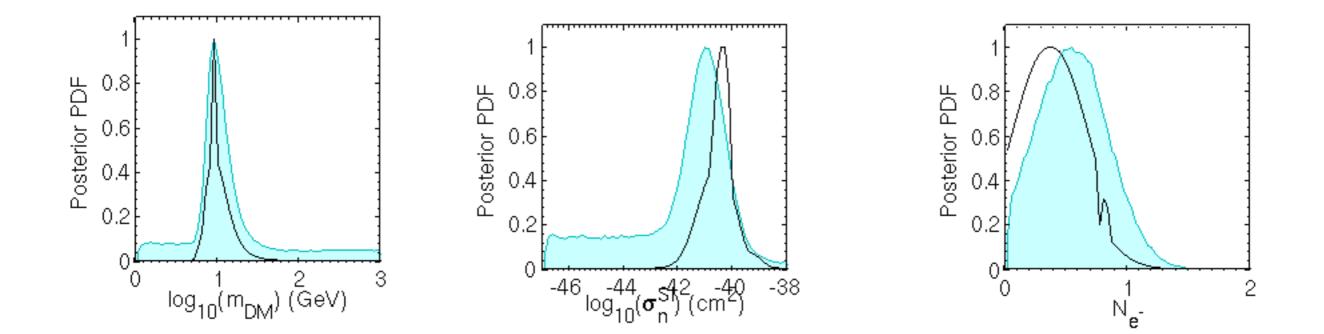
• If the splitting is positive the DM scatters into an heavier state: kinematic condition implies that the scatter occurs most probably with heavy nuclei (hence more sensitive to heavy WIMPs)

• If the splitting is negative exothermic Dark Matter, it decays into a lighter states and light target are favoured

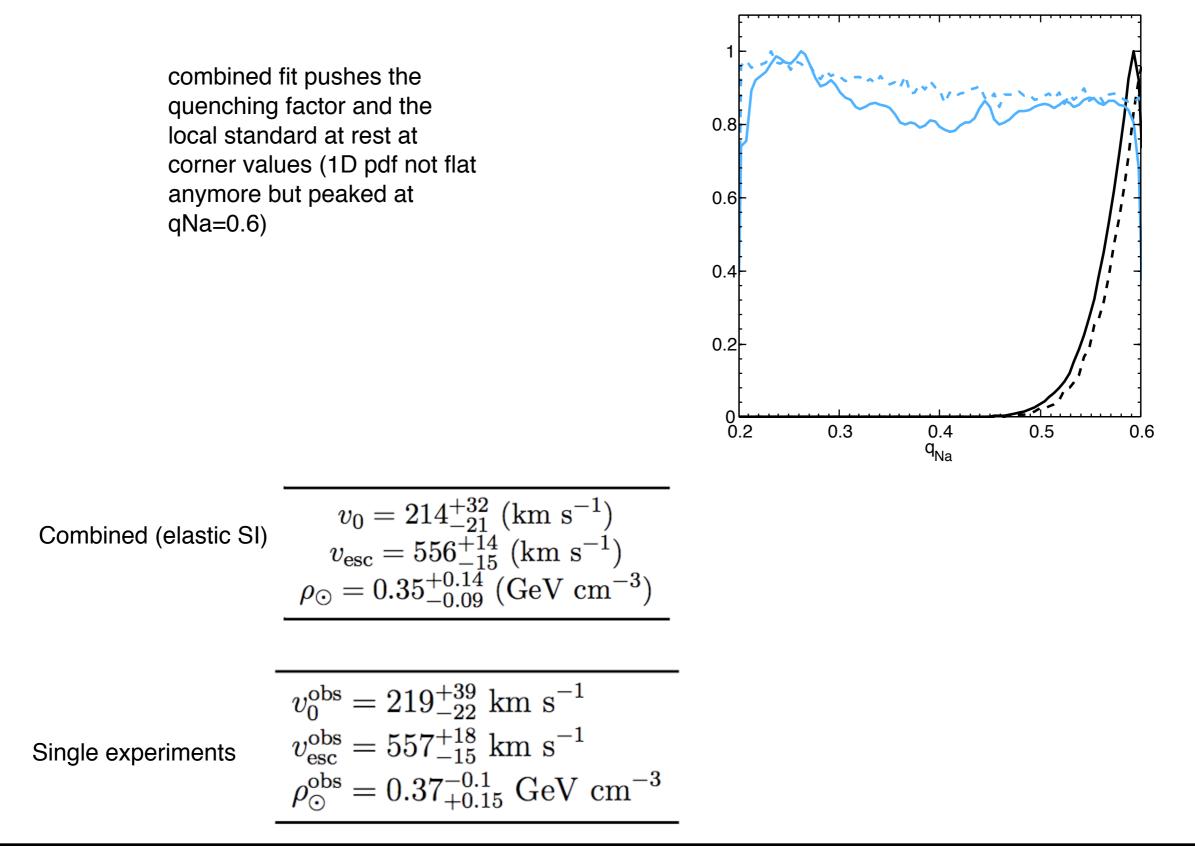
SI elastic scattering scenario CDSM-Si data from CDMS-Si collaboration arXiv:1304.4279

$$\ln \mathcal{L}_{CDMSSi} = \left[\sum_{i=1}^{3} P_1(S+B)\right] + \left[\sum_{j} P_0(S+B)\right] + \ln \mathcal{L}_{bck}$$

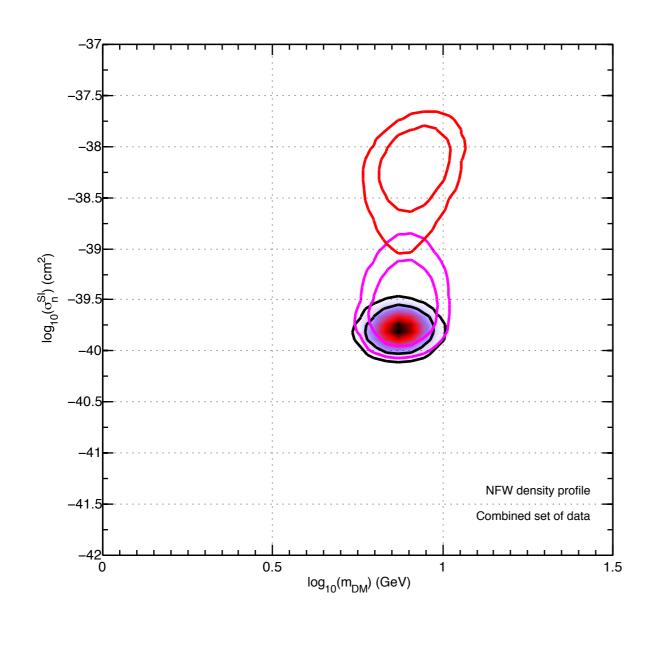
1D marginalized posterior PDF for all parameters:

