Z^{\prime}-ino-driven electroweak baryogenesis

Eibun Senaha (Nagoya U, E-ken)

Nov 25, 2013. @PASCOS 2013, Taipei, Taiwan

Ref. PRD88,055014 (2013) [arXiv:1308.3389]

Outline

- Introduction
- EWBG in the $\mathrm{U}(1)^{\prime}$-extended MSSM (UMSSM)
- strong $1^{\text {st }}$-order EW phase transition (PT)
- sphaleron decoupling condition
- Baryon asymmetry
- Summary

Baryon Asymmetry of the Universe

\square Our universe is baryon asymmetric. $\frac{n_{B}}{s} \simeq 10^{-11}$
\square SM cannot explain the BAU. (CPV \& strong $1^{\text {st }}$ PT, X) New Physics is needed!
\square EWBG in the MSSM (light stop scenario) is in tension with the LHC data.

- Higgs signal strength is not consistent with the data.
-> viable window is getting closing.

Extensions of the MSSM

- Next-to-MSSM (NMSSM),
- U(1)'-MSSM (UMSSM),
- Triplet-MSSM (TMSSM), etc.

In this talk, we discuss a possibility of the EWBG in the UMSSM.

$U(1)^{\prime}$-extended MSSM (UMSSM)

D.Suematsu et al, Int.J.Mod.Phys.A10 ('95) 4521. M.Cvetic et al, PRD56:2861 ('97)
superpotential: $\quad W_{\mathrm{UMSSM}} \ni \epsilon_{i j} \lambda S H_{u}^{i} H_{d}^{j}$
2 Higgs doublets $\left(H_{d}, H_{u}\right)+1$ Higgs singlet ((S)
Higgs potential $\quad V_{0}=V_{F}+V_{D}+V_{\text {soft }}$,

$$
\begin{aligned}
V_{F}= & |\lambda|^{2}\left\{\left|\epsilon_{i j} \Phi_{d}^{i} \Phi_{u}^{j}\right|^{2}+|S|^{2}\left(\Phi_{d}^{\dagger} \Phi_{d}+\Phi_{u}^{\dagger} \Phi_{u}\right)\right\}, \\
V_{D}= & \frac{g_{2}^{2}+g_{1}^{2}}{8}\left(\Phi_{d}^{\dagger} \Phi_{d}-\Phi_{u}^{\dagger} \Phi_{u}\right)^{2}+\frac{g_{2}^{2}}{2}\left(\Phi_{d}^{\dagger} \Phi_{u}\right)\left(\Phi_{u}^{\dagger} \Phi_{d}\right) \\
& +\frac{g_{1}^{\prime 2}}{2}\left(Q_{H_{d}} \Phi_{d}^{\dagger} \Phi_{d}+Q_{H_{u}} \Phi_{u}^{\dagger} \Phi_{u}+Q_{S}|S|^{2}\right)^{2}, \\
V_{\text {soft }}= & m_{1}^{2} \Phi_{d}^{\dagger} \Phi_{d}+m_{2}^{2} \Phi_{u}^{\dagger} \Phi_{u}+m_{S}^{2}|S|^{2}-\left(\epsilon_{i j} \lambda A_{\lambda} S \Phi_{d}^{i} \Phi_{u}^{j}+\text { h.c. }\right) .
\end{aligned}
$$

Q's: $\mathrm{U}(1)^{\prime}$ charges, $Q_{H d}+Q_{H u}+Q_{\mathrm{s}}=0 . \quad g_{1}^{\prime}=\sqrt{5 / 3} g_{1}$

$$
\begin{aligned}
\Phi_{d} & =\binom{\frac{1}{\sqrt{2}}\left(v_{d}+h_{d}+i a_{d}\right)}{\phi_{d}^{-}}, \quad \Phi_{u}=e^{i \theta}\binom{\phi_{u}^{+}}{\frac{1}{\sqrt{2}}\left(v_{u}+h_{u}+i a_{u}\right)}, \\
S & =\frac{1}{\sqrt{2}}\left(v_{S}+h_{S}+i a_{S}\right) .
\end{aligned}
$$

$U(1)^{\prime}$-extended MSSM (UMSSM)

D.Suematsu et al, Int.J.Mod.Phys.A10 ('95) 4521. M.Cvetic et al, PRD56:2861 ('97)
superpotential: $\quad W_{\mathrm{UMSSM}} \ni \epsilon_{i j} \lambda S H_{u}^{i} H_{d}^{j}$
2 Higgs doublets $\left(H_{d}, H_{u}\right)+1$ Higgs singlet (S)
Higgs potential $\quad V_{0}=V_{F}+V_{D}+V_{\text {soft }}$,

$$
\begin{aligned}
V_{F}= & |\lambda|^{2}\left\{\left|\epsilon_{i j} \Phi_{d}^{i} \Phi_{u}^{j}\right|^{2}+|S|^{2}\left(\Phi_{d}^{\dagger} \Phi_{d}+\Phi_{u}^{\dagger} \Phi_{u}\right)\right\}, \\
V_{D}= & \frac{g_{2}^{2}+g_{1}^{2}}{8}\left(\Phi_{d}^{\dagger} \Phi_{d}-\Phi_{u}^{\dagger} \Phi_{u}\right)^{2}+\frac{g_{2}^{2}}{2}\left(\Phi_{d}^{\dagger} \Phi_{u}\right)\left(\Phi_{u}^{\dagger} \Phi_{d}\right) \\
& +\frac{g_{1}^{\prime 2}}{2}\left(Q_{H_{d}} \Phi_{d}^{\dagger} \Phi_{d}+Q_{H_{u}} \Phi_{u}^{\dagger} \Phi_{u}+Q_{S}|S|^{2}\right)^{2}, U(1)^{\prime}-D \text { term } \\
V_{\text {soft }}= & m_{1}^{2} \Phi_{d}^{\dagger} \Phi_{d}+m_{2}^{2} \Phi_{u}^{\dagger} \Phi_{u}+m_{S}^{2}|S|^{2}-\left(\epsilon_{i j} \lambda A_{\lambda} S \Phi_{d}^{i} \Phi_{u}^{j}+\text { h.c. }\right) .
\end{aligned}
$$

