A Holographic Model of the Kondo Effect

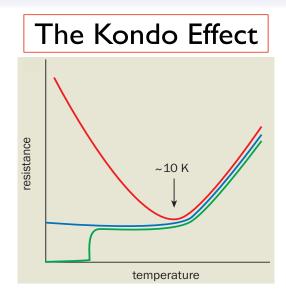
Jackson Wu

National Center for Theoretical Sciences

PASCOS 2013, 20 - 26 November, Taipei, Taiwan

Based on the joint work 1310.3271 with

- J. Erdmenger (Max-Planck-Institut für Physik, München)
- C. Hoyos (Tel-Aviv University)
- A. O'Bannon (DAMPT Cambridge University)



Progress of Theoretical Physics, Vol. 32, No. 1, July 1964

Resistance Minimum in Dilute Magnetic Alloys

Jun Kondo

The Kondo Effect

Kondo Hamiltonian:

$$H_{\mathcal{K}} = \sum_{k,\sigma} \epsilon(k) \psi_{k\sigma}^{\dagger} \psi_{k\sigma} + \hat{\lambda}_{\mathcal{K}} \,\delta(\vec{x}) \,\vec{S} \cdot \sum_{k\sigma k'\sigma'} \psi_{k\sigma}^{\dagger} \frac{1}{2} \vec{\tau}_{\sigma\sigma'} \,\psi_{k'\sigma'}$$

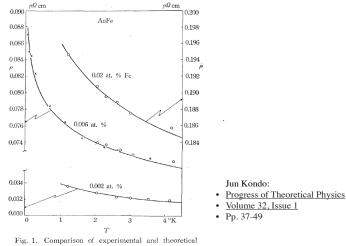
- $\psi_{k\sigma}, \psi^{\dagger}_{k\sigma}$ conduction electrons
- $\sigma = \uparrow, \downarrow$ spin *SU*(2), $\vec{\tau}$ Pauli matrices

•
$$\psi_{k\sigma} \rightarrow e^{i\alpha} \psi_{k\sigma}$$
 charge $U(1)$

•
$$\epsilon(k) = \frac{k^2}{2m} - \epsilon_F$$
 dispersion relation

- \vec{S} impurity spin
- $\hat{\lambda}_{K}$ Kondo coupling
 - $\hat{\lambda}_{K} < 0$ ferromagnetic
 - $\hat{\lambda}_{\mathcal{K}} > 0$ anti-ferromagnetic

Logarithmic behaviour at low temperatures



 ρ -T curves for dilute AuFe alloys.

Resistivity:

$$\rho(T) = \rho_0 + aT^2 + bT^5 + c\hat{\lambda}_K^2 - \tilde{c}\hat{\lambda}_K^3 \log \frac{T}{\Lambda}$$

• $c, \, \tilde{c} \propto$ impurity concentrations, Λ cutoff scale

• $\rho(T) \uparrow$ as $T \downarrow$ if $\hat{\lambda}_{K} > 0$ (anti-ferromagnetic)

Resistivity:

$$\rho(T) = \rho_0 + aT^2 + bT^5 + c\hat{\lambda}_K^2 - \tilde{c}\hat{\lambda}_K^3 \log \frac{T}{\Lambda}$$

- $c, \, \tilde{c} \propto$ impurity concentrations, Λ cutoff scale
- $\rho(T)$ \uparrow as $T \downarrow$ if $\hat{\lambda}_{K} > 0$ (anti-ferromagnetic)

Kondo temperature: $T_K \approx \Lambda \exp\left(-\frac{c}{\tilde{c}}\frac{1}{\tilde{\lambda}_K}\right)$

- Perturbation theory breaks down when $\mathcal{O}(\hat{\lambda}_K^2)\sim\mathcal{O}(\hat{\lambda}_K^3)$
- T_K dynamically generated scale

Resistivity:

$$\rho(T) = \rho_0 + aT^2 + bT^5 + c\hat{\lambda}_K^2 - \tilde{c}\hat{\lambda}_K^3 \log \frac{T}{\Lambda}$$

• $c, \, \tilde{c} \propto \text{impurity concentrations, } \Lambda \text{ cutoff scale}$

• $\rho(T)$ \uparrow as $T \downarrow$ if $\hat{\lambda}_{K} > 0$ (anti-ferromagnetic)

Kondo temperature: $T_K \approx \Lambda \exp\left(-\frac{c}{\tilde{c}}\frac{1}{\tilde{\lambda}_K}\right)$

- Perturbation theory breaks down when $\mathcal{O}(\hat{\lambda}_K^2)\sim \mathcal{O}(\hat{\lambda}_K^3)$
- T_K dynamically generated scale

Asymptotic freedom: " $T_K \sim \Lambda_{QCD}$ "

- $\beta(\hat{\lambda}_K) \sim -\hat{\lambda}_K^2 + \mathcal{O}(\hat{\lambda}_K^3)$
- Coupling diverges at low energy

The Kondo problem

What is the ground state of H_K at low temperature?