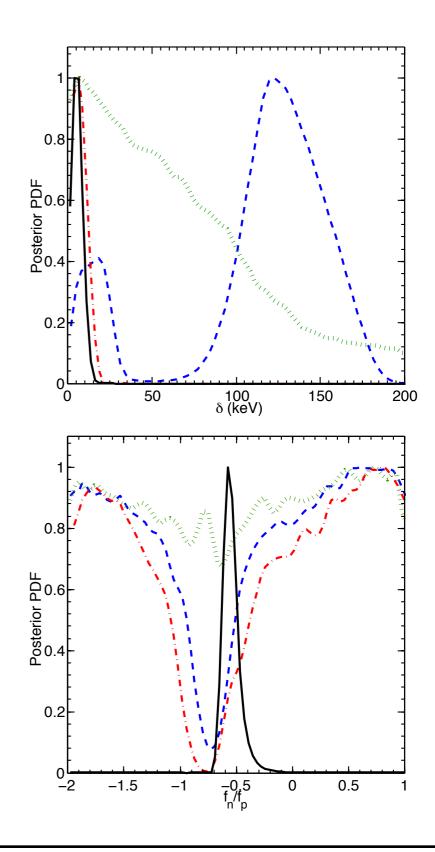


Combined fit more details

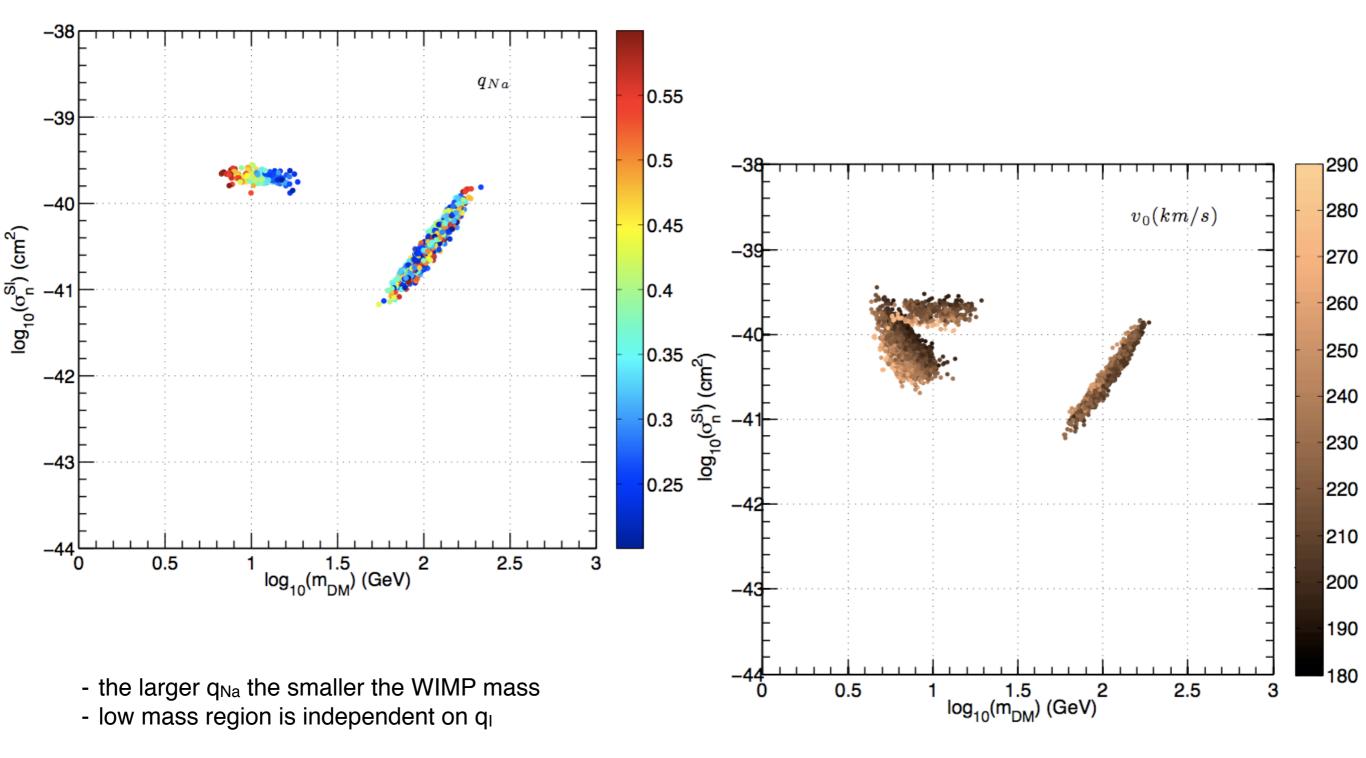


Combined fit more details





DAMA and CoGeNT, combined fit: hidden directions behavior

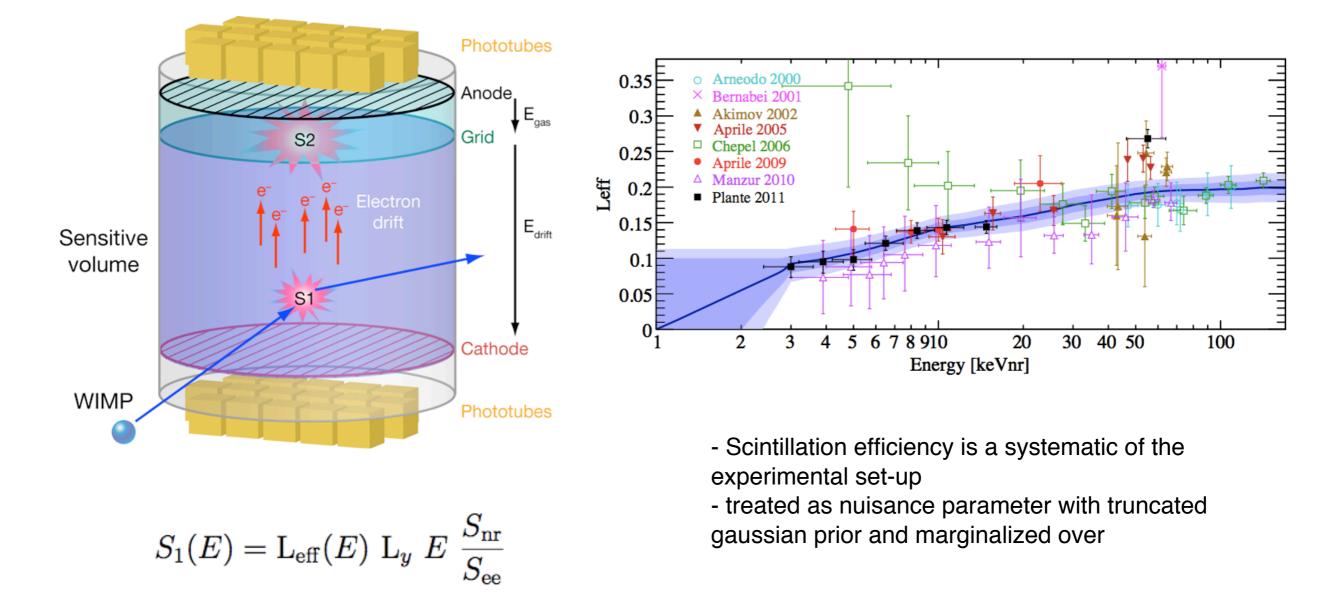


- similar behavior for the DM density at the sun position

- less sensitive to the escape velocity value

XENON100 collaboration, arXiv:1207.5988 Aprile et al. arXiv:1104.2549

- S = 2 (seen events), likelihood follows a Poisson distribution
- B = 1. +- 0.8
- Total exposure 2323.7 kg days



XENON100

$$\mathcal{L}_{\rm eff}(E) = \begin{cases} \bar{\mathcal{L}}_{\rm eff}(E), & E \ge 3 \ {\rm keVnr}, \\ \max\{m[\ln(E/{\rm keVnr}) - \ln 3] + 0.09, \ 0\}, & 1 < E/{\rm keVnr} < 3 \end{cases}$$

$$\begin{split} S_1(E) &= \mathrm{L}_{\mathrm{eff}}(E) \ \mathrm{L}_y \ E \ \frac{S_{\mathrm{nr}}}{S_{\mathrm{ee}}} & \text{conversion between keVnr and PE} \\ S &= M_{\mathrm{det}} T \sum_{n=\mathrm{PE}_{\mathrm{min}}}^{\mathrm{PE}_{\mathrm{max}}} \frac{\mathrm{d}R}{\mathrm{d}S_1} & \mathrm{d}N_B/\mathrm{d}S_1 = 0.069/(1481 \,\mathrm{kg \ days}) \\ \frac{\mathrm{d}R}{\mathrm{d}S_1} &= \int_0^\infty \mathrm{d}E \ \frac{\mathrm{d}R}{\mathrm{d}E} \times P(S_1|\bar{S}_1(E)) \end{split}$$

All the likelihoods are normalized such that $\ln \mathcal{L} = 0$ if the background matches exactly the number of observed events

Germanium cryogenic detector detector mass 0.33 kg live time 442 days total exposure 145.86 kg days

- Data analysis and binning follow arXiv:1106.0650 [astro-ph.CO]
- Radioactive peaks subtracted as prescribed by the collaboration
- Analysis of the total rate with a background (27 bins)
- Analysis of the modulated rate without background in 3 energy bins
- All data are corrected by the efficiency factor, ranging from 0.7 to 0.82

$$\ln \mathcal{L}_{\text{TR}} = -\frac{\chi^2}{2} = -\sum_{i=1}^{27} \frac{((S_i + b_i) - C_i)^2}{2\sigma_i^2}$$
$$\ln \mathcal{L}_{MR} = -\frac{\chi^2}{2} = -\sum_{j=1}^3 \frac{(S_{\text{theo}}^i - S_{\text{m}}^i)^2}{2\sigma_i^2}$$

Total rate : 27 bins of width 0.1 keVee energy range 0.5- 3.2 keVee

3 nuisance parameters for the non modulating background

$$b_i = \frac{1}{\Delta_b} \int_{\mathcal{E}_i}^{\mathcal{E}_{i+1}} \frac{\mathrm{d}B}{\mathrm{d}\mathcal{E}} \mathrm{d}\mathcal{E}$$

$$\frac{\mathrm{d}B}{\mathrm{d}\mathcal{E}} = C + A\exp(-\mathcal{E}/\mathcal{E}_0)$$

Modulated rate:

ΔE_i (keVee)	$S_m \ (\mathrm{cpd/kg/keVee})$
0.5 - 0.9	1.10 ± 0.39
0.9 - 3.0	0.60 ± 0.12
3.0 - 4.5	0.07 ± 0.9

Experiment	Parameter	Prior
CoGeNT	C	$0 \rightarrow 10 ~\rm cpd/kg/keVee$
CoGeNT	\mathcal{E}_0	$0 \rightarrow 30 \text{ keVee}$
CoGeNT	Α	$0 \rightarrow 10 \text{ cpd/kg/keVee}$

quenching factor: $\mathcal{E}(\text{keVee}) = 0.19935 \times E^{1.1204}(\text{keVnr})$

COGENT

Aalseth et al. arXiv:1106.0650

Ge detector, 146 kg days

Very low threshold:

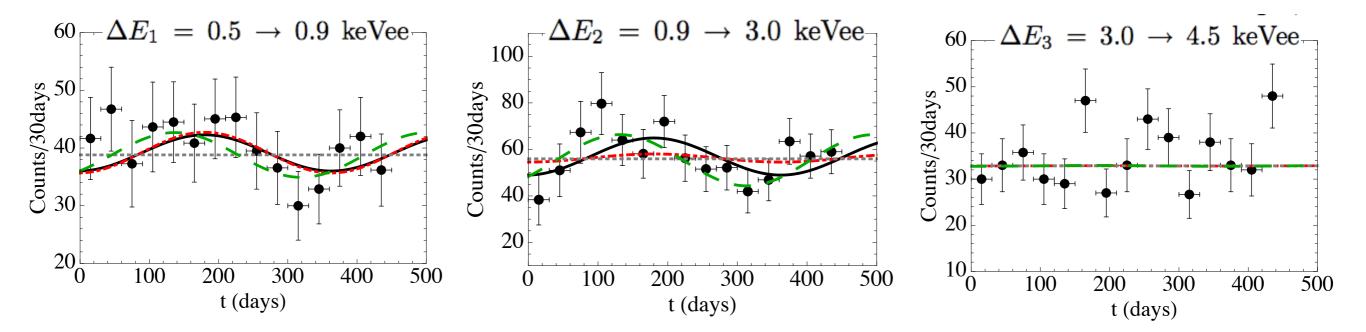
0.4 keVee = 2.7 keV

Gaussian likelihood

 $\ln \mathcal{L}_{\rm CoGeNT} = \ln \mathcal{L}_{\rm TR} + \ln \mathcal{L}_{\rm MR}$

Background

- 1. does not modulate, included only for the total rate
- 2. constant + exponential background (mimic surface events)
- 3. 3 nuisance parameters
- Radioactive peaks subtracted



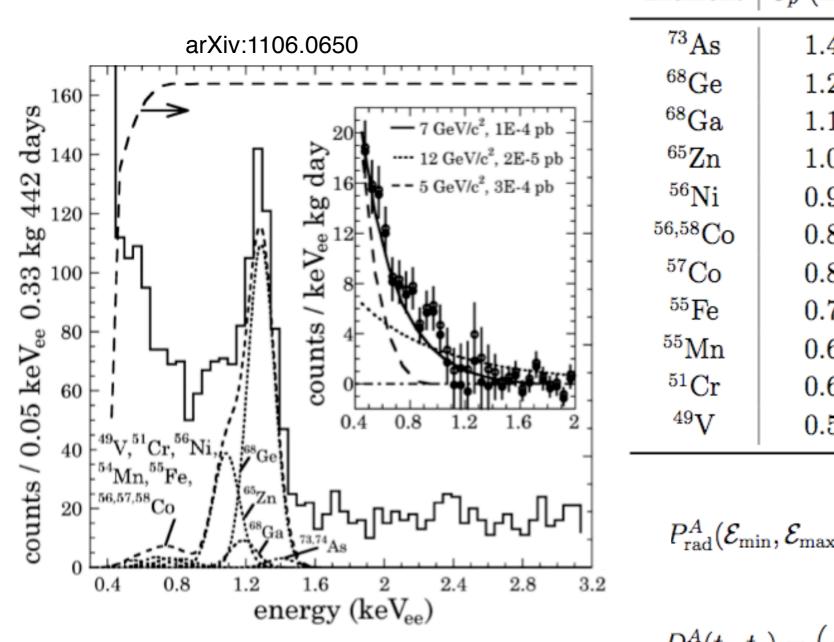
Modulation: from 2.3σ to 1.6σ

CA, J.Hamann, R.Trotta & Y.Wong arXiv:1111.3238 [hep-ph];

COGENT 2011

Data analysis

Radioactive peaks



Element	\mathcal{E}_p (keVee)	σ_p (keVee)	$ au_{1/2} ext{ (days)}$	N_0
⁷³ As	1.414	0.077	80.	12.7
$^{68}\mathrm{Ge}$	1.298	0.077	271.	638.9
68 Ga	1.194	0.076	271.	52.8
65 Zn	1.096	0.075	244.	211.2
⁵⁶ Ni	0.926	0.075	5.9	1.53
$^{56,58}\mathrm{Co}$	0.846	0.074	71.	9.44
57 Co	0.846	0.074	271.	2.59
55 Fe	0.769	0.074	996.	44.9
55 Mn	0.695	0.073	312.	21.1
$^{51}\mathrm{Cr}$	0.628	0.073	28.	2.93
^{49}V	0.564	0.073	330.	14.9

$$\mathcal{P}_{\mathrm{rad}}^A(\mathcal{E}_{\min},\mathcal{E}_{\max}) = \int_{\mathcal{E}_{\min}}^{\mathcal{E}_{\max}} \mathrm{Gaussian}(\mathcal{E},\mathcal{E}_p,\sigma_p) \mathrm{d}\mathcal{E}_p$$

$$D^A(t_1, t_2) = \Big(\exp(-rac{\ln 2}{ au_{1/2}}t_1) - \exp(-rac{\ln 2}{ au_{1/2}}t_2)\Big)$$

$$N_{ ext{tot}}^A(\mathcal{E}_{ ext{min}},\mathcal{E}_{ ext{max}},t_1,t_2) = N_0 P_{ ext{rad}}^A(\mathcal{E}_{ ext{min}},\mathcal{E}_{ ext{max}}) D^A(t_1,t_2)$$