Q's: $\mathrm{U}(1)^{\prime}$ charges, $Q_{H d}+Q_{H u}+Q_{\mathrm{s}}=0 . \quad g_{1}^{\prime}=\sqrt{5 / 3} g_{1}$

$$
\begin{aligned}
\Phi_{d} & =\binom{\frac{1}{\sqrt{2}}\left(v_{d}+h_{d}+i a_{d}\right)}{\phi_{d}^{-}}, \quad \Phi_{u}=e^{i \theta}\binom{\phi_{u}^{+}}{\frac{1}{\sqrt{2}}\left(v_{u}+h_{u}+i a_{u}\right)}, \\
S & =\frac{1}{\sqrt{2}}\left(v_{S}+h_{S}+i a_{S}\right) .
\end{aligned}
$$

Tadpole (minimization) conditions

$$
\begin{aligned}
\frac{1}{v_{d}}\left\langle\frac{\partial V_{0}}{\partial h_{d}}\right\rangle & =m_{1}^{2}+\frac{g_{2}^{2}+g_{1}^{2}}{8}\left(v_{d}^{2}-v_{u}^{2}\right)-R_{\lambda} \frac{v_{u} v_{S}}{v_{d}}+\frac{|\lambda|^{2}}{2}\left(v_{u}^{2}+v_{S}^{2}\right)+\frac{g_{1}^{\prime 2}}{2} Q_{H_{d}} \Delta=0, \\
\frac{1}{v_{u}}\left\langle\frac{\partial V_{0}}{\partial h_{u}}\right\rangle & =m_{2}^{2}-\frac{g_{2}^{2}+g_{1}^{2}}{8}\left(v_{d}^{2}-v_{u}^{2}\right)-R_{\lambda} \frac{v_{d} v_{S}}{v_{u}}+\frac{|\lambda|^{2}}{2}\left(v_{d}^{2}+v_{S}^{2}\right)+\frac{g_{1}^{\prime 2}}{2} Q_{H_{u}} \Delta=0, \\
\frac{1}{v_{S}}\left\langle\frac{\partial V_{0}}{\partial h_{S}}\right\rangle & =m_{S}^{2}-R_{\lambda} \frac{v_{d} v_{u}}{v_{S}}+\frac{|\lambda|^{2}}{2}\left(v_{d}^{2}+v_{u}^{2}\right)+\frac{g_{1}^{\prime 2}}{2} Q_{S} \Delta=0, \\
\frac{1}{v_{u}}\left\langle\frac{\partial V_{0}}{\partial a_{d}}\right\rangle & =\frac{1}{v_{d}}\left\langle\frac{\partial V_{0}}{\partial a_{u}}\right\rangle=I_{\lambda} v_{S}=0, \\
\frac{1}{v_{S}}\left\langle\frac{\partial V_{0}}{\partial a_{S}}\right\rangle & =I_{\lambda} \frac{v_{d} v_{u}}{v_{S}}=0, \quad \text { where } v_{d}=v_{u}=v_{S} \neq 0 \text { is assumed. } \\
\Delta & =Q_{H_{d} v_{d}^{2}+Q_{H_{u}} v_{u}^{2}+Q_{S} v_{S}^{2},}^{R_{\lambda}}=\frac{\operatorname{Re}\left(\lambda A_{\lambda} e^{i \theta}\right)}{\sqrt{2}}=\frac{\left|\lambda A_{\lambda}\right|}{\sqrt{2}} \cos \left(\delta_{A_{\lambda}}+\delta_{\lambda}+\theta\right) \equiv \frac{\left|\lambda A_{\lambda}\right|}{\sqrt{2}} \cos \left(\delta_{A_{\lambda}}+\delta_{\lambda}^{\prime}\right), \\
I_{\lambda} & =\frac{\operatorname{Im}\left(\lambda A_{\lambda} e^{i \theta}\right)}{\sqrt{2}}=\frac{\left|\lambda A_{\lambda}\right|}{\sqrt{2}} \sin \left(\delta_{A_{\lambda}}+\delta_{\lambda}+\theta\right) \equiv \frac{\left|\lambda A_{\lambda}\right|}{\sqrt{2}} \sin \left(\delta_{A_{\lambda}}+\delta_{\lambda}^{\prime}\right) . \\
I_{\lambda}=0 & \quad \text { CP is conserved at the tree level. }
\end{aligned}
$$

