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Beyond Baryon Acoustic Oscillations:
Two Anisotropic Distortion

Redshift-Space Distortion (RSD) Alcock-Paczynski test
geometrical distortion

RSD in a qualitative picture & linear theory48 3. COSMOLOGY AND MASSIVE NEUTRINOS: UP TO LINEAR THEORY

Figure 3.5: A schematic picture of redshift distortions. Arrows denote direction and magnitude
of velocity fields of galaxies. At large scales where the peculiar velocity of galaxies can be
treated at linear level, the galaxy density fields squash along the line-of-sight. In the case of
nonlinear collapse at small scales, galaxies have large velocity with random direction. As a
result, the structure become elongated, which is so called the Finger-of-God effect. The FOG
effect suppress the clustering for direction of line-of-sight.

where ẑ is an unit vector in the line-of-sight direction. We have adopted the distant-observer
approximation, which ignores the radial dependence of redshift-space distortion. The number
of galaxies in a particular region is preserved, i.e., ns(xs)d3xs = n(x)d3x, and the Jacobian of
this transformation is given by

J =

∣∣∣∣∣
dx

ds

∣∣∣∣∣ =

(

1 +
∂

∂z

[
"v · ẑ

aH(a)

])−1 (

1 +
"v · ẑ

aH(a)x

)−2

. (3.107)

The second bracket can be safely approximated to be unity, since the derivative term in the
first bracket is larger than the second by a factor of kx and we are interested only in the modes
of kx ! 1 [110]. Then, the Jacobian becomes

J "
(

1 +
∂

∂z

[
"v · ẑ

aH(a)

])−1

. (3.108)

Thus the transformation to redshift space is nonlinear mapping, which make it difficult to model
the nonlinear power spectrum in redshift space.

Intuitively, the redshift distortion effect is understood in two ways. Fig. 3.5 illustrates the
two redshift distortion effects, separately. At sufficiently large scales, a slightly overdense region
appears squashed toward the center of overdense region. On the other hand, in more collapsed
object seen at small scales, the so-called Fingers-of-God (FOG) effect is attributed to random

Large scale: Squashing effect
   - amplitude become larger 

Small scale: Finger-of-God 
   - amplitude becomes smaller

Kaiser, 1987

BAO scale at low redshift is mildly nonlinear regime → both effects are needed!

In linear theory PS(k, µ) = b2

�
1 +

f

b
µ2

�2

Pm(k)P (k) = ��g(k)2� �

ẑ
µ = cos �

�k

: l.o.s.
RSD measurement

＊ all information is encoded up to hexadecapole (l=4)

f � d lnD(a)
d ln a

� �m(z)� γ = 0.55 [GR], 0.68 [DGP]
depends on scale [f(R)] Linder, 2008

The distance is measured only in ‘redshift space’

Redshift-space distortion (RSD) in general
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real-space distance

peculiar velocity of galaxy redshift-space distance

A distance to a galaxy is measured by “redshift” which cannot be distinguished 
from its peculiar velocity along the l.o.s.

Makes l.o.s. special so that the clustering pattern is distorted anisotropically.

- Velocity field information only along l.o.s

�s = �r +
�v · ẑ

aH(z)
ẑredshift space

real space
line of sight direction

∂u(x, τ)

∂τ
+ H(τ) u(x, τ) = −∇Φ(x, τ), (19)

where θ(x, τ) ≡ ∇ · u(x, τ) is the divergence of the velocity field. These
equations are now straightforward to solve. The velocity field, as any vector
field, can be completely described by its divergence θ(x, τ) and its vorticity
w(x, τ) ≡ ∇× u(x, τ) , whose equations of motion follow from Eq. (19)

∂θ(x, τ)

∂τ
+ H(τ) θ(x, τ) +

3

2
Ωm(τ)H2(τ)δ(x, τ) = 0, (20)

∂w(x, τ)

∂τ
+ H(τ) w(x, τ) = 0. (21)

The vorticity evolution readily follows from Eq. (21), w(τ) ∝ a−1, i.e. in the
linear regime any initial vorticity decays away due to the expansion of the
Universe. The density contrast evolution follows by taking the time derivative
of Eq. (20) and replacing in Eq. (18),

d2D1(τ)

dτ 2
+ H(τ)

dD1(τ)

dτ
=

3

2
Ωm(τ)H2(τ)D1(τ), (22)

where we wrote δ(x, τ) = D1(τ)δ(x, 0), with D1(τ) the linear growth factor.
This equation, together with the Friedmann equations, Eqs. (4-5), determines
the growth of density perturbations in the linear regime as a function of cos-
mology. Since it is a second-order differential equation, it has two independent
solutions, let’s denote the fastest growing mode D(+)