Solution known for single-impurity problem:

UV: Fermi liquid + decoupled spin

IR: Fermi liquid + non-magnetic impurity + special BC

- Magnetic impurity screened by the formation of the Kondo resonance (heuristically: e^- + impurity $\rightarrow SU(2)$ singlet)
- Electron wavefunction vanish at impurity

Generalisations

Entend the spin group: $SU(2) \rightarrow SU(N)$

Enlarge the impurity spin representation: $s_{imp} = 1/2 \rightarrow R_{imp}$

Multiple channels ("flaovurs"): $\psi \rightarrow \psi_{\alpha}$, $\alpha = 1, \dots, k$

Total symmetry: $SU(N) \times SU(k) \times U(1)$

Kondo model specified by N, k, and R_{imp}

CFT Description [Affleck & Ludwig 90s]

EFT: Chiral fermions in 1D interacting with impurity at origin

$$H = \frac{\mathbf{v}_{\mathsf{F}}}{2\pi} \psi_{\mathsf{L}}^{\dagger} i \partial_{\mathsf{x}} \psi_{\mathsf{L}} + \mathbf{v}_{\mathsf{F}} \lambda_{\mathsf{K}} \,\delta(\mathsf{x}) \,\vec{\mathsf{S}} \cdot \psi_{\mathsf{L}}^{\dagger} \frac{1}{2} \vec{\tau} \,\psi_{\mathsf{L}},$$

• $\lambda_K = \frac{m^2}{2\pi^2} v_F \hat{\lambda}_K$ classically marginal

UV: $\lambda_K
ightarrow$ 0, free (1 + 1)-d CFT

• Kac-Moody algebra: $SU(N)_k \otimes SU(k)_N \times U(1)$

•
$$SU(N)$$
 spin: $\vec{J} = \psi_L^\dagger \vec{ au} \psi_L$

- SU(k) channel: $J^A = \psi_L^{\dagger} t^A \psi_L$
- U(1) charge: $J = \psi_L^{\dagger} \psi_L$ • $J^a(z) = \sum_{n \in \mathbb{Z}} z^{-n-1} J_n^a, \ [J_n^a, J_m^b] = i f^{abc} J_{n+m}^c + \eta \frac{n}{2} \delta^{ab} \delta_{n,-m}$

• Spectrum determined by current algebra and BC's.

IR Fixed Point

Sugawara form:

$$H = \frac{1}{2\pi(N+k)} J^a J^a + \frac{1}{2\pi(k+N)} J^A J^A + \frac{1}{4\pi Nk} J^2 + \lambda_K \,\delta(x) \,\vec{S} \cdot \vec{J}$$
$$\rightarrow \frac{1}{2\pi(N+k)} \mathcal{J}^a \mathcal{J}^a + \frac{1}{2\pi(k+N)} J^A J^A + \frac{1}{4\pi Nk} J^2$$
$$\mathcal{J}^a \equiv J^a + \pi(N+k) \lambda_K \delta(x) S^a$$

• Impurity spin "absorbed" by the conduction electrons

• Same
$$SU(N)_k imes SU(k)_N imes U(1) \Leftrightarrow \lambda_{\mathcal{K}} = rac{2}{N+k}$$

Kondo problem: How reps. rearrange between UV and IR

• Fusion rules:
$$R_{spin}^{IR} = R_{spin}^{UV} \times R_{imp}$$

• IR CFT = UV CFT + shifted spectrum

Large N Approach

SU(N) spin \Rightarrow standard large N limit

Kondo effect appear as (0+1)-d superconductivity

Slave fermions: $S^a = \chi^{\dagger} T^a \chi$, $a = 1, \dots, N^2 - 1$.

- Impurity in totally antisymmetric SU(N) rep. Q
- Extra U(1) symmetry \Rightarrow constraint $\chi^{\dagger}\chi = Q$.

 $\mathcal{O} \equiv \psi_L^{\dagger} \chi \; SU(N) \text{ singlet, } SU(k) \times U(N_f) \text{ bi-fundamental}$ $\lambda_K \, \delta(x) \; J^a S^a = \lambda_K \, \delta(x) \; \left(\psi_L^{\dagger} T^a \psi_L\right) \; \left(\chi^{\dagger} T^a \chi\right)$ $= \frac{1}{2} \lambda_K \; \delta(x) \mathcal{O} \mathcal{O}^{\dagger} + \mathcal{O}(1/N)$

- $\bullet~\mathcal{OO}^{\dagger}$ classically marginal "double trace" deformation.
- $\langle \mathcal{O} \rangle \neq 0$ when $T \leq T_c \leftrightarrow$ formation of Kondo singlet.

