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The Kondo Effect
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below TK emerged in the late 1960s from Phil Anderson’s idea
of “scaling” in the Kondo problem. Scaling assumes that the
low-temperature properties of a real system are adequately
represented by a coarse-grained model. As the temperature 
is lowered, the model becomes coarser and the number of
degrees of freedom it contains is reduced. This approach can
be used to predict the properties of a real system close to
absolute zero.

Later, in 1974, Kenneth Wilson, who was then at Cornell
University in the US, devised a method known as “numerical
renormalization” that overcame the shortcomings of conven-
tional perturbation theory, and confirmed the scaling hypo-
thesis. His work proved that at temperatures well below TK,
the magnetic moment of the impurity ion is screened entirely
by the spins of the electrons in the metal. Roughly speaking,
this spin-screening is analogous to the screening of an electric
charge inside a metal, although the microscopic processes are
very different.

The role of spin
The Kondo effect only arises when the defects are magnetic –
in other words, when the total spin of all the electrons in the
impurity atom is non-zero. These electrons coexist with the
mobile electrons in the host metal, which behave like a sea
that fills the entire sample. In such a Fermi sea, all the states
with energies below the so-called Fermi level are occupied,
while the higher-energy states are empty.

The simplest model of a magnetic impurity, which was
introduced by Anderson in 1961, has only one electron level
with energy εo. In this case, the electron can quantum-
mechanically tunnel from the impurity and escape provided
its energy lies above the Fermi level, otherwise it remains
trapped. In this picture, the defect has a spin of 1/2 and its 
z-component is fixed as either “spin up” or “spin down”.

However, so-called exchange processes can take place that
effectively flip the spin of the impurity from spin up to spin
down, or vice versa, while simultaneously creating a spin ex-
citation in the Fermi sea. Figure 2 illustrates what happens
when an electron is taken from the localized impurity state
and put into an unoccupied energy state at the surface of the

Fermi sea. The energy needed for such a process is large,
between about 1 and 10 electronvolts for magnetic impur-
ities. Classically, it is forbidden to take an electron from the
defect without putting energy into the system. In quantum
mechanics, however, the Heisenberg uncertainty principle
allows such a configuration to exist for a very short time –
around h/|εo|, where h is the Planck constant. Within this
timescale, another electron must tunnel from the Fermi sea
back towards the impurity. However, the spin of this electron
may point in the opposite direction. In other words, the initial
and final states of the impurity can have different spins.

This spin exchange qualitatively changes the energy spec-
trum of the system (figure 2c). When many such processes are
taken together, one finds that a new state – known as the
Kondo resonance – is generated with exactly the same energy
as the Fermi level.

The low-temperature increase in resistance was the first
hint of the existence of the new state. Such a resonance is
very effective at scattering electrons with energies close to the
Fermi level. Since the same electrons are responsible for the
low-temperature conductivity of a metal, the strong scatter-
ing contributes greatly to the resistance.

The Kondo resonance is unusual. Energy eigenstates usu-
ally correspond to waves for which an integer number of half
wavelengths fits precisely inside a quantum box, or around
the orbital of an atom. In contrast, the Kondo state is gener-
ated by exchange processes between a localized electron and
free-electron states. Since many electrons need to be involved,
the Kondo effect is a many-body phenomenon.

It is important to note that that the Kondo state is always “on
resonance” since it is fixed to the Fermi energy. Even though
the system may start with an energy, εo, that is very far away
from the Fermi energy, the Kondo effect alters the energy of
the system so that it is always on resonance. The only require-
ment for the effect to occur is that the metal is cooled to suffi-
ciently low temperatures below the Kondo temperature TK.