1 (τ) and the slowest one

D(−)
1 (τ). The evolution of the density is then

δ(x, τ) = D(+)
1 (τ)A(x) + D(−)

1 (τ)B(x), (23)

where A(x) and B(x) are two arbitrary functions of position describing the ini-
tial density field configuration, whereas the velocity divergence [using Eq. (18)]
is given by

θ(x, τ) = −H(τ) [f(Ωm, ΩΛ)A(x) + g(Ωm, ΩΛ)B(x)] , (24)

f(Ωm, ΩΛ) ≡ d lnD(+)
1

d ln a
=

1

H
d ln D(+)

1

dτ
g(Ωm, ΩΛ) =

1

H
d ln D(−)

1

dτ
. (25)

The most important cases are

(1) When Ωm = 1, ΩΛ = 0, we have the simple solution

D(+)
1 = a, D(−)

1 = a−3/2, f(1, 0) = 1, (26)

thus density fluctuations grow as the scale factor.

17

linear Euler equation

gravity test

degeneracy w/ AP test

Linear theory Kaiser (1987)

(GR)
(DGP)

see e.g. Jain & Khoury (2010)

Alcock & Paczynski (1979)

isotropic BAO

RSD → 

AP   →

anisotropic P(k,μ) (including BAO)
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Precise Measurement of the BOSS CMASS anisotropic galaxy P(k)

Accurate Modeling of the anisotropic P(k) based on Perturbation Theory

Facing the model with the data → Cosmology Results!

Outline

F. Beutler, S.S., H.J. Seo++, coming soon

A. Taruya, T. Nishimichi, S.S. (2010)
S.S., T. Baludaf, Z. Vlah, U. Seljak++, coming soon
F. Beutler, S.S., H.J. Seo++, coming soon

However, I am not allowed to show our results using DR11 P(k) until Dec 10th.

cosmological information: l=0 (monopole), l=2 (quadrupole), l=4 (hexadecapole)
Taruya, S.S., Nishimichi (2011)

X
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Figure 2. The CMASS-DR11 north (top) and south (bottom)
sky coverage. The grey region indicates the final footprint of the
survey (DR12). The colours indicate the completeness in the re-
gions included in our analysis.

is split into two samples called LOWZ (z = 0.15 - 0.43)
and CMASS (z = 0.43 - 0.7). In this analysis we are only
using the CMASS sample. The survey is optimised for the
measurement of the BAO scale and hence covers a large
cosmic volume (Ve↵ = 2.31 ⇥ 109[Mpc/h]3) with a density
of n ⇡ 3 ⇥ 10�4[h/Mpc]3, high enough to ensure that shot
noise is not the dominant error contribution at the BAO
scale (White et al. 2011). Most CMASS galaxies are red with
a prominent 4000 Å break in their spectral energy distri-
bution. Halo Occupation studies have shown, that galaxies
selected like the CMASS galaxies are mainly central galax-
ies residing in dark matter halos of 1013M�/h, with a 5 -
10% satellite fraction (White et al. 2011). CMASS galaxies
are highly biased (b ⇠ 2), which boosts the clustering signal
including BAO in respect to the shot noise level.

The CMASS-DR11 sample covers 6 391 deg2 in the
northern patch and 2 107 deg2 in the southern patch; the to-
tal area of 8 498 deg2 represents a significant increase from
CMASS-DR9, which covered 3 265 deg2 in total. The sample
used in our analysis includes 520 806 galaxies in the north
and 170 021 galaxies in the south. Figure 2 shows the foot-
print of the survey in the two regions, where the grey area
indicates the expected footprint of DR12.

We include four di↵erent incompleteness weights to ac-
count for shortcomings of the CMASS dataset (see Ross et
al. 2012a and Anderson et al. in prep. 2013b for details): A
fibre collision weight, wfc, a redshift failure weight, wrf and a
systematics weight, wsys, which is a combination of a stellar
density weight and a seeing condition weight. Each galaxy

is thus counted as

wc = (wfc + wrf � 1)wsys. (1)

We will discuss these weights in more detail in section 3.3.