Tadpole (minimization) conditions

$$
\begin{aligned}
\frac{1}{v_{d}}\left\langle\frac{\partial V_{0}}{\partial h_{d}}\right\rangle & =m_{1}^{2}+\frac{g_{2}^{2}+g_{1}^{2}}{8}\left(v_{d}^{2}-v_{u}^{2}\right)-R_{\lambda} \frac{v_{u} v_{S}}{v_{d}}+\frac{|\lambda|^{2}}{2}\left(v_{u}^{2}+v_{S}^{2}\right)+\frac{g_{1}^{\prime 2}}{2} Q_{H_{d}} \Delta=0, \\
\frac{1}{v_{u}}\left\langle\frac{\partial V_{0}}{\partial h_{u}}\right\rangle & =m_{2}^{2}-\frac{g_{2}^{2}+g_{1}^{2}}{8}\left(v_{d}^{2}-v_{u}^{2}\right)-R_{\lambda} \frac{v_{d} v_{S}}{v_{u}}+\frac{|\lambda|^{2}}{2}\left(v_{d}^{2}+v_{S}^{2}\right)+\frac{g_{1}^{\prime 2}}{2} Q_{H_{u}} \Delta=0, \\
\frac{1}{v_{S}}\left\langle\frac{\partial V_{0}}{\partial h_{S}}\right\rangle & =m_{S}^{2}-R_{\lambda} \frac{v_{d} v_{u}}{v_{S}}+\frac{|\lambda|^{2}}{2}\left(v_{d}^{2}+v_{u}^{2}\right)+\frac{g_{1}^{\prime 2}}{2} Q_{S} \Delta=0, \\
\frac{1}{v_{u}}\left\langle\frac{\partial V_{0}}{\partial a_{d}}\right\rangle & =\frac{1}{v_{d}}\left\langle\frac{\partial V_{0}}{\partial a_{u}}\right\rangle=I_{\lambda} v_{S}=0, \\
\frac{1}{v_{S}}\left\langle\frac{\partial V_{0}}{\partial a_{S}}\right\rangle & =I_{\lambda} \frac{v_{d} v_{u}}{v_{S}}=0, \\
\Delta & =Q_{H_{d} v_{d}^{2}+Q_{H_{u}} v_{u}^{2}+Q_{S} v_{S}^{2},}^{R_{\lambda}}=\frac{\operatorname{Re}\left(\lambda A_{\lambda} e^{i \theta}\right)}{\sqrt{2}}=\frac{\left|\lambda A_{\lambda}\right|}{\sqrt{2}} \cos \left(\delta_{A_{\lambda}}+\delta_{\lambda}+\theta\right) \equiv \frac{\left|\lambda A_{\lambda}\right|}{\sqrt{2}} \cos \left(\delta_{A_{\lambda}}+\delta_{\lambda}^{\prime}\right), \\
I_{\lambda} & =\frac{\operatorname{Im}\left(\lambda A_{\lambda} e^{i \theta}\right)}{\sqrt{2}}=\frac{\left|\lambda A_{\lambda}\right|}{\sqrt{2}} \sin \left(\delta_{A_{\lambda}}+\delta_{\lambda}+\theta\right) \equiv \frac{\left|\lambda A_{\lambda}\right|}{\sqrt{2}} \sin \left(\delta_{A_{\lambda}}+\delta_{\lambda}^{\prime}\right) . \\
I_{\lambda}=0 . & C P \text { is conserved at the tree level. }
\end{aligned}
$$

Higgs boson masses

At the tree level, the lightest Higgs mass is bounded as

$$
m_{H_{1}}^{2} \leq m_{Z}^{2} \cos ^{2} 2 \beta+\frac{|\lambda|^{2}}{2} v^{2} \sin ^{2} 2 \beta+g_{1}^{\prime 2} v^{2}\left(Q_{H_{d}} \cos ^{2} \beta+Q_{H_{u}} \sin ^{2} \beta\right)^{2}
$$

CP-even Higgs:
In the limit $Q_{H_{d}}=Q_{H_{u}} \equiv Q, \tan \beta=1$, one gets

$$
\begin{aligned}
m_{H_{1,2}}^{2}= & \frac{1}{2}\left[m_{S}^{2}+|\lambda|^{2} v^{2}+6 g_{1}^{\prime 2} Q^{2} v_{S}^{2}\right. \\
& \left.\mp \sqrt{\left\{m_{S}^{2}+2 g_{1}^{\prime 2} Q^{2}\left(3 v_{S}^{2}-v^{2}\right)\right\}^{2}+4 v^{2}\left\{R_{\lambda}-\left(|\lambda|^{2}-2 g_{1}^{\prime 2} Q^{2}\right) v\right\}^{2}}\right]
\end{aligned}
$$

$$
m_{H_{3}}^{2}=m_{Z}^{2}-\frac{|\lambda|^{2}}{2} v^{2}+2 R_{\lambda} v_{S},
$$

CP-odd Higgs: $\quad m_{A}^{2}=\frac{2 R_{\lambda} v_{S}}{\sin 2 \beta}\left(1+\frac{v^{2}}{4 v_{S}^{2}} \sin ^{2} 2 \beta\right)$
charged Higgs: $m_{H^{ \pm}}^{2}=m_{W}^{2}+\frac{2 R_{\lambda}}{\sin 2 \beta} v_{S}-\frac{|\lambda|^{2}}{2} v^{2}$.
Heavy Higgs boson masses are controlled by $R_{\lambda}\left(A_{\lambda}\right)$.