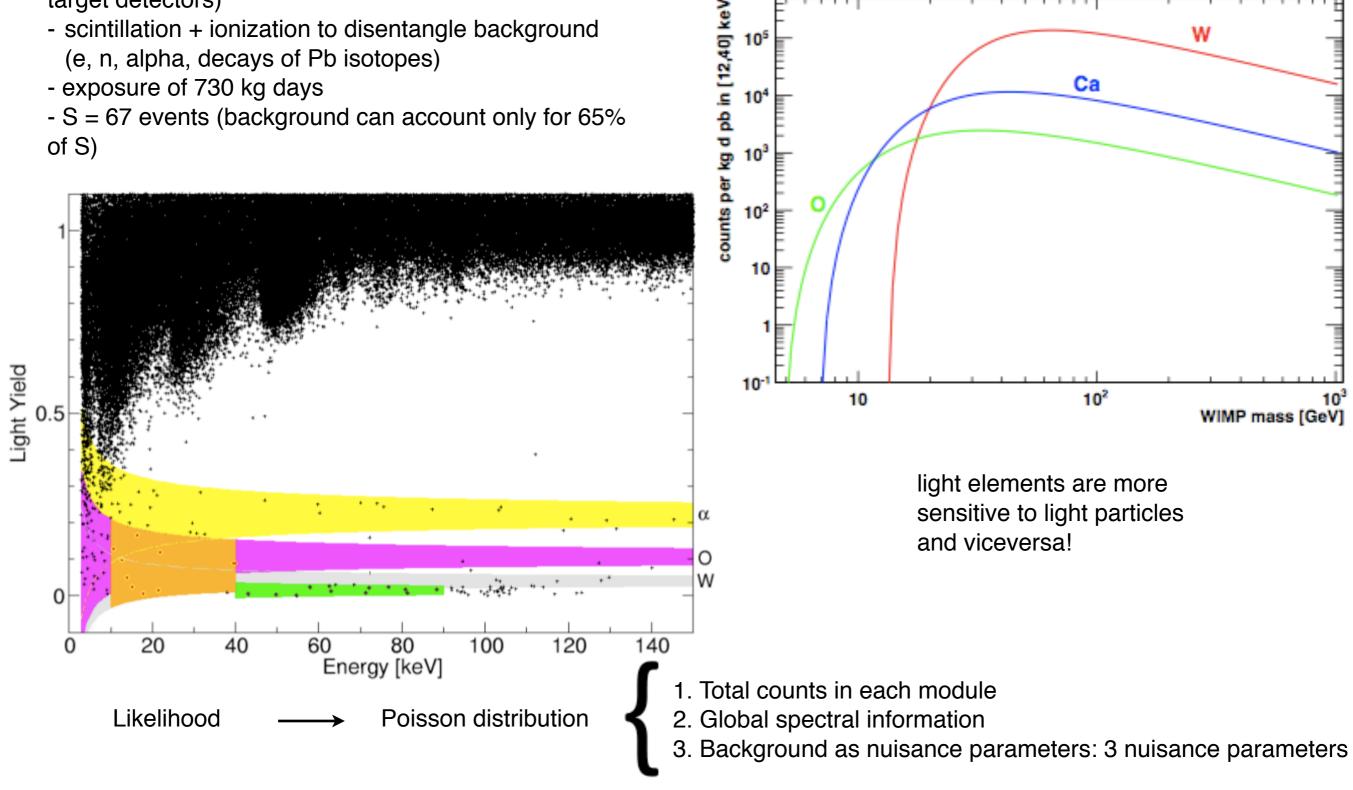
CRESST-II

Angloher et al., arXiv:1109.0702 evidence at 4 sigma

Ca

w

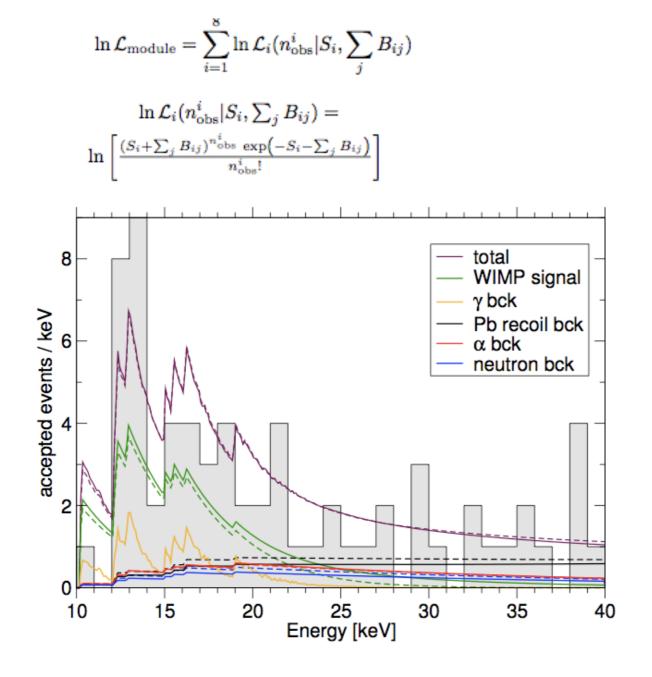
- 8 detector modules made by CaWO₄ crystals (multitarget detectors)
- scintillation + ionization to disentangle background (e, n, alpha, decays of Pb isotopes)
- exposure of 730 kg days
- S = 67 events (background can account only for 65%



CRESST-II

- 8 detector module made by CaWO4 crystals (multi-target detectors)
- scintillation + ionization to disentangle background (e, n, alpha, decays of Pb isotopes)
- exposure of 730 kg days
- S = 67 events (background can account only for 65% of N)

 $\ln \mathcal{L}_{\text{CRESST}}(N_{\text{tot}}|S,B) = \ln \mathcal{L}_{\text{module}} + \ln \mathcal{L}_{\text{Spectral}} + \ln \mathcal{L}_{B}$



 $B_i = B_{i\alpha} + B_{i\,e/\gamma} + B_{i\,n} + B_{i\,\mathrm{Pb}}$

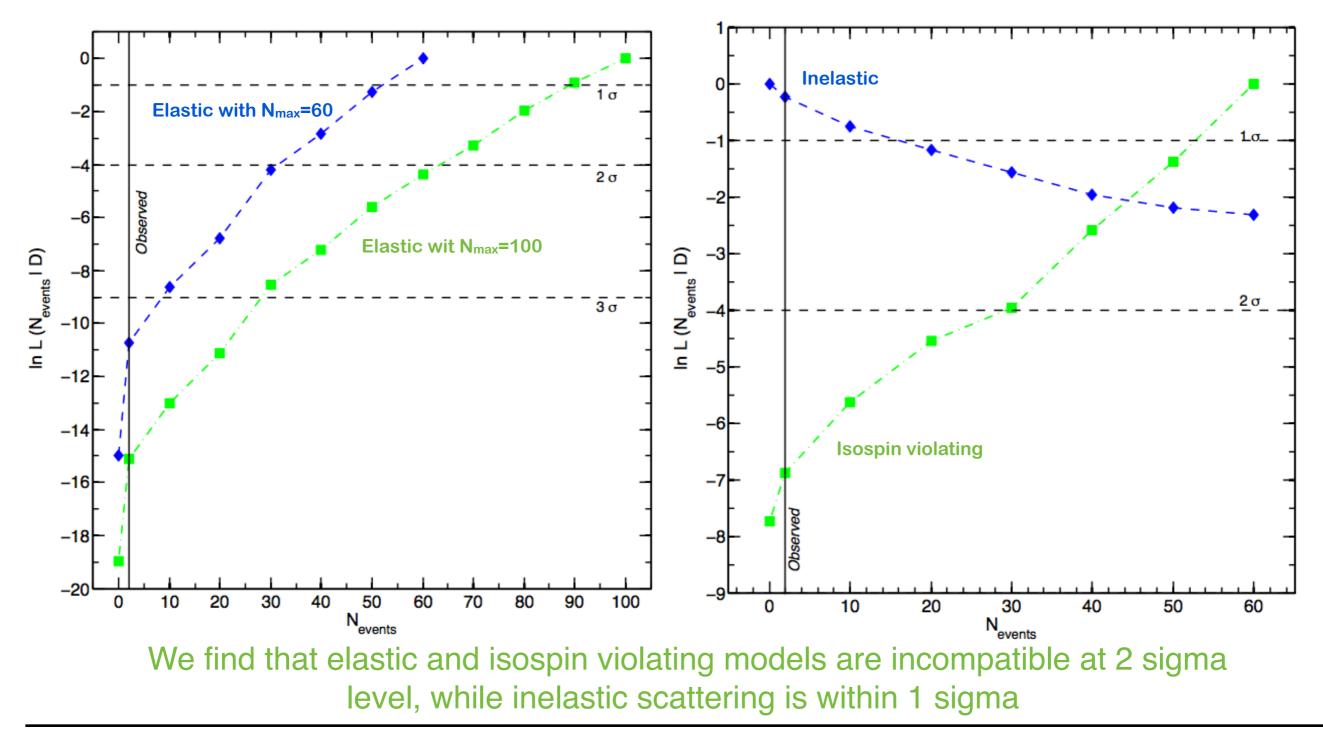
$$rac{\mathrm{d}B_{\mathrm{Pb}}}{\mathrm{d}E} = C_{\mathrm{Pb}}\left[0.13 + \exp\left(rac{E-90}{13.72}
ight)
ight]$$

$$B_n = N_n \left[\exp \left(-\frac{E_{\min}}{23.54} \right) - \exp \left(-\frac{E_{\max}}{23.54} \right) \right]$$

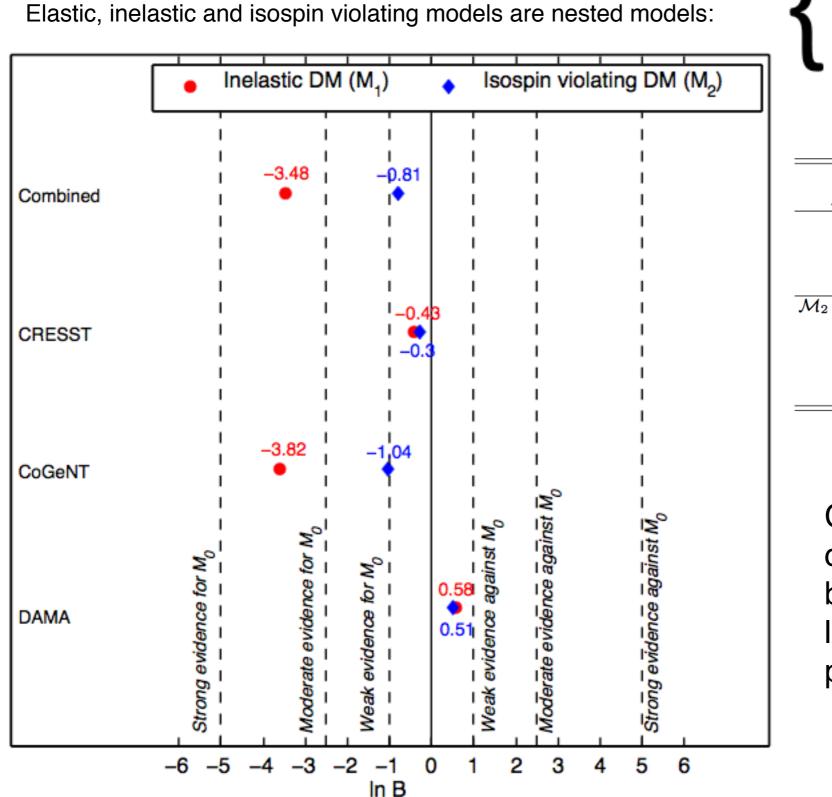
$$\begin{split} \bar{B}_{\alpha} \pm \sigma_{\alpha} &= 9.2 \pm 2.3, \\ \bar{B}_{n} \pm \sigma_{n} &= 9.7 \pm 5.1 \\ \bar{B}_{\text{Pb}} \pm \sigma_{\text{Pb}} &= 19 \pm 5 \end{split}$$

(In)Compatibility test

- We assume that:
 - 1. The fixed set is: $D = \{DAMA, CoGeNT, CRESST\}$
 - 2. The result to be tested is the number of events seen in the XENON100 detector



Which is the best model that accounts for the excessat low WIMP mass?