3 THE POWER SPECTRUM ESTIMATOR

In this section we describe the estimator to measure the
multipole power spectrum from the CMASS DR11 sample.
Readers familiar with the estimator suggested by Yamamoto
et al. (2006) may skip this section, but we carefully address
how to incorporate the weight for each galaxy especially into
the normalisation and the Poisson shot-noise term. Also, we
summarise the di↵erent approximations in the literature for
clarity before explaining the estimator.

3.1 Commonly used approximations

Here we discuss di↵erent approximations used in galaxy clus-
tering statistics, and if used in our analysis we discuss their
impact on our measurement:

(i) Distant observer approximation: Here one as-
sumes, that a displacement�x (e.g. caused by redshift space
distortions) is much smaller than the distance, |~x|, of the
galaxy itself. This approximation is commonly used for the
volume element in the Jacobian mapping from real to red-
shift space. Galaxy clustering measurements usually don’t
have to make this assumption and we do not use it any-
where in our measurement. Note that we assume the distant
observer approximation when modeling the galaxy power
spectrum in section 6.1.

(ii) Local plane parallel approximation: Here one as-
sumes, that the position vectors of a galaxy pair can be
treated as parallel, meaning

~̂k · ~̂x1 ⇡ ~̂k · ~̂x2 ⇡ ~̂k · ~̂xh, (2)

where ~̂xh = (~̂x1 + ~̂x2)/2. This approximation is only valid
for a galaxy pair with a small angular separation and hence
will break down on large scales (Papai & Szapudi 2008).
It has been shown, however, that the local plane paral-
lel approximation is a very good approximation for most
galaxy samples even when they cover a large fraction of the
sky (Samushia, Percival & Raccanelli 2011; Beutler et al.
2011; Yoo & Seljak 2013). Most of the anisotropic galaxy
clustering measurements adopt this assumption including
our analysis, where it is introduced in eq. 9.

(iii) (Global) plane parallel approximation (or flat-
sky approximation): Here one assumes that the line-of-

sight vector ~̂x is the same for all galaxies in the survey,
meaning

~̂k · ~̂x ⇡ ~̂k · ~̂z, (3)

where ~̂z is the global line-of-sight vector. This approxima-
tion is included in the popular FKP power spectrum estima-
tor (Feldman, Kaiser & Peacock 1993), because of the peri-
odic boundary condition underlying the Fast Fourier Trans-
form (FFT), which is an integral part of this estimator. Since
the line-of-sight vector only appears in the calculation of
the cosine angle to the line-of-sight, µ, the monopole power

c� 0000 RAS, MNRAS 000, 000–000

North

4

Baryon Oscillation Spectroscopic Survey
Huge improvement from DR9 to DR11

Area [deg2]

# of galaxies

when July, 2012 Dec, 2014

690,827264,283

8,4983,275

Veff [(Gpc/h)3] 0.75 2.31

BOSS DR11 CMASS galaxy catalog
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Figure 2. The CMASS-DR11 north (top) and south (bottom)
sky coverage. The grey region indicates the final footprint of the
survey (DR12). The colours indicate the completeness in the re-
gions included in our analysis.

is split into two samples called LOWZ (z = 0.15 - 0.43)
and CMASS (z = 0.43 - 0.7). In this analysis we are only
using the CMASS sample. The survey is optimised for the
measurement of the BAO scale and hence covers a large
cosmic volume (Ve↵ = 2.31 ⇥ 109[Mpc/h]3) with a density
of n ⇡ 3 ⇥ 10�4[h/Mpc]3, high enough to ensure that shot
noise is not the dominant error contribution at the BAO
scale (White et al. 2011). Most CMASS galaxies are red with
a prominent 4000 Å break in their spectral energy distri-
bution. Halo Occupation studies have shown, that galaxies
selected like the CMASS galaxies are mainly central galax-
ies residing in dark matter halos of 1013M�/h, with a 5 -
10% satellite fraction (White et al. 2011). CMASS galaxies
are highly biased (b ⇠ 2), which boosts the clustering signal
including BAO in respect to the shot noise level.

The CMASS-DR11 sample covers 6 391 deg2 in the
northern patch and 2 107 deg2 in the southern patch; the to-
tal area of 8 498 deg2 represents a significant increase from
CMASS-DR9, which covered 3 265 deg2 in total. The sample
used in our analysis includes 520 806 galaxies in the north
and 170 021 galaxies in the south. Figure 2 shows the foot-
print of the survey in the two regions, where the grey area
indicates the expected footprint of DR12.