Higgs boson masses

At the tree level, the lightest Higgs mass is bounded as

$$
m_{H_{1}}^{2} \leq m_{Z}^{2} \cos ^{2} 2 \beta+\frac{|\lambda|^{2}}{2} v^{2} \sin ^{2} 2 \beta+g_{1}^{\prime 2} v^{2}\left(Q_{H_{d}} \cos ^{2} \beta+Q_{H_{u}} \sin ^{2} \beta\right)^{2}
$$

CP-even Higgs:
In the limit $Q_{H_{d}}=Q_{H_{u}} \equiv Q, \tan \beta=1$, one gets

$$
\begin{aligned}
m_{H_{1,2}}^{2}= & \frac{1}{2}\left[m_{S}^{2}+|\lambda|^{2} v^{2}+6 g_{1}^{\prime 2} Q^{2} v_{S}^{2}\right. \\
& \left.\mp \sqrt{\left\{m_{S}^{2}+2 g_{1}^{\prime 2} Q^{2}\left(3 v_{S}^{2}-v^{2}\right)\right\}^{2}+4 v^{2}\left\{R_{\lambda}-\left(|\lambda|^{2}-2 g_{1}^{\prime 2} Q^{2}\right) v\right\}^{2}}\right]
\end{aligned}
$$

$$
m_{H_{3}}^{2}=m_{Z}^{2}-\frac{|\lambda|^{2}}{2} v^{2}+2 R_{\lambda} v_{S},
$$

CP-odd Higgs: $\quad m_{A}^{2}=\frac{2 R_{\lambda} v_{S}}{\sin 2 \beta}\left(1+\frac{v^{2}}{4 v_{S}^{2}} \sin ^{2} 2 \beta\right)$
charged Higgs: $m_{H^{ \pm}}^{2}=m_{W}^{2}+\frac{2 R_{\lambda}}{\sin 2 \beta} v_{S}-\frac{|\lambda|^{2}}{2} v^{2}$.
Heavy Higgs boson masses are controlled by $R_{\lambda}\left(A_{\lambda}\right)$.

Higgs boson masses

At the tree level, the lightest Higgs mass is bounded as

$$
m_{H_{1}}^{2} \leq m_{Z}^{2} \cos ^{2} 2 \beta+\frac{|\lambda|^{2}}{2} v^{2} \sin ^{2} 2 \beta+g_{1}^{\prime 2} v^{2}\left(Q_{H_{d}} \cos ^{2} \beta+Q_{H_{u}} \sin ^{2} \beta\right)^{2}
$$

CP-even Higgs:
In the limit $Q_{H_{d}}=Q_{H_{u}} \equiv Q, \tan \beta=1$, one gets

$$
\begin{aligned}
m_{H_{1,2}}^{2}= & \frac{1}{2}\left[m_{S}^{2}+|\lambda|^{2} v^{2}+6 g_{1}^{\prime 2} Q^{2} v_{S}^{2}\right. \\
& \left.\mp \sqrt{\left\{m_{S}^{2}+2 g_{1}^{\prime 2} Q^{2}\left(3 v_{S}^{2}-v^{2}\right)\right\}^{2}+4 v^{2}\left\{R_{\lambda}-\left(|\lambda|^{2}-2 g_{1}^{\prime 2} Q^{2}\right) v_{S}\right\}^{2}}\right]
\end{aligned}
$$

$$
m_{H_{3}}^{2}=m_{Z}^{2}-\frac{|\lambda|^{2}}{2} v^{2}+2 R_{\lambda} v_{S},
$$

CP-odd Higgs: $\quad m_{A}^{2}=\frac{2 R_{\lambda} v_{S}}{\sin 2 \beta}\left(1+\frac{v^{2}}{4 v_{S}^{2}} \sin ^{2} 2 \beta\right)$
charged Higgs: $m_{H^{ \pm}}^{2}=m_{W}^{2}+\frac{2 R_{\lambda}}{\sin 2 \beta} v_{S}-\frac{|\lambda|^{2}}{2} v^{2}$.
Heavy Higgs boson masses are controlled by $R_{\lambda}\left(A_{\lambda}\right)$.

Vacuum structures
Tree-level effective potential

$$
\begin{aligned}
V_{0}\left(\varphi_{d}, \varphi_{u}, \vartheta, \varphi_{S}\right)= & \frac{1}{2} m_{1}^{2} \varphi_{d}^{2}+\frac{1}{2} m_{2}^{2} \varphi_{u}^{2}+\frac{1}{2} m_{S}^{2} \varphi_{S}^{2}-R_{\lambda} \varphi_{d} \varphi_{u} \varphi_{S}+\frac{g_{2}^{2}+g_{1}^{2}}{32}\left(\varphi_{d}^{2}-\varphi_{u}^{2}\right)^{2} \\
& +\frac{|\lambda|^{2}}{4}\left(\varphi_{d}^{2} \varphi_{u}^{2}+\varphi_{d}^{2} \varphi_{S}^{2}+\varphi_{u}^{2} \varphi_{S}^{2}\right)+\frac{g_{1}^{\prime 2}}{8}\left(Q_{H_{d}} \varphi_{d}^{2}+Q_{H_{u}} \varphi_{u}^{2}+Q_{S} \varphi_{S}^{2}\right)^{2} .
\end{aligned}
$$

various vacua:

$$
\begin{aligned}
& \mathrm{EW}: v=246 \mathrm{GeV}, \quad v_{S} \neq 0 ; \quad \mathrm{I}: v=0, \quad v_{S} \neq 0 \\
& \mathrm{II}: v \neq 0, v_{S}=0 ; \quad \mathrm{SYM}: v=v_{S}=0 .
\end{aligned}
$$