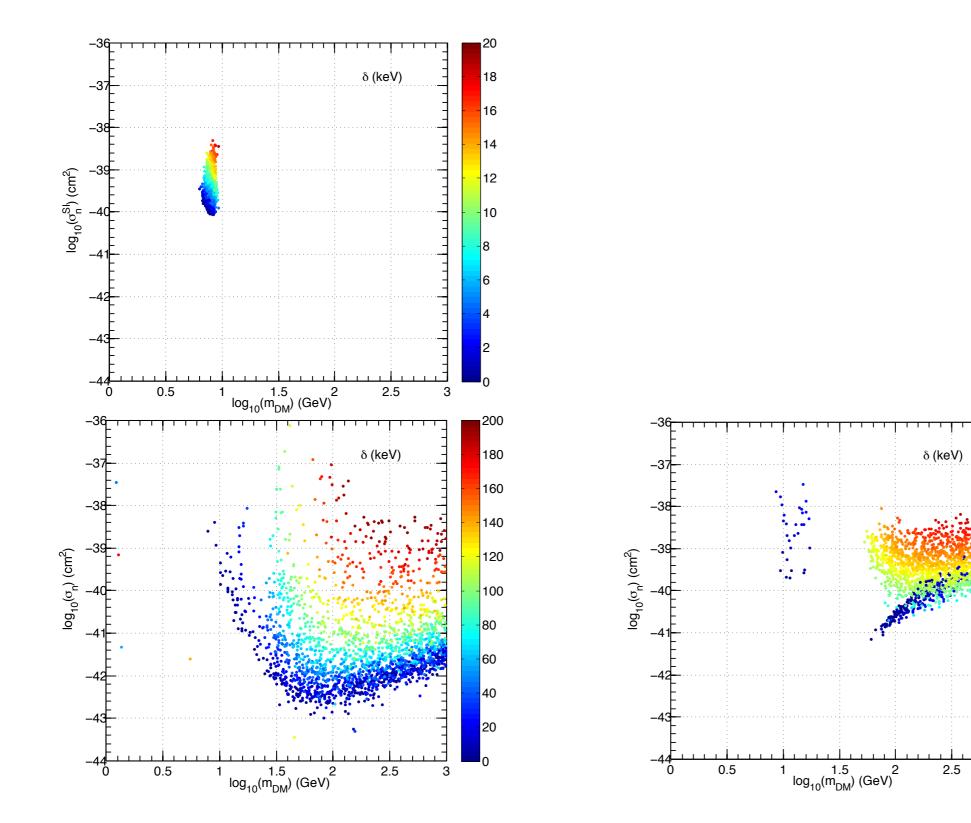


Inelastic reduces to elastic for $\delta = 0$ Isospin violating reduces to elastic for $f_n/f_p = 1$

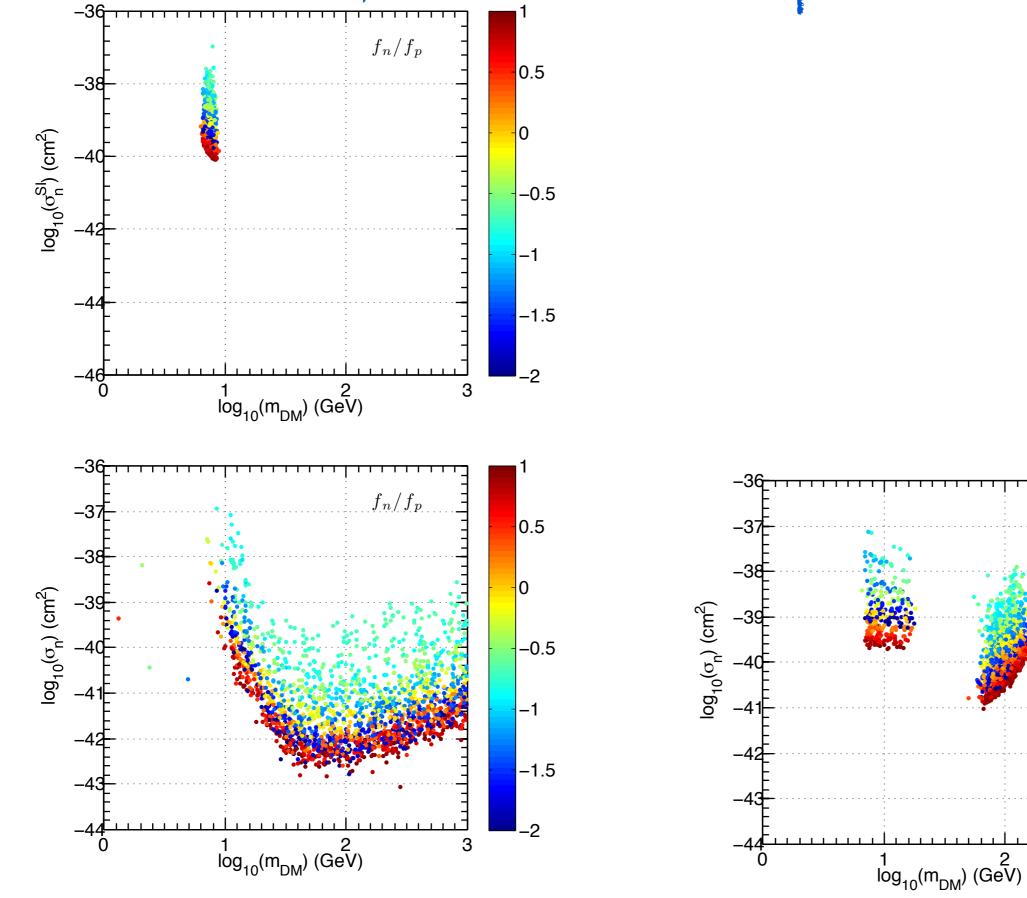
		$\mathcal{M}_i:\mathcal{M}$	lo
\mathcal{M}_1 Inelastic DM	odds	$\Delta\chi^2_{ m eff}$	p-values
DAMA	2:1	1.95	0.08
CoGeNT	1:37	0.87	0.18
CRESST	1:2	0.04	0.42
Combined	1:32	0.71	0.20
\mathcal{M}_2 Isospin violating DM			
DAMA	2:1	1.88	0.09
CoGeNT	1:3	0.12	0.36
CRESST	1:1	0.03	0.43
Combined	1:2	8.56	0.002

CoGeNT and combined fit disfavour inelastic scattering because the excess is in the low energy region and it prefers light WIMP masses

Parameter inference 3D: inelastic case



Parameter inference 3D: isospin violating case



 f_n/f_p

0.5

0

-0.5

-1

-1.5

-2

3

Construction of DM velocity distribution (1) $\int_{v'>v'_{\min}} d^3v' \frac{f(\vec{v'}(t))}{v'} \longrightarrow f(\vec{v'}(t)) \equiv F(\vec{v}, \vec{R}_{\odot})/\rho_{\odot}$ $\rho_{\odot} \equiv \rho_{\text{DM}}(R_{\odot})$

DD depends on the distribution function (DF) at the sun position arising from the WIMPs phase-space distribution $F(\vec{r}, \vec{v}) d^3r d^3v$

$$ho_{
m DM}(ec{r}) = \int {
m d}^3 v \; F(ec{v},ec{r})$$

• DF obtained inverting the above equation

 Symmetries assumed: density profile spherically symmetric and f(v) isotropic -> DF only function of the energy

$$F(\varepsilon) = \frac{1}{\sqrt{8}\pi^2} \left[\int_0^\varepsilon \frac{\mathrm{d}^2 \rho_{\mathrm{DM}}}{\mathrm{d}\Psi^2} \frac{\mathrm{d}\Psi}{\sqrt{\varepsilon - \Psi}} + \frac{1}{\sqrt{\varepsilon}} \left(\frac{\mathrm{d}\rho_{\mathrm{DM}}}{\mathrm{d}\Psi} \right) \Big|_{\Psi=0} \right]$$

• f(v) is a function of the gravitational potential (including baryon contribution)

• f(v) is a function of the DM density profile

Construction of DM velocity distribution (2)

 $\rho_{\rm DM}~({\rm GeV/cm}^3)$

1000

10

0.1

0.001

0.01

0.1

r (kpc)

10

100

(a.T.

0.001

Spherically symmetric DM density profiles $\rho_{\rm DM} = \rho_{\rm DM}(c_{\rm vir}, M_{\rm vir})$:

- NFW
- Einasto
- Cored Isothermal
- Burkert

The profiles mostly differ near the galactic center, at the sun position they give similar behavior for f(v)

In what follow only shown comparison between NFW and SMH

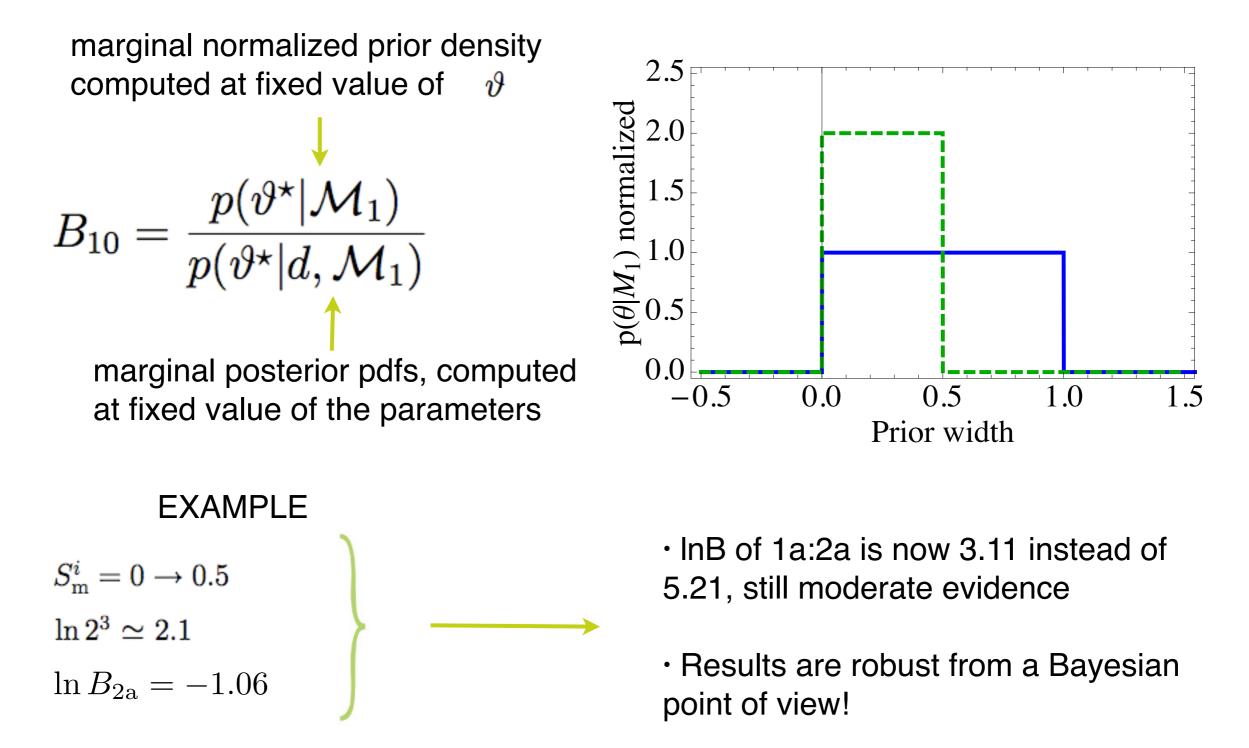
Likelihood for astrophysical observables (nuisance parameters for ALL EXP)

$$\ln \mathcal{L}_{\rm Astro} = -\frac{(v_0 - \bar{v}_0^{\rm obs})^2}{2\sigma_{v_0}^2} - \frac{(v_{\rm esc} - \bar{v}_{\rm esc}^{\rm obs})^2}{2\sigma_{v_{\rm esc}}^2} - \frac{(\rho_{\odot} - \bar{\rho}_{\odot}^{\rm obs})^2}{2\sigma_{\rho_{\odot}}^2} - \frac{(M_{\rm vir} - \bar{M}_{\rm vir}^{\rm obs})^2}{2\sigma_{M_{\rm vir}}^2}$$

Observable/Parameter	Constraint/Prior	$v_{ m esc}=\left. \sqrt{2\Psi} ight _{r=R_{\odot}}$
Local standard of rest	$v_0^{ m obs} = 230 \pm 24.4 \ { m km \ s^{-1}}$	$d\Psi$
Escape velocity	$v_{ m esc}^{ m obs} = 544 \pm 39 \ { m km \ s}^{-1}$	$v_0 \equiv \sqrt{-r rac{\mathrm{d}\Psi}{\mathrm{d}r}} igg _{r=R_0}$
Local DM density	$ ho_{\odot}^{ m obs} = 0.4 \pm 0.2 \; { m GeV} \; { m cm}^{-3}$	ir=n⊙
Virial mass	$M_{ m vir}^{ m obs} = 2.7 \pm 0.3 imes 10^{12} M_{\odot}$	$ ho_\odot\equiv ho_{ m DM}(R_\odot)$
Concentration parameter (NFW, Einasto)	$c_{\rm vir}: 5 \rightarrow 20$	
Concentration parameter (ISO, Burkert)	$c_{\rm vir}: 50 \rightarrow 200$	