We include four di↵erent incompleteness weights to ac-
count for shortcomings of the CMASS dataset (see Ross et
al. 2012a and Anderson et al. in prep. 2013b for details): A
fibre collision weight, wfc, a redshift failure weight, wrf and a
systematics weight, wsys, which is a combination of a stellar
density weight and a seeing condition weight. Each galaxy

is thus counted as

wc = (wfc + wrf � 1)wsys. (1)

We will discuss these weights in more detail in section 3.3.

3 THE POWER SPECTRUM ESTIMATOR

In this section we describe the estimator to measure the
multipole power spectrum from the CMASS DR11 sample.
Readers familiar with the estimator suggested by Yamamoto
et al. (2006) may skip this section, but we carefully address
how to incorporate the weight for each galaxy especially into
the normalisation and the Poisson shot-noise term. Also, we
summarise the di↵erent approximations in the literature for
clarity before explaining the estimator.

3.1 Commonly used approximations

Here we discuss di↵erent approximations used in galaxy clus-
tering statistics, and if used in our analysis we discuss their
impact on our measurement:

(i) Distant observer approximation: Here one as-
sumes, that a displacement�x (e.g. caused by redshift space
distortions) is much smaller than the distance, |~x|, of the
galaxy itself. This approximation is commonly used for the
volume element in the Jacobian mapping from real to red-
shift space. Galaxy clustering measurements usually don’t
have to make this assumption and we do not use it any-
where in our measurement. Note that we assume the distant
observer approximation when modeling the galaxy power
spectrum in section 6.1.

(ii) Local plane parallel approximation: Here one as-
sumes, that the position vectors of a galaxy pair can be
treated as parallel, meaning

~̂k · ~̂x1 ⇡ ~̂k · ~̂x2 ⇡ ~̂k · ~̂xh, (2)

where ~̂xh = (~̂x1 + ~̂x2)/2. This approximation is only valid
for a galaxy pair with a small angular separation and hence
will break down on large scales (Papai & Szapudi 2008).
It has been shown, however, that the local plane paral-
lel approximation is a very good approximation for most
galaxy samples even when they cover a large fraction of the
sky (Samushia, Percival & Raccanelli 2011; Beutler et al.
2011; Yoo & Seljak 2013). Most of the anisotropic galaxy
clustering measurements adopt this assumption including
our analysis, where it is introduced in eq. 9.

(iii) (Global) plane parallel approximation (or flat-
sky approximation): Here one assumes that the line-of-

sight vector ~̂x is the same for all galaxies in the survey,
meaning

~̂k · ~̂x ⇡ ~̂k · ~̂z, (3)

where ~̂z is the global line-of-sight vector. This approxima-
tion is included in the popular FKP power spectrum estima-
tor (Feldman, Kaiser & Peacock 1993), because of the peri-
odic boundary condition underlying the Fast Fourier Trans-
form (FFT), which is an integral part of this estimator. Since
the line-of-sight vector only appears in the calculation of
the cosine angle to the line-of-sight, µ, the monopole power

c� 0000 RAS, MNRAS 000, 000–000

DR9 DR11

South

Sloan Digital Sky Survey III (2009-2014)

- 2.5m telescope in Apache Point 
  Observatory in NM, USA

- BOSS (DR9-DR12)aims to measure 

  1) 1.5 million galaxies
        LOWZ   0.15 < z < 0.43
        CMASS  0.43 < z < 0.70

  2) 150,000 quasars (Ly-α forest)



How to measure the anisotropic P(k)?

The power spectrum estimator Feldman, Kaiser, Peacock (1994)

The standard FKP method

Yamamoto et al. (2006) method

2

for an arbitral function f(x). Now the Eq. (1) becomes

P̂!(k) =
2!+ 1

2Anorm
[D!(k)D

∗
!=0(k)− S!] , (8)

where

D!(k) ≡
Ng∑

i

{wc(xi)− α′}wFKP(xi)e
ik·xiL!(k̂ · x̂i), (9)