Energy of EW vacuum is

$$
V_{0}^{(\mathrm{EW})}\left(v_{d}, v_{u}, \theta, v_{S}\right)=-\frac{g_{2}^{2}+g_{1}^{2}}{32}\left(v_{d}^{2}-v_{u}^{2}\right)^{2}+\frac{1}{2} R_{\lambda} v_{d} v_{u} v_{S}-\frac{|\lambda|^{2}}{4}\left(v_{d}^{2} v_{u}^{2}+v_{d}^{2} v_{S}^{2}+v_{u}^{2} v_{S}^{2}\right)-\frac{g_{1}^{\prime 2}}{8} \Delta^{2}
$$

We require $\quad V_{0}\left(\varphi=v_{\mathrm{EW}}\right)<V_{0}\left(\varphi \neq v_{\mathrm{EW}}\right)$,
$V_{0}^{(\mathrm{EW})}\left(v_{d}, v_{u}, \theta, v_{S}\right)<0$ gives an upper bound on $m_{H^{ \pm}}$

$$
m_{H^{ \pm}}^{2}<m_{W}^{2}+m_{Z}^{2} \cot ^{2} 2 \beta+\frac{2|\lambda|^{2} v_{S}^{2}}{\sin ^{2} 2 \beta}+\frac{g_{1}^{\prime 2} \Delta^{2}}{v^{2} \sin ^{2} 2 \beta} \equiv\left(m_{H \pm}^{\max }\right)^{2}
$$

$$
|\lambda|=0.8, Q_{H_{d}}=-0.5, Q_{H_{u}}=Q_{H_{d}} / \tan ^{2} \beta
$$

- Smallest $m_{H \pm}^{\max }$ is realized for $\tan \beta=1$.
- In this case, $m_{H^{ \pm}} \lesssim 1 \mathrm{TeV}$ for $v_{S} \lesssim 640 \mathrm{GeV}$.

Neutral gauge boson masses

$$
\mathcal{M}_{Z Z^{\prime}}^{2}=\left(\begin{array}{cc}
\frac{1}{4}\left(g_{2}^{2}+g_{1}^{2}\right) v^{2} & \frac{g_{1}^{\prime}}{2} \sqrt{g_{2}^{2}+g_{1}^{2}}\left(Q_{H_{d}} v_{d}^{2}-Q_{H_{u}} v_{u}^{2}\right) \\
\frac{g_{1}^{\prime}}{2} \sqrt{g_{2}^{2}+g_{1}^{2}\left(Q_{H_{d}} v_{d}^{2}-Q_{H_{u}} v_{u}^{2}\right)} g_{1}^{\prime 2}\left(Q_{H_{d}}^{2} v_{d}^{2}+Q_{H_{u}}^{2} v_{u}^{2}+Q_{S}^{2} v_{S}^{2}\right)
\end{array}\right) .
$$

From EW precision tests, $\alpha_{Z Z^{\prime}}<\mathcal{O}\left(10^{-3}\right) \Longrightarrow \tan \beta=\sqrt{\frac{\left|Q_{H_{d}}\right|}{\left|Q_{H_{u}}\right|}}$. z^{\prime} boson mass: $\quad m_{Z^{\prime}}^{2}=g_{1}^{\prime 2}\left(Q_{H_{d}}^{2} v_{d}^{2}+Q_{H_{u}}^{2} v_{u}^{2}+Q_{S}^{2} v_{S}^{2}\right)$.

Input parameters

1-loop level: stop loop

$$
m_{\tilde{q}}=m_{\tilde{t}_{R}}=1.5 \mathrm{TeV}, A_{t}=m_{\tilde{q}}+\left|\mu_{\mathrm{eff}}\right| / \tan \beta,\left(\mu_{\mathrm{eff}}=\lambda v_{S} / \sqrt{2}\right) .
$$

Neutral gauge boson masses

$$
\mathcal{M}_{Z Z^{\prime}}^{2}=\left(\begin{array}{cc}
\frac{1}{4}\left(g_{2}^{2}+g_{1}^{2}\right) v^{2} & \frac{g_{1}^{\prime}}{2} \sqrt{g_{2}^{2}+g_{1}^{2}}\left(Q_{H_{d}} v_{d}^{2}-Q_{H_{u}} v_{u}^{2}\right) \\
\frac{g_{1}^{\prime}}{2} \sqrt{g_{2}^{2}+g_{1}^{2}\left(Q_{H_{d}} v_{d}^{2}-Q_{H_{u}} v_{u}^{2}\right)} g_{1}^{\prime 2}\left(Q_{H_{d}}^{2} v_{d}^{2}+Q_{H_{u}}^{2} v_{u}^{2}+Q_{S}^{2} v_{S}^{2}\right)
\end{array}\right) .
$$

From EW precision tests, $\alpha_{Z Z^{\prime}}<\mathcal{O}\left(10^{-3}\right) \Longrightarrow \tan \beta=\sqrt{\frac{\left|Q_{H_{d}}\right|}{\left|Q_{H_{u}}\right|}}$. z^{\prime} boson mass: $\quad m_{Z^{\prime}}^{2}=g_{1}^{\prime 2}\left(Q_{H_{d}}^{2} v_{d}^{2}+Q_{H_{u}}^{2} v_{u}^{2}+Q_{S}^{2} v_{S}^{2}\right)$.