Back in 1978 Duncan Haldane, now at Princeton University
in the US, showed that TK was related to the parameters of
the Anderson model by TK = 1/2(ΓU )1/2exp[πεo(εo +U )/ΓU ],
where Γ is the width of the impurity’s energy level, which 

1 The Kondo effect in metals and in quantum dots

re
si

st
an

ce

temperature

~10 K

co
nd

uc
ta

nc
e

temperature

~0.5 K

2e2/h

(a) As the temperature of a metal is lowered, its resistance decreases until it saturates at some residual value (blue). Some metals become superconducting at a
critical temperature (green). However, in metals that contain a small fraction of magnetic impurities, such as cobalt-in-copper systems, the resistance increases
at low temperatures due to the Kondo effect (red). (b) A system that has a localized spin embedded between metal leads can be created artificially in a
semiconductor quantum-dot device containing a controllable number of electrons. If the number of electrons confined in the dot is odd, then the conductance
measured between the two leads increases due to the Kondo effect at low temperature (red). In contrast, the Kondo effect does not occur when the dot contains
an even number of electrons and the total spin adds up to zero. In this case, the conductance continuously decreases with temperature (blue).
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The Kondo Effect

Kondo Hamiltonian:

HK =
∑
k,σ

ε(k)ψ†kσψkσ + λ̂K δ(~x) ~S ·
∑

kσk′σ′

ψ†kσ
1
2~τσσ

′ ψk′σ′

ψkσ, ψ
†
kσ conduction electrons

σ =↑, ↓ spin SU(2), ~τ Pauli matrices
ψkσ → eiαψkσ charge U(1)

ε(k) = k2

2m − εF dispersion relation
~S impurity spin
λ̂K Kondo coupling

λ̂K < 0 ferromagnetic
λ̂K > 0 anti-ferromagnetic



Logarithmic behaviour at low temperatures
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Resistivity:

ρ(T ) = ρ0 + aT 2 + bT 5 + cλ̂2
K − c̃λ̂3

K log T
Λ

c, c̃ ∝ impurity concentrations, Λ cutoff scale
ρ(T ) ↑ as T ↓ if λ̂K > 0 (anti-ferromagnetic)

Kondo temperature: TK ≈ Λ exp
(
− c

c̃
1
λ̂K

)
Perturbation theory breaks down when O(λ̂2

K ) ∼ O(λ̂3
K )

TK dynamically generated scale

Asymptotic freedom: “TK ∼ ΛQCD”
β(λ̂K ) ∼ −λ̂2

K +O(λ̂3
K )

Coupling diverges at low energy
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The Kondo problem

What is the ground state of HK at low temperature?

Solution known for single-impurity problem:

UV: Fermi liquid + decoupled spin

IR: Fermi liquid + non-magnetic impurity + special BC
Magnetic impurity screened by the formation of the Kondo
resonance (heuristically: e− + impurity → SU(2) singlet)
Electron wavefunction vanish at impurity



Generalisations

Entend the spin group: SU(2)→ SU(N)

Enlarge the impurity spin representation: simp = 1/2→ Rimp

Multiple channels (“flaovurs”): ψ → ψα, α = 1, . . . , k

Total symmetry: SU(N)× SU(k)× U(1)

Kondo model specified by N, k, and Rimp



CFT Description [Affleck & Ludwig 90s]

EFT: Chiral fermions in 1D interacting with impurity at origin

H =
vF
2π ψ

†
Li∂xψL + vF λK δ(x) ~S · ψ†L

1
2~τ ψL,

λK = m2

2π2 vF λ̂K classically marginal

UV: λK → 0, free (1 + 1)-d CFT
Kac-Moody algebra: SU(N)k ⊗ SU(k)N × U(1)

SU(N) spin: ~J = ψ†L~τψL

SU(k) channel: JA = ψ†LtAψL

U(1) charge: J = ψ†LψL
Ja(z) =

∑
n∈Z z−n−1Ja

n , [Ja
n , Jb

m] = i f abcJc
n+m + η n

2 δ
ab δn,−m

Spectrum determined by current algebra and BC’s.