Anorm =

Ng∑

i

n′
g(xi)wc(xi)w

2
FKP(xi). (10)

The only approximation made up to here is that the line-of-sight direction for each galaxy pair is set to x̂h where
xh = (x1 + x2)/2, and then the so-called plain-parallel approximation, x̂h ≈ x̂i is adopted. It is not necessary to
assume a line of sight as one fixed direction as usually done in the FKP method. The FKP method can utilize the
Fast-Fourier Transformation (FFT) because of the fixed line-of-sight-direction, while the estimator, Eq. (8) cannot
use FFT and so the Fourier coefficients are rigorously summed up.
We then finally obtain the measurement of the multipole power spectrum by averaging over the wavenumber bin,

P̂!(k) =
1

Nmode

∑

k−∆k
2 <|k|<k+∆k

2

P̂!(k). (11)

Notice that the disadvantage of this method is computational speed. This algorithm has O(N2
g ), while the complexity

of the FKP method is O(Nc logNc) where Nc is the number of FFT grids. On the other hand, the advantage of this
estimator is that it does not suffer from the aliasing effect since FFT is not used. One may be aware of the fact that
the results could be biased due to the gridding in k-space at large scales. However, this can be easily estimated using
the model power spectrum. Namely, we can easily correct the estimator as [4]

P̂!(k) → P̂!(k) + Pmodel
! (k)− Pmodel,grid

! (k), (12)

where

Pmodel
! (k) =

(2!+ 1)

2

∫ 1

−1
dµPmodel(k, µ)L!(µ), (13)

Pmodel,grid
! (k) =

(2!+ 1)α′

2Anorm

Nran∑

i=1

n′
g(xi)w

2
FKP(xi)P

model(k, k̂ · x̂i)L!(k̂ · x̂i). (14)

II. THE SURVEY WINDOW FUNCTION

The multipole power spectrum measured in the previous section is not straightforward to be compared with the
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where Dl(k) is FT of the density field complexity

- use FFT to compute Dl(k) with fixed line-of-sight direction

- Therefore, it bias the anisotropic measures. Yoo & Seljak (2013)

- directly sum up the FT coefficients but locally define the line-of-sight
- slow but more suitable to measure higher-order multipole
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(ii) Systematic weights, w
sys

: In CMASS it has been
found that there seem to be correlations between the galaxy
density and the proximity to a star as well as between the
galaxy density and the seeing conditions for a particular
observation. These correlations are removed using galaxy
specific weights (systematic weights). Here we know only
statistically that there were missed galaxies, but never know
exactly where. To correct for these correlations we up-weight
observed galaxies depending on their proximity to stars and
the seeing condition for that particular observation. The cor-
rection is still not random, but it is linked to a Poisson
process (e.g. the existence of another galaxy around that
star). Therefore we argue that the systematic weights should
not reduce the shot noise. We also note that the systematic
weights are much smaller than the fibre collision and red-
shift failure weight and hence the impact to the shot noise
term is small.

The shot noise term defines how the galaxy density field
enters in the minimum variance weight, w

FKP

, and hence
the arguments discussed above result in a minimum variance
weight of the form:

w
FKP

(~x) =
1

1 +
n

0
g(~x)P0

w

sys

(~x)

. (21)

A detailed derivation can be found in appendix A. Since the
systematic weights employed in our analysis are very small,
our definition of w

FKP

is almost identical to the commonly
used

w
FKP

(~x) =
1

1 + n0
g

(~x)P
0

. (22)

If we would assume, that the systematic weights, w
sys

(~x),
reduce the shot noise, eq. 21 and eq. 22 would be identical.
The value of P

0

defines the power spectrum amplitude at
which the error is minimised. In this analysis we use P

0

=
20 000h�3 Mpc, which corresponds to k ⇠ 0.1h/Mpc.

Several studies in recent years reported deviations from
the pure Poisson shot noise assumption (Casas-Miranda et
al. 2002; Seljak, Hamaus & Desjacques 2009; Manera & Gaz-
tanaga 2010; Hamaus et al. 2010; Baldauf et al. 2013). Even
though we discussed our definition of the shot noise term at
length in this section, the parameter constraints we derive
in this paper are fairly independent of the precise definition,
since for all parameter constraints we are marginalising over
a constant o↵set, N (see section 6.1).