Input parameters

1-loop level: stop loop

$$
m_{\tilde{q}}=m_{\tilde{t}_{R}}=1.5 \mathrm{TeV}, A_{t}=m_{\tilde{q}}+\left|\mu_{\mathrm{eff}}\right| / \tan \beta,\left(\mu_{\mathrm{eff}}=\lambda v_{S} / \sqrt{2}\right) .
$$

Neutral gauge boson masses

$$
\mathcal{M}_{Z Z^{\prime}}^{2}=\left(\begin{array}{cc}
\frac{1}{4}\left(g_{2}^{2}+g_{1}^{2}\right) v^{2} & \frac{g_{1}^{\prime}}{2} \sqrt{g_{2}^{2}+g_{1}^{2}}\left(Q_{H_{d}} v_{d}^{2}-Q_{H_{u}} v_{u}^{2}\right) \\
\frac{g_{1}^{\prime}}{2} \sqrt{g_{2}^{2}+g_{1}^{2}\left(Q_{H_{d}} v_{d}^{2}-Q_{H_{u}} v_{u}^{2}\right)} g_{1}^{\prime 2}\left(Q_{H_{d}}^{2} v_{d}^{2}+Q_{H_{u}}^{2} v_{u}^{2}+Q_{S}^{2} v_{S}^{2}\right)
\end{array}\right) .
$$

From EW precision tests, $\alpha_{Z Z^{\prime}}<\mathcal{O}\left(10^{-3}\right) \Longrightarrow \tan \beta=\sqrt{\frac{\left|Q_{H_{d}}\right|}{\left|Q_{H_{u}}\right|}}$. z^{\prime} boson mass: $\quad m_{Z^{\prime}}^{2}=g_{1}^{\prime 2}\left(Q_{H_{d}}^{2} v_{d}^{2}+Q_{H_{u}}^{2} v_{u}^{2}+Q_{S}^{2} v_{S}^{2}\right)$.

Input parameters

1-loop level: stop loop

$$
m_{\tilde{q}}=m_{\tilde{t}_{R}}=1.5 \mathrm{TeV}, A_{t}=m_{\tilde{q}}+\left|\mu_{\mathrm{eff}}\right| / \tan \beta,\left(\mu_{\mathrm{eff}}=\lambda v_{S} / \sqrt{2}\right) .
$$

Electroweak phase transition

Effective potential:

$$
V_{\text {eff }}\left(\varphi_{d}, \varphi_{u}, \varphi_{S} ; T\right)=V_{0}+V_{1}+V_{1}^{T}
$$

$$
\begin{aligned}
& V_{1}=\sum_{i} \frac{c_{i} \bar{m}_{i}^{4}}{64 \pi^{2}}\left(\ln \frac{\bar{m}_{i}^{2}}{\bar{\mu}^{2}}-\frac{3}{2}\right), \\
& V_{1}^{T}=\frac{T^{4}}{2 \pi^{2}}\left[\sum_{i=\text { bosons }} c_{i} I_{B}\left(\frac{\bar{m}_{i}^{2}}{T^{2}}\right)+\sum_{i=\text { fermions }} c_{i} I_{F}\left(\frac{\bar{m}_{i}^{2}}{T^{2}}\right)\right], \\
& \quad I_{B, F}\left(a^{2}\right)=\int_{0}^{\infty} d x x^{2} \ln \left(1 \mp e^{-\sqrt{x^{2}+a^{2}}}\right) .
\end{aligned}
$$

\square gauge bosons, top/bottom, stop/sbottom loops are taken into account.
$\square T_{c}$ and Higgs VEVs at T_{c} are determined by $V_{\text {eff. }}$.

Sphaleron decoupling

After the EWPT, the sphaleron process has to be decoupled. B-changing rate in the broken phase < Hubble constant

$$
\Gamma_{B}^{(b)}(T) \simeq(\text { prefactor }) e^{-E_{\mathrm{sph}} / T}<H(T) \simeq 1.66 \sqrt{g_{*}} T^{2} / m_{\mathrm{P}}
$$

$$
g_{*} \text { massless dof, } 106.75(\mathrm{SM}) \quad m_{\mathrm{P}} \text { Planck mass } \approx 1.22 \times 10^{19} \mathrm{GeV}
$$

$E_{\mathrm{sph}}=4 \pi v \mathcal{E} / g_{2}\left(\mathrm{~g}_{2}: \mathrm{SU}(2)\right.$ gauge coupling),

$$
\frac{v}{T}>\frac{g_{2}}{4 \pi \mathcal{E}}[42.97+\log \text { corrections }] \equiv \zeta_{\mathrm{sph}}
$$

\square sphaleron energy gives the dominant effect.
$\square \log$ corrections are subleading. (typically 10% correction)

$1^{\text {st }}$ and $2^{\text {nd }}$ order EWPTs

This is what the $1^{\text {st }}$ - and $2^{\text {nd }}$-order PTs look like.

\square order parameter
= Higgs VEV
\square EWBG requires
" $1^{\text {st }}$-order" PT

$1^{\text {st }}$ and $2^{\text {nd }}$ order EWPTs

This is what the $1^{\text {st }}$ - and $2^{\text {nd }}$-order PTs look like.

\square order parameter
= Higgs VEV
\square EWBG requires
" ${ }^{\text {stt }}$-order" PT
\square A negative contributions is necessary.