IR Fixed Point

Sugawara form:

H =
1

2π(N + k)
JaJa +

1
2π(k + N)

JAJA +
1

4πNk J2 + λK δ(x) ~S · ~J

→ 1
2π(N + k)

J aJ a +
1

2π(k + N)
JAJA +

1
4πNk J2

J a ≡ Ja + π(N + k)λKδ(x)Sa

Impurity spin “absorbed” by the conduction electrons
Same SU(N)k × SU(k)N × U(1)⇔ λK = 2

N+k

Kondo problem: How reps. rearrange between UV and IR
Fusion rules: R IR

spin = RUV
spin × Rimp

IR CFT = UV CFT + shifted spectrum



Large N Approach
SU(N) spin ⇒ standard large N limit

Kondo effect appear as (0+1)-d superconductivity

Slave fermions: Sa = χ†T aχ , a = 1, . . . ,N2 − 1.
Impurity in totally antisymmetric SU(N) rep. Q
Extra U(1) symmetry ⇒ constraint χ†χ = Q.

O ≡ ψ†Lχ SU(N) singlet, SU(k)× U(Nf ) bi-fundamental

λK δ(x) JaSa = λK δ(x)
(
ψ†LT aψL

) (
χ†T aχ

)
=

1
2λK δ(x)OO† +O(1/N)

OO† classically marginal “double trace” deformation.
〈O〉 6= 0 when T ≤ Tc ↔ formation of Kondo singlet.



Essential Ingredients

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

Nc D3 • • • • – – – – – –
N7 D7 • • – – • • • • • •
N5 D5 • – – – • • • • • –

(1+1)-d chiral fermions ψL ↔ probe D7 along AdS3 × S5

FT U(N7) current Jµ obeying Kac-Moody algebra (N, k)
Dual Chern-Simons gauge field Aµ
Impurity slave fermion χ ↔ probe D5 along AdS2 × S5

FT U(N5) current jµ with χ†χ = Q (Rimp)
Dual Yang-Mills gauge field aµ with flux Q
Kondo interaction:
FT Bilinear scalar operator O = ψ†Lχ

Dual Bi-fundamental complex scalar Φ (tachyon)



Holography: Bottom-Up Model
Action:

S = SCS + SAdS2

SCS = − N
4π

∫
tr
(

A ∧ dA +
2
3A ∧ A ∧ A

)
SAdS2 = −N

∫
d3x δ(x)

√
−g

[1
4trf 2 + |DΦ|2 + V (Φ†Φ)

]
DΦ = ∂Φ + i A Φ− i a Φ

Bottom-up: Choose V (Φ†Φ) = M2Φ†Φ

Finite temperature: BTZ black hole

ds2 =
1
z2

(
dz2

h(z)
− h(z) dt2 + dx2

)
, h(z) = 1− z2

z2
H



The Kondo Coupling

Near the boundary z → 0:

at(z) ∼ Q
z + µ , φ(z) ∼

√
z (α log(Λz) + β) , Ax (z)→ 0

BC: Boundary flux
√
−gf tz |z=0 = −Q

Double trace coupling: α = κβ ∝ 〈O〉 [Witten 01]

Running of coupling: φ(z) independent of scaling

κTβT =
κβ

2πT , κT =
κ

1 + κ log Λ
2πT



Dynamical Scale Generation

Divergence of κT determines TK = 1
2πΛe1/κ



Phase Transition

∆F = Fφ(z)6=0 −Fφ(z)=0, Tc/TK ≈ 0.90



The Condensate

Mean-field transition: 〈O〉 ∝
(

1− T
Tc

)1/2
, T . Tc



Screening of Impurity

Flux at horizon:
√
−gf tz |z=1 = a′t(z = 1)

Non-trivial φ(z) draws charge away from at(z), reducing flux at
horizon ⇒ R IR

imp < RUV
imp = Q, i.e. impurity screened!



Summary

A simple and realistic holographic model that describes the Kondo
effect along the entire RG flow; useful for further model building.

Holographic dual of Kondo effect at large N:

Holographic superconductor in AdS2 with the “double trace”
boundary condition imposed on the scalar field coupled as a defect
to the CS gauge field in AdS3.

Open problems: Multi-impurities, Kondo lattice, quantum
quenches, entanglement entropy, . . .