Essential Ingredients

										<i>x</i> ⁹
N _c D3										
N7 D7	•	٠	-	-	٠	٠	٠	٠	٠	٠
N ₅ D5	•	-	-	_	٠	٠	٠	٠	٠	-

(1+1)-d chiral fermions $\psi_L \leftrightarrow$ probe D7 along $AdS_3 \times S^5$ FT $U(N_7)$ current J_{μ} obeying Kac-Moody algebra (N, k) Dual Chern-Simons gauge field A_{μ}

Impurity slave fermion $\chi \leftrightarrow$ probe D5 along $AdS_2 \times S^5$

FT $U(N_5)$ current j_{μ} with $\chi^{\dagger}\chi = Q$ (R_{imp})

Dual Yang-Mills gauge field a_{μ} with flux Q

Kondo interaction:

FT Bilinear scalar operator $\mathcal{O}=\psi_L^\dagger\chi$

Dual Bi-fundamental complex scalar Φ (tachyon)

Holography: Bottom-Up Model

Action:

$$S = S_{CS} + S_{AdS_2}$$

$$S_{CS} = -\frac{N}{4\pi} \int \operatorname{tr} \left(A \wedge dA + \frac{2}{3}A \wedge A \wedge A \right)$$

$$S_{AdS_2} = -N \int d^3x \, \delta(x) \sqrt{-g} \left[\frac{1}{4} \operatorname{tr} f^2 + |D\Phi|^2 + V(\Phi^{\dagger}\Phi) \right]$$

$$D\Phi = \partial\Phi + i A \Phi - i a \Phi$$

Bottom-up: Choose $V(\Phi^{\dagger}\Phi) = M^2 \Phi^{\dagger}\Phi$

Finite temperature: BTZ black hole

$$ds^{2} = \frac{1}{z^{2}} \left(\frac{dz^{2}}{h(z)} - h(z) dt^{2} + dx^{2} \right), \quad h(z) = 1 - \frac{z^{2}}{z_{H}^{2}}$$

The Kondo Coupling

Near the boundary $z \rightarrow 0$:

$$a_t(z) \sim rac{Q}{z} + \mu \,, \quad \phi(z) \sim \sqrt{z} \left(lpha \log(\Lambda z) + eta
ight) \,, \quad A_x(z) o 0$$

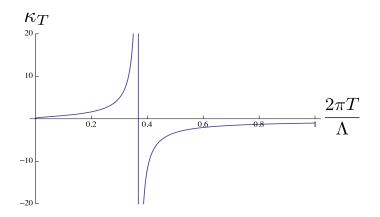
• **BC**: Boundary flux
$$\sqrt{-g}f^{tz}|_{z=0} = -Q$$

• Double trace coupling: $\alpha = \kappa \beta \propto \langle \mathcal{O} \rangle$ [Witten 01]

Running of coupling: $\phi(z)$ independent of scaling

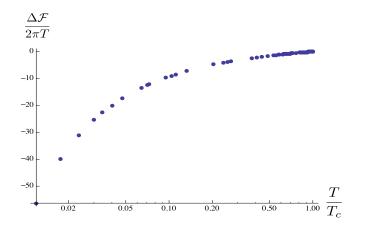
$$\kappa_T \beta_T = \frac{\kappa \beta}{2\pi T}, \quad \kappa_T = \frac{\kappa}{1 + \kappa \log \frac{\Lambda}{2\pi T}}$$

Dynamical Scale Generation



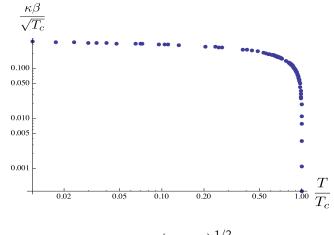
Divergence of κ_T determines $T_K = \frac{1}{2\pi} \Lambda e^{1/\kappa}$

Phase Transition



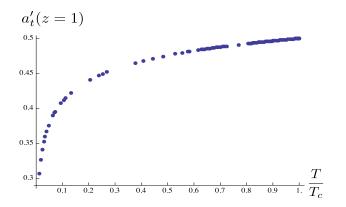
 $\Delta \mathcal{F} = \mathcal{F}_{\phi(z)
eq 0} - \mathcal{F}_{\phi(z)=0}$, $T_c/T_K pprox 0.90$

The Condensate



Mean-field transition: $\langle \mathcal{O} \rangle \propto \left(1 - \frac{T}{T_c}\right)^{1/2}$, $T \lesssim T_c$

Screening of Impurity



Flux at horizon: $\sqrt{-g}f^{tz}|_{z=1} = a'_t(z=1)$

Non-trivial $\phi(z)$ draws charge away from $a_t(z)$, reducing flux at horizon $\Rightarrow \frac{R_{imp}^{IR}}{R_{imp}^{IR}} < \frac{R_{imp}^{UV}}{R_{imp}^{UV}} = Q$, i.e. **impurity screened!**

Summary

A simple and realistic holographic model that describes the Kondo effect along the entire RG flow; useful for further model building.

Holographic dual of Kondo effect at large N:

Holographic superconductor in AdS_2 with the "double trace" boundary condition imposed on the scalar field coupled as a defect to the CS gauge field in AdS_3 .

Open problems: Multi-impurities, Kondo lattice, quantum quenches, entanglement entropy, ...