$1^{\text {st }}$ and $2^{\text {nd }}$ order EWPTs

This is what the $1^{\text {st }}$ - and $2^{\text {nd }}$-order PTs look like.

$1^{\text {st }}$-order EWPT

Let us consider the $\mathrm{g}_{1}^{\prime}=0$ case,

$$
V_{\mathrm{eff}}(\varphi ; T)=\frac{1}{2} M^{2}(T) \varphi^{2}+\frac{1}{2} m_{S}^{2} \varphi_{S}^{2}-\tilde{R}_{\lambda} \varphi^{2} \varphi_{S}+\frac{|\lambda|^{2}}{4} \varphi^{2} \varphi_{S}^{2}+\frac{\tilde{\lambda}^{2}}{4} \varphi^{4}
$$

where

$$
\begin{aligned}
M^{2}(T) & =m_{1}^{2} \cos ^{2} \beta+m_{2}^{2} \sin ^{2} \beta+\mathcal{G} T^{2} \\
\tilde{R}_{\lambda} & =R_{\lambda} \sin \beta \cos \beta, \quad \tilde{\lambda}^{2}=\frac{g_{2}^{2}+g_{1}^{2}}{8} \cos ^{2} 2 \beta+\frac{|\lambda|^{2}}{4} \sin ^{2} 2 \beta,
\end{aligned}
$$

After eliminating φ_{s} using the minimization condition w.r.t. φ_{s}, one gets

$$
\begin{aligned}
V_{\mathrm{eff}}(\varphi ; T) & =\frac{1}{2} M^{2}(T) \varphi^{2}-\frac{\tilde{R}_{\lambda}^{2} \varphi^{4}}{2\left(m_{S}^{2}+|\lambda|^{2} \varphi^{2} / 2\right)}+\frac{\tilde{\lambda}^{2}}{4} \varphi^{4} \\
& \simeq \frac{1}{2} M^{2}(T) \varphi^{2}+\frac{1}{4}\left(\tilde{\lambda}^{2}-\frac{2 \tilde{R}_{\lambda}^{2}}{m_{S}^{2}}\right) \varphi^{4}+\frac{|\lambda|^{2} \tilde{R}_{\lambda}^{2}}{4 m_{S}^{4}} \varphi^{6} .
\end{aligned}
$$

$1^{\text {st }}$-order PT may be realized if $\tilde{\lambda}<\sqrt{\frac{2}{m_{S}^{2}}}\left|\tilde{R}_{\lambda}\right| \mathrm{v}_{c} / T_{c} \hat{\jmath}$ if $\mathrm{A}_{\lambda} \hat{\jmath}$ and/or $\mathrm{v}_{s} \downarrow$

Tc and Higgs VEVs

$T_{C}: T$ at which $V_{\text {eff }}$ has degenerate minima.
$v_{C}=\lim _{T \uparrow T_{C}} \sqrt{v_{d}^{2}\left(T_{C}\right)+v_{u}^{2}\left(T_{C}\right)}, \quad v_{S C}=\lim _{T \uparrow T_{C}} v_{S}\left(T_{C}\right), \quad v_{S C}^{\mathrm{sym}}=\lim _{T \downarrow T_{C}} v_{S}\left(T_{C}\right)$.

\square In the light Z^{\prime} (small v_{s}) region, the EWPT can be strong $1^{\text {st }}$ order due to the doublet-singlet Higgs mixing effects.
\square Such a Z^{\prime} must be leptophobic to be phenomenologically viable.

Tc and Higgs VEVs

$T_{C}: T$ at which $V_{\text {eff }}$ has degenerate minima.

$$
v_{C}=\lim _{T \uparrow T_{C}} \sqrt{v_{d}^{2}\left(T_{C}\right)+v_{u}^{2}\left(T_{C}\right)}, \quad v_{S C}=\lim _{T \uparrow T_{C}} v_{S}\left(T_{C}\right), \quad v_{S C}^{\text {sym }}=\lim _{T \downarrow T_{C}} v_{S}\left(T_{C}\right) .
$$

\square In the light Z^{\prime} (small v_{s}) region, the EWPT can be strong $1^{\text {st }}$ order due to the doublet-singlet Higgs mixing effects.
\square Such a Z^{\prime} must be leptophobic to be phenomenologically viable.

Tc and Higgs VEVs

$T_{C}: T$ at which $V_{\text {eff }}$ has degenerate minima.
$v_{C}=\lim _{T \uparrow T_{C}} \sqrt{v_{d}^{2}\left(T_{C}\right)+v_{u}^{2}\left(T_{C}\right)}, \quad v_{S C}=\lim _{T \uparrow T_{C}} v_{S}\left(T_{C}\right), \quad v_{S C}^{\mathrm{sym}}=\lim _{T \downarrow T_{C}} v_{S}\left(T_{C}\right)$.

\square In the light Z^{\prime} (small v_{s}) region, the EWPT can be strong $1^{\text {st }}$ order due to the doublet-singlet Higgs mixing effects.
\square Such a Z^{\prime} must be leptophobic to be phenomenologically viable.

Tc and Higgs VEVs

$T_{C}: T$ at which $V_{\text {eff }}$ has degenerate minima.
$v_{C}=\lim _{T \uparrow T_{C}} \sqrt{v_{d}^{2}\left(T_{C}\right)+v_{u}^{2}\left(T_{C}\right)}, \quad v_{S C}=\lim _{T \uparrow T_{C}} v_{S}\left(T_{C}\right), \quad v_{S C}^{\mathrm{sym}}=\lim _{T \downarrow T_{C}} v_{S}\left(T_{C}\right)$.