Sensitivity analysis

For nested models with parameter priors separable the Savage Dickey density ratio (SDDR) gives an analytical estimate of the effect on InB changing the width of the prior



Velocity distribution from DM density profile

Assuming equilibrium between gravitational force and pressure:

$$F(\varepsilon) = \frac{1}{\sqrt{8}\pi^2} \left[\int_0^\varepsilon \frac{\mathrm{d}^2 \rho_{\mathrm{DM}}}{\mathrm{d}\Psi^2} \frac{\mathrm{d}\Psi}{\sqrt{\varepsilon - \Psi}} + \frac{1}{\sqrt{\varepsilon}} \left(\frac{\mathrm{d}\rho_{\mathrm{DM}}}{\mathrm{d}\Psi} \right) \Big|_{\Psi=0} \right]$$

Eddigton formula for spherically symmetric DM density profiles that lead to isotropic f(v)

Poisson equation for the gravitational potential including contribution from the bulge and disk:

$$\frac{\mathrm{d}^2\Psi}{\mathrm{d}r^2} + \frac{2}{r}\frac{\mathrm{d}\Psi}{\mathrm{d}r} = -4\pi G[\rho_{\rm DM} + \rho_{\rm disk} + \rho_{\rm bulge}]$$

$$\rho_{\rm DM}(r) = \rho_s \left(\frac{r}{r_s}\right)^{-1} \left(1 + \left(\frac{r}{r_s}\right)\right)^{-2}$$
$$\rho_{\rm disk}(r) = \frac{M_{\rm disk}}{4\pi r_{\rm disk}^2} \frac{e^{-r/r_{\rm disk}}}{r}$$
$$\rho_{\rm bulge}(r) = M_{\rm bulge} \delta_D^{(3)}(\vec{r})$$

The velocity distribution is translated to the reference frame of the Earth:

$$\int_{v'>v'_{\min}} d^3v' \, \frac{f(\vec{v'}(t))}{v'} \to 2\pi\rho_{\odot}^{-1} \int_{v'>v'_{\min}} dv' \, v' \int_{-1}^{1} d\alpha \, F\left(\Psi_{\odot} - \frac{1}{2}v^2\right) \qquad v_0 \equiv \sqrt{-r\frac{d\Psi}{dr}} \bigg|_{r=R_{\odot}}$$

$$\begin{aligned} v^2 &= |v' + \vec{v}_{\oplus}|^2 = v'^2 + v_{\oplus}^2 + 2v'v_{\oplus}\alpha \,, \\ v_{\oplus} &= |\vec{v}_{\odot} + \vec{v''}_{\oplus,\mathrm{rot}}| = v_{\odot} + v''_{\oplus,\mathrm{rot}}\cos\gamma\cos[2\pi(t-t_0)/T] \end{aligned}$$

$$v_{
m esc} = \left. \sqrt{2\Psi} \right|_{r=R_\odot}$$

DM density profiles			
$r_s(M_{ m vir},c_{ m vir})=rac{r_{ m vir}(M_{ m vir})}{c_{ m vir}}$	$M_{ m vir} = 4\pi \int_0^{r_{ m vir}} \mathrm{d}r \ r^2 ho_{ m DM}(r) = rac{4}{3}\pi r_{ m vir}^3 \delta_c ho_{ m crit}$		
Cored isothermal	$\rho_{\rm DM}(r) = \rho_s \left[1 + \left(\frac{r}{r_s}\right)^2 \right]^{-1}$ $\rho_s(c_{\rm vir}) = \frac{\delta_c \rho_{\rm crit}}{3} \frac{c_{\rm vir}^3}{c_{\rm vir} - \tan^{-1}(c_{\rm vir})}$		
Navarro–Frenk–White (NFW)	$\rho_{\rm DM}(r) = \rho_s \left(\frac{r}{r_s}\right)^{-1} \left(1 + \left(\frac{r}{r_s}\right)\right)^{-2}$ $\rho_s(c_{\rm vir}) = \frac{\delta_c \rho_{\rm crit}}{3} \frac{c_{\rm vir}^3}{\ln(1 + c_{\rm vir}) - c_{\rm vir}/(1 + c_{\rm vir})}$		
Einasto	$\begin{split} \rho_{\rm DM}(r) &= \rho_s \exp\left(-\frac{2}{a}\left[\left(\frac{r}{r_s}\right)^a - 1\right]\right)\\ \rho_s(c_{\rm vir}) &= \frac{\delta_c \rho_{\rm crit}}{3} \frac{c_{\rm vir}^3 [2^{-\frac{3}{\alpha}} \exp(\frac{2}{\alpha})\alpha^{\frac{3}{\alpha}-1}]^{-1}}{\Gamma\left(\frac{3}{\alpha}\right) - \Gamma\left(\frac{3}{\alpha}, \frac{2c_{\rm vir}^\alpha}{\alpha}\right)} \end{split}$		
Burkert	$\rho_{\rm DM}(r) = \rho_s \left(1 + \frac{r}{r_s}\right)^{-1} \left(1 + \frac{r}{r_s}\right)^{-2}$ $\rho_s(c_{\rm vir}) = \frac{4\delta_c \rho_{\rm crit}}{3} \frac{c_{\rm vir}^3}{2\ln(1 + c_{\rm vir}) + \ln(1 + c_{\rm vir}^2) - 2\tan^{-1}(c_{\rm vir})}$		

Theoretical predictions for elastic spin-independent scattering off nucleus

$$\mathcal{E} = qE$$
 $S(t) = M_{det}T \int_{\mathcal{E}_1/q}^{\mathcal{C}_2/q} dE \ \epsilon(qE) \ \frac{dR}{dE}$

Modulated rate

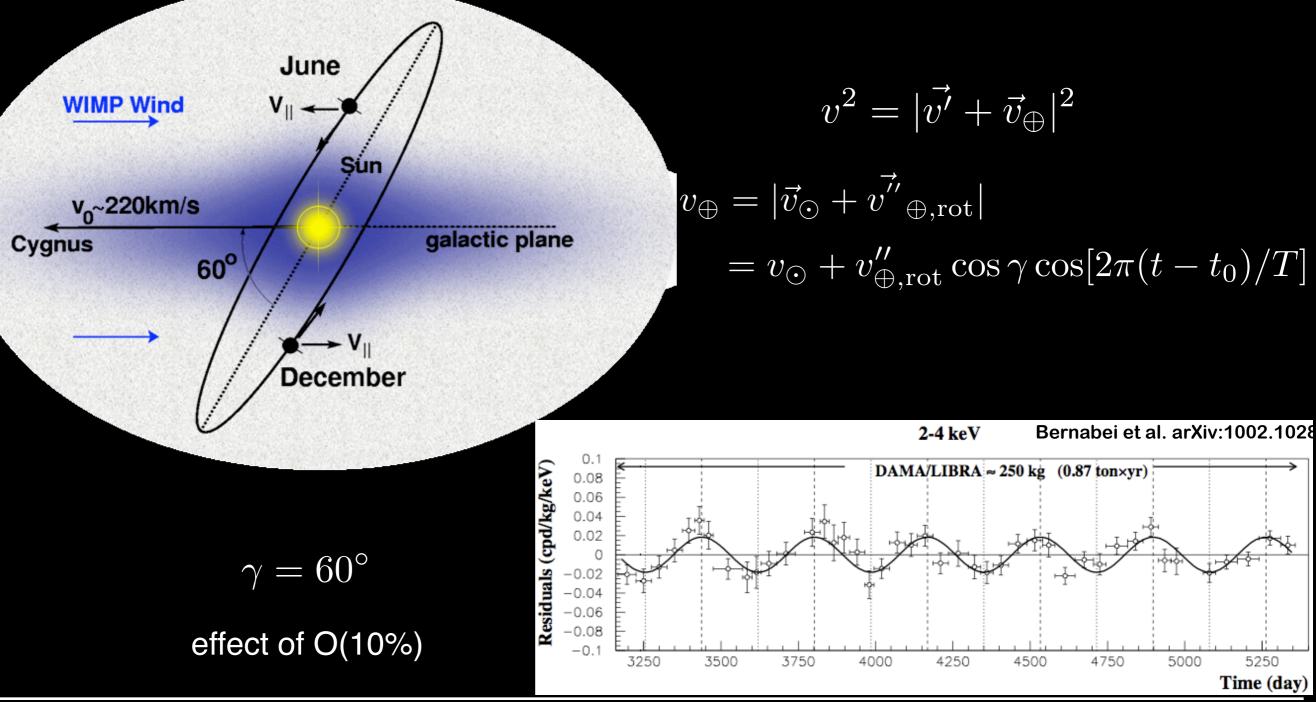
$$s = \frac{1}{\mathcal{E}_2 - \mathcal{E}_1} \sum_{X=\mathrm{Na},\mathrm{I}} w_X \int_{\mathcal{E}_1/q_X}^{\mathcal{E}_2/q_X} \mathrm{d}E \, \frac{1}{2} \left[\frac{\mathrm{d}R_X}{\mathrm{d}E} (\mathrm{June}\,2) - \frac{\mathrm{d}R_X}{\mathrm{d}E} (\mathrm{Dec}\,2) \right]$$
$$s_{\mathrm{m\%}} = \frac{R(\mathrm{June}2) - R(\mathrm{Dec}2)}{R(\mathrm{June}2) + R(\mathrm{Dec}2)}$$

Annual Modulation

Signature of WIMP recoil in the detector

Drukier, Freese and Spergel '86, Freese, Frieman and Gould '88

In the Earth's rest frame the DM velocity distribution acquires a time dependence, which follows a sinusoidal behavior



C. Arina (IAP, Paris & GRAPPA Institute, UvA) - PASCOS 2013

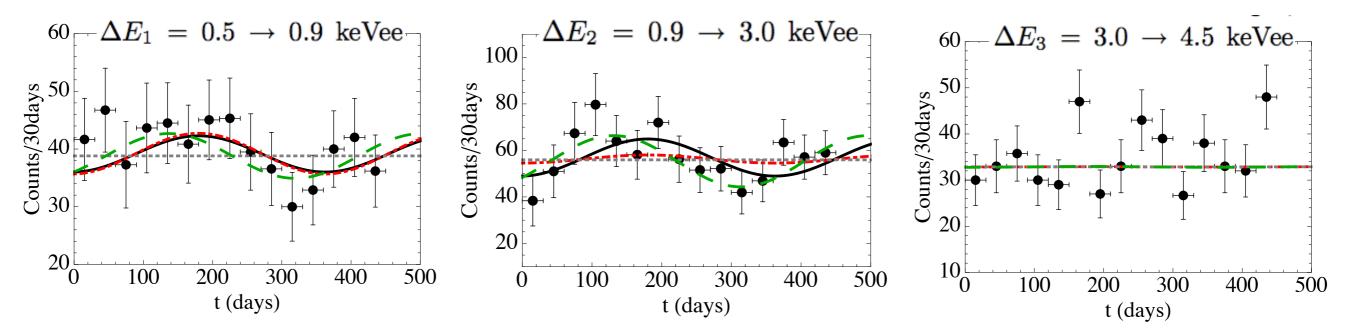
CoGENT modulation

Is there evidence for DM modulation in CoGeNT?

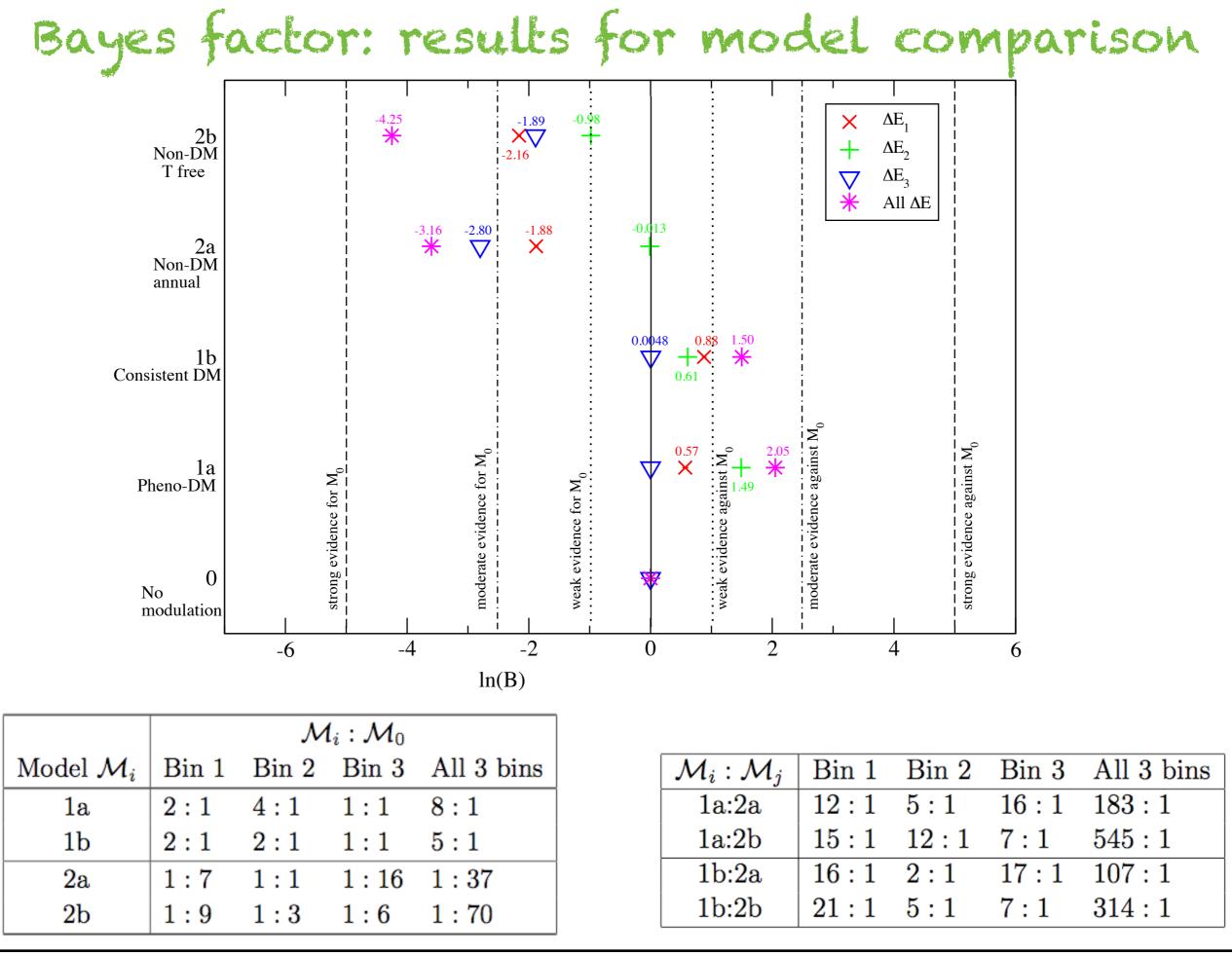
Comparison between 5 phenomenological models that describe a sinusoidal modulation:

 $R_i(t) = U_{\rm m}^i \left(1 + S_{\rm m}^i \cos[2\pi(t - t_{\rm max} - 28)/T] \right)$

Model	Description	Fractional	Phase $t_{\rm max}$	Period T	Extra
		modulation S_{m}^{i}	(days)	(days)	params
0	No modulation	0	_	_	u = 0, 0
1a	Pheno-DM	$S_{ m m}^{1,2}=~0 o 0.2$	152	365	u = 1, 2
		$S_{\rm m}^{3} = 0$			
1b	Consistent DM	Gaussian, clipped at 0	152	365	u = 1, 3
		$(S_{ m m}^i \ge 0)$			
		$S_{ m m}^1 = 0.098 \pm 0.021$			
		$S_{ m m}^2 = 0.026 \pm 0.011$			
		$S_{\rm m}^3 = (0.37 \pm 36) \times 10^{-4}$			
2a	Non-DM, annual	$0 \rightarrow 1$	$0 \rightarrow 365$	365	u = 2, 4
2b	Non-DM, free period	$0 \rightarrow 1$	$0 \rightarrow 365$	$1 \to 365$	u = 3, 5



C. Arina (IAP, Paris & GRAPPA Institute, UvA) - PASCOS 2013



C. Arina (IAP, Paris & GRAPPA Institute, UvA) - PASCOS 2013

Classical p-values

$$\wp\equiv\int_{t_{
m obs}}^{\infty}p(t|H_0)$$

 $\Delta \chi^2_{\rm eff} \equiv -2 \ln \left[\frac{\mathcal{L}(\vartheta^\star, \hat{\psi})}{\mathcal{L}(\hat{\vartheta}, \hat{\psi})} \right]$

test statistics for nested models if

1. additional dof distributed as a gaussian

2. unbounded likelihood

3. all additional dof identifiable under the null

	$\Delta \chi^2_{ m eff}$ relative to model 0			
Model	Bin 1	Bin 2	Bin 3	All 3 bins
1a	2.04	4.23	_	6.26
	$\wp = 0.08$	$\wp = 0.02$	_	$\wp = 0.02$
	$(\nu = 1)$	$(\nu = 1)$		$(\nu = 2)$
1b	1.94	1.88	0.020	3.84
	$\wp = 0.08$	$\wp = 0.09$	$\wp = 0.4$	$\wp = 0.1$
	$(\nu = 1)$	$(\nu = 1)$	$(\nu = 1)$	$(\nu = 3)$
2a	3.61	8.36	0.025	10.63
2b	3.70	8.87	10.88	10.86

Classical p-values

$$\wp\equiv\int_{t_{
m obs}}^{\infty}p(t|H_0)$$

 $\Delta \chi^2_{
m eff} \equiv -2 \ln \left[rac{\mathcal{L}(\vartheta^\star, \hat{\psi})}{\mathcal{L}(\hat{\vartheta}, \hat{\psi})}
ight]$

test statistics for nested models if

1. additional dof distributed as a gaussian

2. unbounded likelihood

3. all additional dof identifiable under the null

	$\Delta \chi^2_{ m eff}$ relative to model 0				
Model	Bin 1	Bin 2	Bin 3	All 3 bins	
(1a)	2.04	4.23	_	6.26	
	$\wp = 0.08$	$\wp = 0.02$	_	$\wp = 0.02$	
	$(\nu = 1)$	$(\nu = 1)$		$(\nu = 2)$	
(1b)	1.94	1.88	0.020	3.84	
	$\wp = 0.08$	$\wp = 0.09$	$\wp = 0.4$	$\wp = 0.1$	
	$(\nu = 1)$	$(\nu = 1)$	$(\nu = 1)$	$(\nu = 3)$	
2a	3.61	8.36	0.025	10.63	
2b	3.70	8.87	10.88	10.86	

Classical p-values

$$\wp \equiv \int_{t_{
m obs}}^{\infty} p(t|H_0)$$

$$\Delta \chi^2_{
m eff} \equiv -2 \ln \left[rac{\mathcal{L}(artheta^\star, \hat{\psi})}{\mathcal{L}(\hat{ec{artheta}}, \hat{ec{\psi}})}
ight]$$

test statistics for nested models if

1. additional dof distributed as a gaussian

X unbounded likelihood

3. all additional dof identifiable under the null

	$\Delta \chi^2_{ m eff}$ relative to model 0				
Model	Bin 1	Bin 2	Bin 3	All 3 bins	
(1a)	2.04	4.23	_	6.26	
	$\wp = 0.08$	$\wp = 0.02$	_	$\wp = 0.02$	
	$(\nu = 1)$	$(\nu = 1)$		$(\nu = 2)$	
(1b)	1.94	1.88	0.020	3.84	
	$\wp = 0.08$	$\wp = 0.09$	$\wp = 0.4$	$\wp = 0.1$	
	$(\nu = 1)$	$(\nu = 1)$	$(\nu = 1)$	$(\nu = 3)$	
2a	3.61	8.36	0.025	10.63	
2b	3.70	8.87	10.88	10.86	

Classical p-values

$$\wp\equiv\int_{t_{
m obs}}^{\infty}p(t|H_0)$$

$$\Delta \chi^2_{ ext{eff}} \equiv -2 \ln \left[rac{\mathcal{L}(artheta^\star, \hat{\psi})}{\mathcal{L}(\hat{\hat{artheta}}, \hat{\hat{\psi}})}
ight]$$

test statistics for nested models if

1. additional dof distributed as a gaussian

X unbounded likelihood

3. all additional dof identifiable under the null

$$\wp = \sum_{i=0}^{N} 2^{-\nu} \binom{\nu}{i} p(\chi_i^2 > \Delta \chi_{\text{eff}}^2)$$

	$\Delta \chi^2_{\rm eff}$ relative to model 0			
Model	Bin 1	Bin 2	Bin 3	All 3 bins
(1a)	2.04	4.23	_	6.26
\sim	$\wp = 0.08$	$\wp = 0.02$	_	$\wp = 0.02$
	$(\nu = 1)$	$(\nu = 1)$		$(\nu = 2)$
(1b)	1.94	1.88	0.020	3.84
\smile	$\wp = 0.08$	$\wp = 0.09$	$\wp = 0.4$	$\wp = 0.1$
	$(\nu = 1)$	$(\nu = 1)$	$(\nu = 1)$	$(\nu = 3)$
2a	3.61	8.36	0.025	10.63
2b	3.70	8.87	10.88	10.86

Classical p-values

$$\wp\equiv\int_{t_{
m obs}}^{\infty}p(t|H_0)$$

$$\Delta \chi^2_{ ext{eff}} \equiv -2 \ln \left[rac{\mathcal{L}(artheta^\star, \hat{\psi})}{\mathcal{L}(\hat{\hat{artheta}}, \hat{\hat{\psi}})}
ight]$$

test statistics for nested models if

1. additional dof distributed as a gaussian

X unbounded likelihood

3. all additional dof identifiable under the null

$$\wp = \sum_{i=0}^{N} 2^{-\nu} \binom{\nu}{i} p(\chi_i^2 > \Delta \chi_{\text{eff}}^2)$$

	$\Delta \chi^2_{ m eff}$ relative to model 0				
Model	Bin 1	Bin 2	Bin 3	All 3 bins	
1 a	2.04	4.23	_	6.26	
\smile	$\wp = 0.08$	$\wp = 0.02$	_	$\wp = 0.02$	
	$(\nu = 1)$	$(\nu = 1)$		$(\nu = 2)^2 \cdot 3$	
(1b)	1.94	1.88	0.020	3.84	
\smile	$\wp = 0.08$	$\wp = 0.09$	$\wp = 0.4$	$\wp = 0.1$	
	$(\nu = 1)$	$(\nu = 1)$	$(\nu = 1)$	$(\nu = 3)$	
2a	3.61	8.36	0.025	10.63	
2b	3.70	8.87	10.88	10.86	

Classical p-values

$$\wp\equiv\int_{t_{
m obs}}^{\infty}p(t|H_0)$$

$$\Delta \chi^2_{ ext{eff}} \equiv -2 \ln \left[rac{\mathcal{L}(artheta^\star, \hat{\psi})}{\mathcal{L}(\hat{\hat{artheta}}, \hat{\hat{\psi}})}
ight]$$

test statistics for nested models if

1. additional dof distributed as a gaussian

X unbounded likelihood

3. all additional dof identifiable under the null

$$\wp = \sum_{i=0}^{N} 2^{-\nu} \binom{\nu}{i} p(\chi_i^2 > \Delta \chi_{\text{eff}}^2)$$