\square In the light Z^{\prime} (small v_{s}) region, the EWPT can be strong $1^{\text {st }}$ order due to the doublet-singlet Higgs mixing effects.
\square Such a Z^{\prime} must be leptophobic to be phenomenologically viable.

Experimental constraints on light leptophobic Z^{\prime}

\square Electroweak precision tests (see e.g. Umeda,Cho,Hagiwara, PRD58 (1998) 115008)
-> In our case, no constraint since $\mathrm{Z}-\mathrm{Z}^{\prime}$ mixing is assumed to be small.
\square All dijet-mass searches at Tevatron/LHC are limited to $M_{\mathrm{jj}}>200 \mathrm{GeV}$.
$\square Z^{\prime}$ boson ($<200 \mathrm{GeV}$) is constrained by the UA2 experiment.

UA2 bounds on mz^{\prime}

UA2 Collaborations,NPB400: (1993) 3

Fig. 5. Excluded region to 90% for $Z^{\prime} \rightarrow \bar{q} q$, (excluded region is hatched). The branching ratio is given as a fraction of standard model branching ratio. The solid line shows a branching ratio of 1

Sphaleron decoupling

For simplicity, we evaluate sphaleron energy at $\mathrm{T}=0$. Also, $U(1)_{Y}$ and $U(1)^{\prime}$ contributions are neglected.
sphaleron energy

vc/ Tc vs. $\zeta_{\text {ssh }}$

\square sphaleron decoupling condition is satisfied for $m_{z^{\prime}} \leqslant 220 \mathrm{GeV}$.

Scan analysis

$\mathrm{V} / \mathrm{T}_{\mathrm{c}}$

- Smaller $m_{H^{ \pm}}\left(\left|A_{\lambda}\right|\right)$ gives weaker v_{C} / T_{C}.
- Strong 1st-order EWPT requires relatively large $|\lambda|$.

BAU

Under the reasonable assumptions, one may get

$$
n_{B}=\frac{3}{2} \Gamma_{B}^{(s)} \frac{S^{\mathrm{CPV}}}{\sqrt{\Gamma}} \frac{L_{w} \sqrt{\bar{D}}}{v_{w}^{2}} r_{1}
$$

$\Gamma_{B}^{(s)}: B$-changing rate in the symmetric phase S^{CPV} : CP-violating source terms
Γ : CP-conserving chirality changing terms
L_{w} : wall width
\bar{D} : diffusion constant
r_{1} : numerical factor

Using the CTP formalism, we evaluate $\mathrm{S}^{\mathrm{CPV}}$ and Γ

BAU

Under the reasonable assumptions, one may get

$$
n_{B}=\frac{3}{2} \Gamma_{B}^{(s)} \sqrt{\frac{S^{\mathrm{CPV}}}{\sqrt{\Gamma}}} \frac{L_{w} \sqrt{\bar{D}}}{v_{w}^{2}} r_{1}
$$

$\Gamma_{B}^{(s)}: B$-changing rate in the symmetric phase S^{CPV} : CP-violating source terms
$\Gamma:$ CP-conserving chirality changing terms
L_{w} : wall width
\bar{D} : diffusion constant
r_{1} : numerical factor

Using the CTP formalism, we evaluate $\mathrm{S}^{\mathrm{CPV}}$ and Γ

Z^{\prime}-ino driven EWBG

$$
\begin{aligned}
& \tan \beta=1, m_{H_{1}}=126 \mathrm{GeV}, m_{H^{ \pm}}=550 \mathrm{GeV}, m_{Z^{\prime}}=200 \mathrm{GeV}, \\
& Q_{H_{d}}=Q_{H_{u}}=-0.5, \delta_{M_{1}^{\prime}}=\pi / 2, \delta_{\lambda}=0, \Delta \beta=0.01, v_{w}=0.4 .
\end{aligned}
$$

\square If $M_{1}^{\prime} \simeq \mu_{\text {eff }}, B A U$ can be explained by the Z^{\prime}-ino effect.

Z^{\prime}-ino driven EWBG

$$
\begin{aligned}
& \tan \beta=1, m_{H_{1}}=126 \mathrm{GeV}, m_{H^{ \pm}}=550 \mathrm{GeV}, m_{Z^{\prime}}=200 \mathrm{GeV}, \\
& Q_{H_{d}}=Q_{H_{u}}=-0.5, \delta_{M_{1}^{\prime}}=\pi / 2, \delta_{\lambda}=0, \Delta \beta=0.01, v_{w}=0.4 .
\end{aligned}
$$

\square If $M_{1}^{\prime} \simeq \mu_{\text {eff }}, B A U$ can be explained by the Z^{\prime}-ino effect.

Summary

\square We have revisited the possibility of EWBG in the UMSSM in light of $m_{h}=126 \mathrm{GeV}$.
\square Doublet-singlet Higgs mixings existing in the tree-level Higgs potential can induce the strong $1^{\text {st }}$-order EWPT, which leads to

- reduction of the $H_{1} V V$ coupling
- leptophobic light Z^{\prime} boson
\square Sufficient BAU may be generated by the Z^{\prime}-ino effects.

outlook

Next step is

- collider phenomenology
- precise knowledge of bubble wall profiles (wall velocity\&width)