	$\Delta \chi^2_{ m eff}$ relative to model 0			
Model	Bin 1	Bin 2	Bin 3	All 3 bins
(1a)	2.04	4.23	_	6.26
	$\wp = 0.08$	$\wp = 0.02$	_	$\wp = 0.02$
	$(\nu = 1)$	$(\nu = 1)$		$(\nu = 2)^2 \cdot 30$
(1b)	1.94	1.88	0.020	3.84
	$\wp = 0.08$	$\wp = 0.09$	$\wp = 0.4$	$\wp = 0.1 \\ (\nu = 3)^{1.6}$
	$(\nu = 1)$	$(\nu = 1)$	$(\nu = 1)$	$(\nu = 3)^{\perp .00}$
2a	3.61	8.36	0.025	10.63
2b	3.70	8.87	10.88	10.86

Classical p-values

$$\wp\equiv\int_{t_{
m obs}}^{\infty}p(t|H_0)$$

$$\Delta \chi^2_{ ext{eff}} \equiv -2 \ln \left[rac{\mathcal{L}(artheta^\star, \hat{\psi})}{\mathcal{L}(\hat{\hat{artheta}}, \hat{\hat{\psi}})}
ight]$$

test statistics for nested models if

1. additional dof distributed as a gaussian

X unbounded likelihood

3. all additional dof identifiable under the null

$$\wp = \sum_{i=0}^{N} 2^{-\nu} \binom{\nu}{i} p(\chi_i^2 > \Delta \chi_{\text{eff}}^2)$$

Classical p-values

$$\wp\equiv\int_{t_{
m obs}}^{\infty}p(t|H_0)$$

$$\Delta \chi^2_{ ext{eff}} \equiv -2 \ln \left[rac{\mathcal{L}(artheta^\star, \hat{\psi})}{\mathcal{L}(\hat{\hat{artheta}}, \hat{\hat{\psi}})}
ight]$$

Chernoff's theorem

$$\wp = \sum_{i=0}^{N} 2^{-\nu} \binom{\nu}{i} p(\chi_i^2 > \Delta \chi_{\text{eff}}^2)$$

test statistics for nested models if

1. additional dof distributed as a gaussian

X unbounded likelihood

& all additional dof identifiable under the null

	$\Delta \chi^2_{\rm eff}$ relative to model 0				
Model	Bin 1	Bin 2	Bin 3	All 3 bins	
(1a)	2.04	4.23	_	6.26	
	$\wp = 0.08$	$\wp = 0.02$	_	$\wp = 0.02$	
	$(\nu = 1)$	$(\nu = 1)$		$(\nu = 2)^2 \cdot 30$	
(1b)	1.94	1.88	0.020	3.84	
	$\wp = 0.08$	$\wp = 0.09$	$\wp = 0.4$	$\wp = 0.1 \\ (\nu = 3)^{1.6}$	
	$(\nu = 1)$	$(\nu = 1)$	$(\nu = 1)$	$(\nu = 3)^{\perp .00}$	
2a	3.61	8.36	0.025	10.63	
2b	3.70	8.87	10.88	10.86	

43

Classical p-values

$$\wp \equiv \int_{t_{
m obs}}^{\infty} p(t|H_0)$$

probability of obtaining more extreme data than observed assuming the null hypothesis is correct and **NOT** probability for hypothesis

test statistics for nested models if

 $\Delta \chi^2_{
m eff} \equiv -2 \ln \left| rac{\mathcal{L}(\vartheta^\star,\psi)}{\mathcal{L}(\hat{\vartheta},\hat{\psi})}
ight|$

Chernoff's theorem

$$\wp = \sum_{i=0}^{N} 2^{-\nu} \binom{\nu}{i} p(\chi_i^2 > \Delta \chi_{\text{eff}}^2)$$

Rely on Monte Carlo simulation for mapping the t statistic into p-values

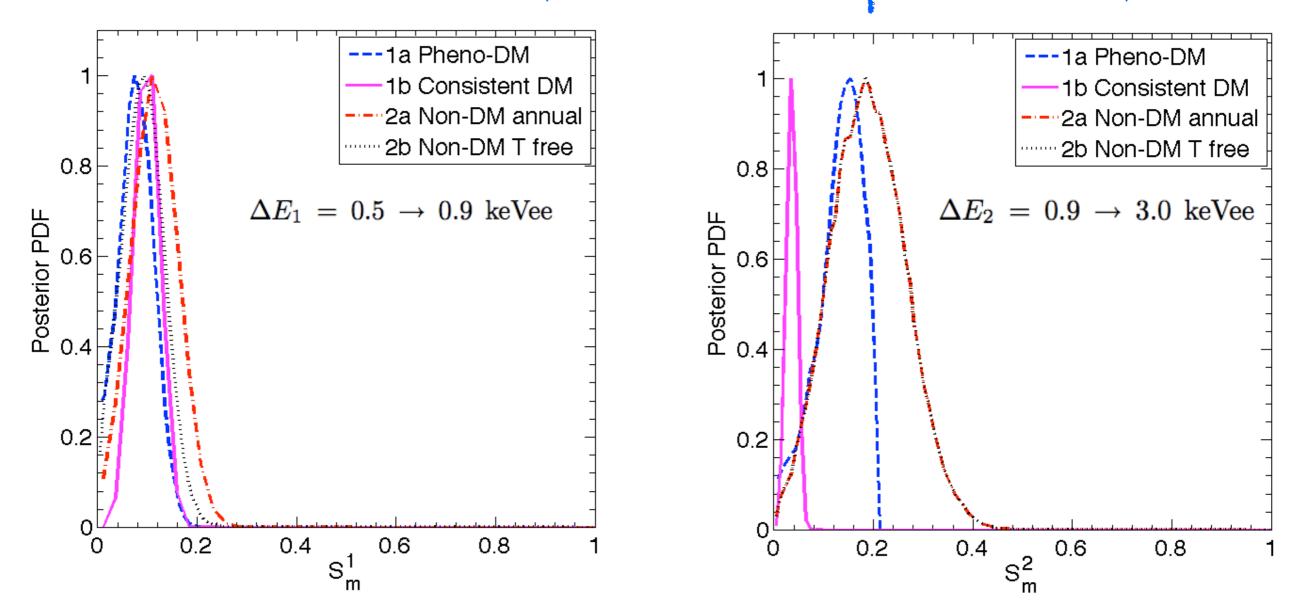
 $\Delta \chi^2_{\rm eff}$ relative to model 0 Bin 1 Bin 2Bin 3All 3 bins Model 2.044.236.26 1a $egin{aligned} \wp &= 0.08 & \wp &= 0.02 & - \ (
u &= 1) & (
u &= 1) \end{aligned}$ $\wp = 0.02 \\ (\nu = 2)^2 \cdot 3\sigma$ 1.941.88 0.0203.84 $\begin{array}{lll} \wp = 0.08 & \wp = 0.09 & \wp = 0.4 & \wp = 0.1 \\ (\nu = 1) & (\nu = 1) & (\nu = 1) & (\nu = 3) \end{array}$ 2a2b

X unbounded likelihood

1. additional dof distributed as a gaussian

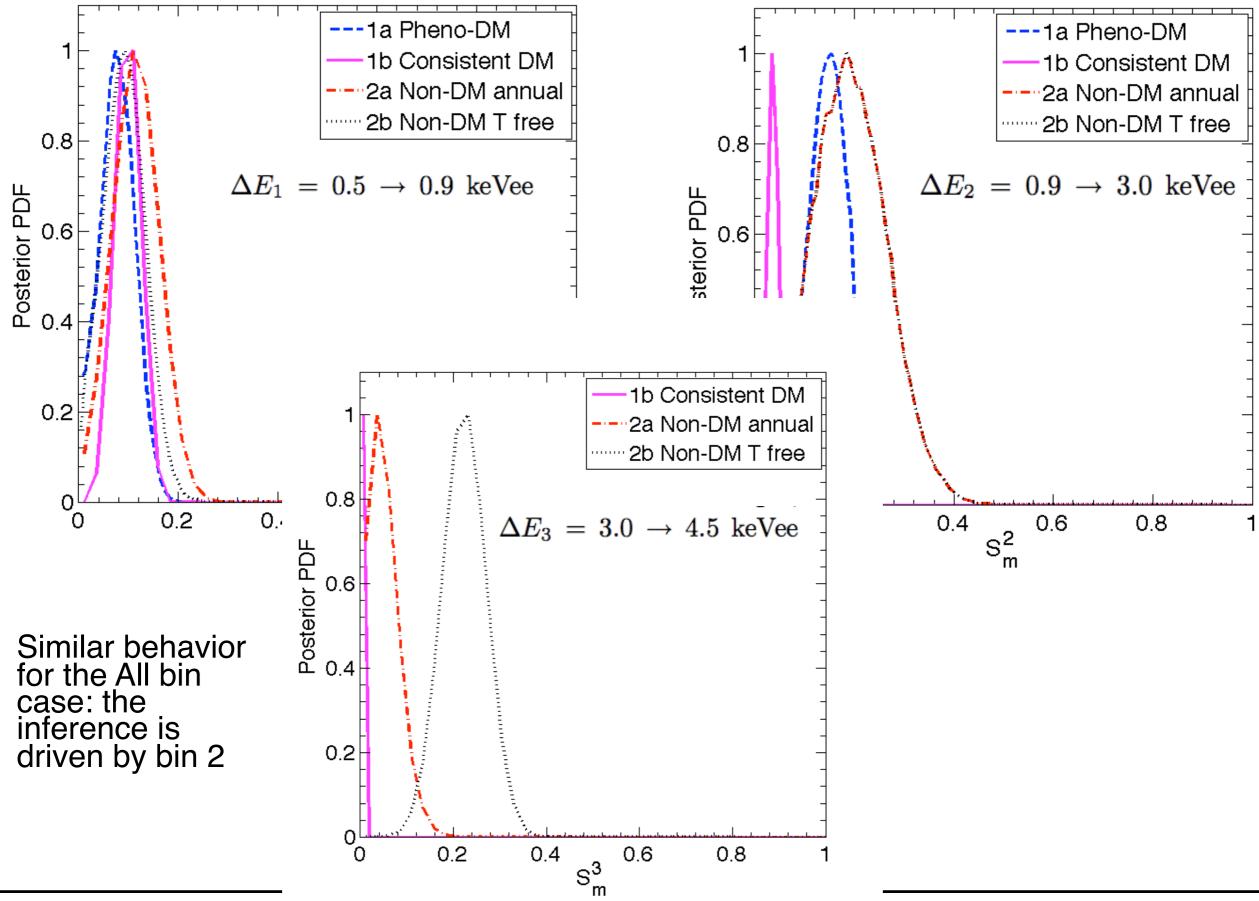
& all additional dof identifiable under the null

Parameter inference: amplitude of



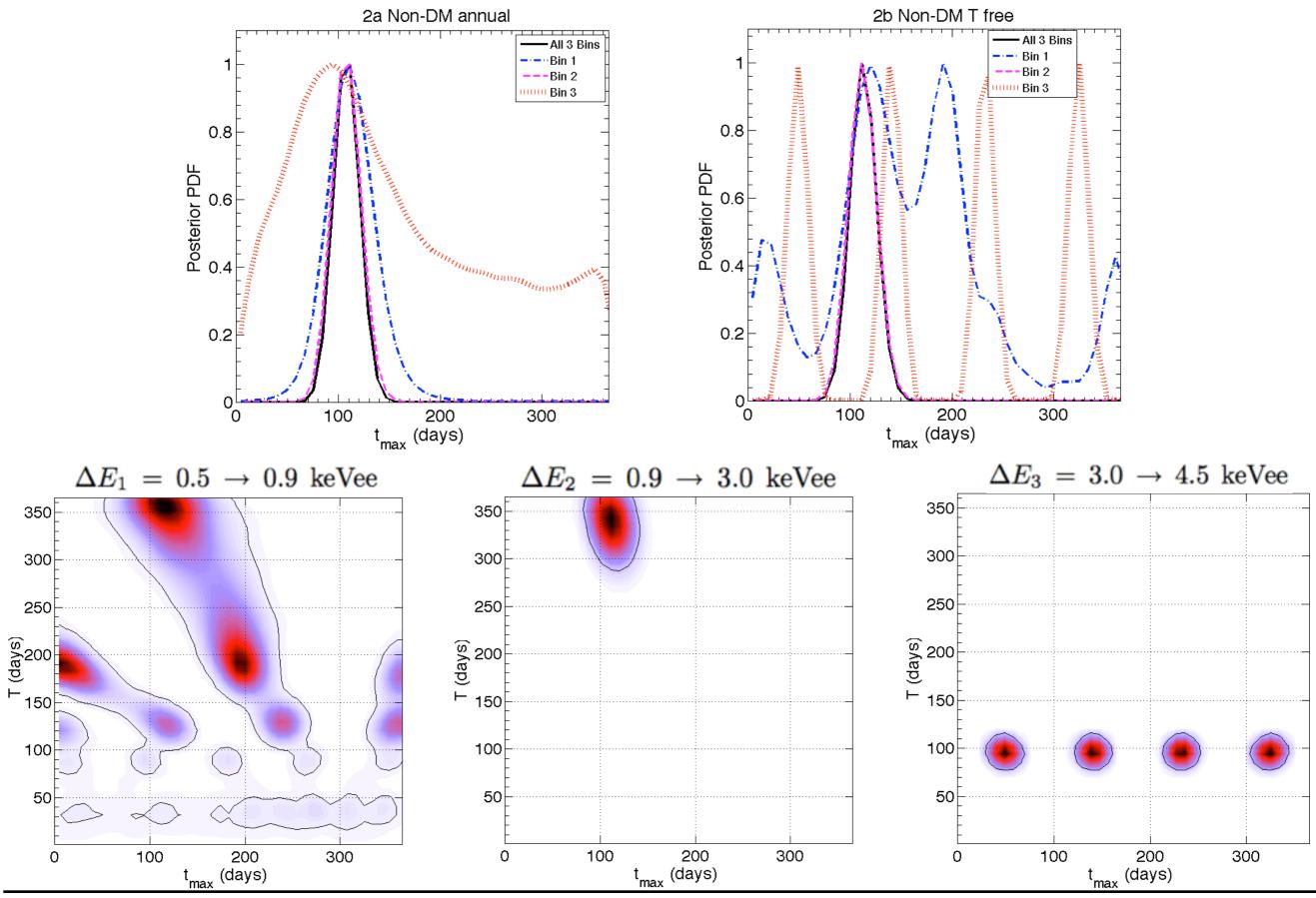
Similar behavior for the All bin case: the inference is driven by bin 2

Parameter inference: amplitude of



& GRAPPA Institute, UvA) - PASCOS 2013

Parameter inference: phase and period

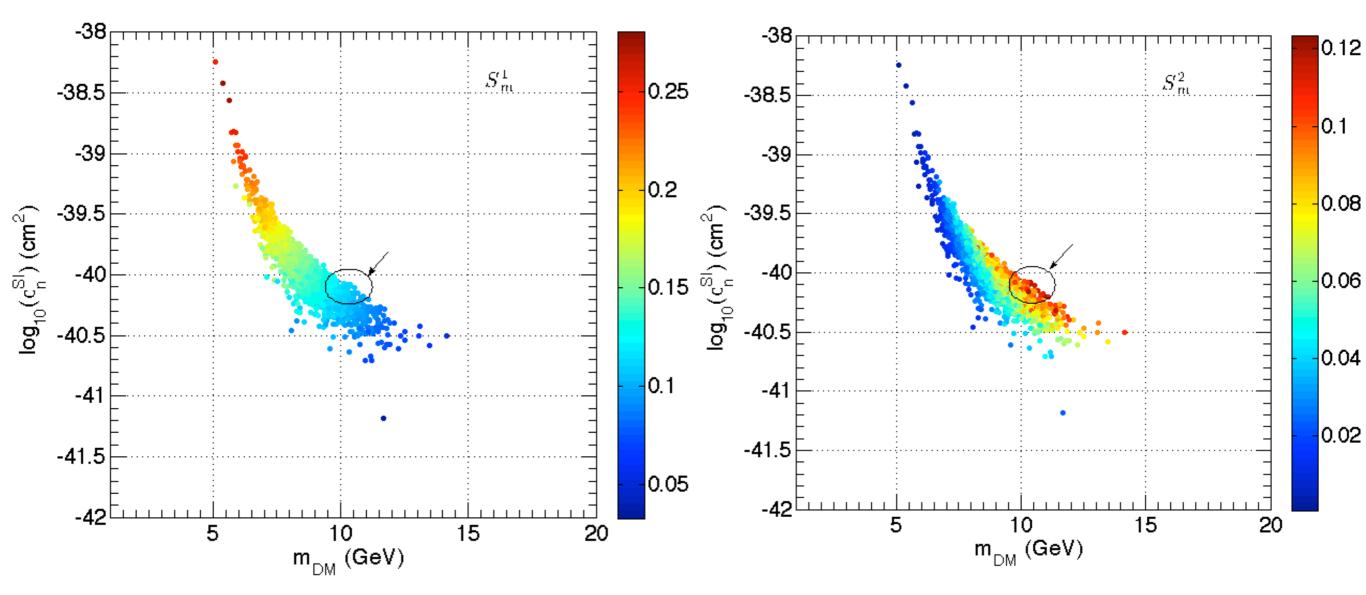


C. Arina (IAP, Paris & GRAPPA Institute, UvA) - PASCOS 2013

Locally anisotropic DM velocity

Ellipsoidal, triaxial DM halo model gives rise to a triaxial gaussian velocity distribution:

$$f(\vec{v'}(t)) = \frac{1}{(2\pi)^{3/2} \sigma_R \sigma_\phi \sigma_z} \exp\left[-\frac{{v'}_R^2}{2\sigma_R^2} - \frac{(v'_\phi + v_\oplus)^2}{2\sigma_\phi^2} - \frac{{v'}_z^2}{2\sigma_z^2}\right]$$



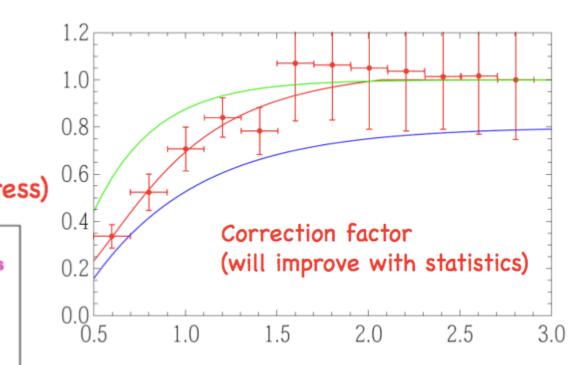
Background CoGeNT

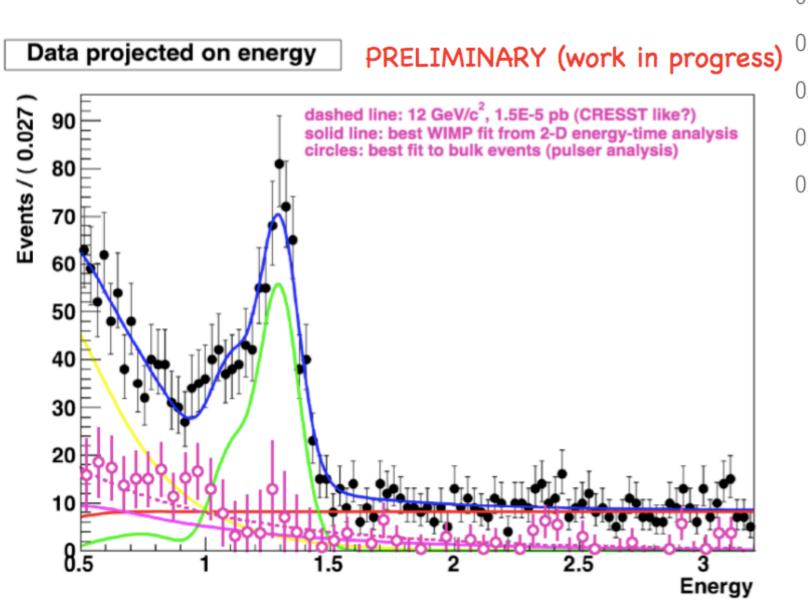
 $rac{\mathrm{d}B}{\mathrm{d}\mathcal{E}} = \mathcal{C} + \mathcal{A}\exp(-\mathcal{E}/\mathcal{E}_0)$

Priors on the fractional modulated amplitude predicted from configurations of DM mass and sigma that account for the CoGeNT total rate R(t) = S(t) + B

Background:

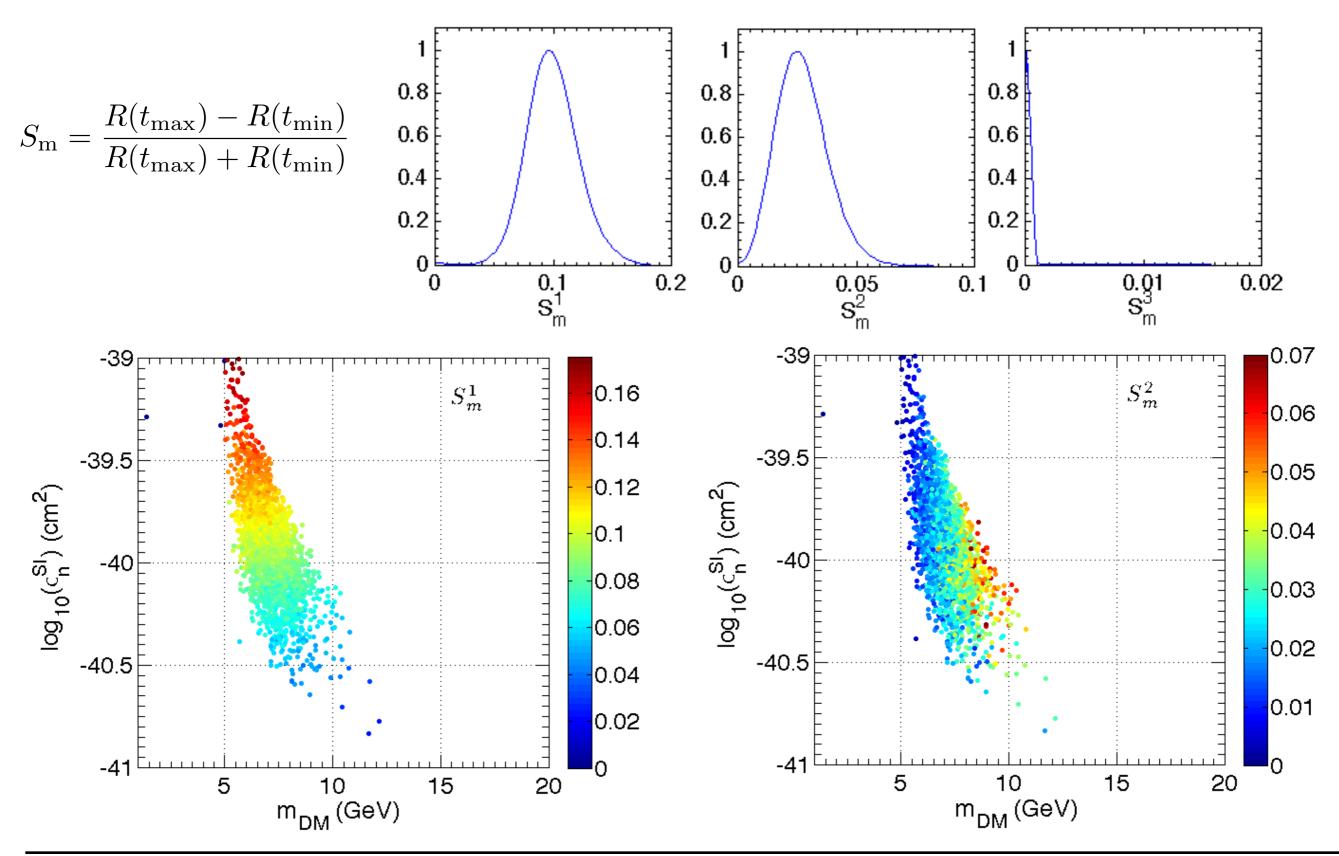
- 1. does not modulate, included only for the total rate
- 2. constant + exponential background (mimic surface events)





Model 16: consistent DM

Priors on the fractional modulated amplitude predicted from configurations of DM mass and sigma that account for the CoGeNT total rate R(t) = S(t) + B



Annual modulation in CoGeNT and in