4 CMASS-DR11 MOCK CATALOGUES

In our analysis we use 1000 mock catalogues which follow
the same selection function as the CMASS-DR11 sample
(from now on called QPM mocks). The catalogues are pro-
duced by running low force- and mass-resolution particle-
mesh N-body simulations (White, Tinker & McBride 2013)
with 12803 particles in a [2560h�1 Mpc]3 box. These sim-
ulations have been found to better describe the clustering
of CMASS galaxies compared to the previous version of
CMASS mock catalogues (Manera et al. 2012), especially
at small scales (McBride et al. in prep. 2013). Each simula-
tion started from 2LPT initial conditions at z = 25 and
evolved to the present using time steps of 15% in ln(a),
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Figure 5. Relative error using the diagonal elements of the co-
variance matrix of the power spectrum multipoles in CMASS-
DR11. The upper three dashed lines show the quadrupole error
and the lower three solid lines show the error in the monopole. The
error in the northern part of CMASS-DR11 (black lines) is about
a factor of 1.6 smaller than the error in the southern part (red
lines). The power spectrum error for the entire CMASS-DR11
sample (blue lines) shows an error of ⇠ 1.5% in the monopole
and ⇠ 10% in the quadrupole at k = 0.1h/Mpc.

where a = (1 + z)�1 is the scale factor. The chosen fiducial
cosmology is ⌦

m

= 0.29, h = 0.7, n
s

= 0.97 and �
8

= 0.8.
At z = 0.7, 0.55, 0.4 and 0.25 we output a sub-sample of the
N-body particles and a catalog of halos with more than 32
particles generated by the friends-of-friends algorithm with
a linking length of 0.2 times the mean inter-particle spac-
ing. For each particle, we save the position, velocity, and
local density smoothed on 10h�1 Mpc scales. We extend the
halo catalog to lower masses by appointing a set of the sub-
sampled particles as halos and assigning them a mass using
the peak-background split mass function. The halos are then
populated by galaxies using the Halo Occupation Distribu-
tion (HOD) formalism with the occupation functions (see
e.g. Tinker et al. 2013)

hN
cen

i
M

=
1
2


1 + erf

✓
logM � logM

min

�
logM

◆�
, (23)

hN
sat

i
M

= hN
cen

i
M

✓
M

M
sat

◆
↵

exp

✓
M

cut

M

◆
. (24)

To generate the covariance matrix in the next section we
use M

min

= 9.319 ⇥ 1012h�1M�, �
logM

= 0.2, ↵ = 1.1,
M

sat

= 6.729⇥1013h�1M� and M
cut

= 4.749⇥1013h�1M�.
In section 7 we will modify the HOD parameters to test
possible systematic e↵ects in our modelling of the power
spectrum. For more details about the QPM mock catalogues
see McBride et al. in prep. (2013).

4.1 The covariance matrix

We measure the power spectrum monopole and quadrupole
for each of the 1000 QPM mocks, using the estimator in-
troduced in section 3. The covariance matrix is then given
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Figure 3. The measured CMASS-DR11 monopole (top) and quadrupole (bottom) power spectra. The black data points are the mea-
surement of the north and the red data points are the measurement of the southern part of CMASS-DR11. The black data points have
been shifted by �k = 0.001h/Mpc to the right for clarity. The error bars are the diagonal of the covariance matrix. Because of the
smaller volume in the south the error bars are larger by a factor of ⇠ 1.6. The solid black and red lines represents the best fitting
power spectra for the north (black) and south (red) respectively (fitting range k = 0.01 - 0.20h/Mpc, see section 8.1). The red and
black lines are based on the same cosmology and only di↵er in the e↵ect of the window function (see section 5). The lower two panels
show the di↵erence between the measured monopole and the best fitting monopole (middle panel) and the measured quadrupole and
the best fitting quadrupole (bottom panel), both relative to the diagonal element of the covariance matrix. We fit the monopole and
quadrupole simultaneously. The best fitting �2 is 66.6 + 73.9 = 140.5 (north + south) for 152 bins and 7 free parameters (see Table 2).
The contribution to �2 from the monopole and quadrupole alone is given in the middle and lower panel, for comparison.

erage over spherical k-space shells

P`(k) = hP`(~k)i = 1
Vk

Z

k-shells

d~k P`(~k) (16)

=
1

Nmodes

X

k��k
2

<|~k|<k+�k
2

P`(~k), (17)

where Vk is the volume of the k-space shell and Nmodes is
the number of ~k modes in that shell. In our analysis we use
�k = 0.005h/Mpc.

The method described above has a bias at larger
scales arising from the discreteness of the gridding in k-
space (Blake et al. 2011a). The e↵ect can be estimated by
comparing a model power spectrum with a gridded model
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Anisotropic survey window function

The estimated P(k) is convolved with ‘survey window function’

We derive the formula to efficiently estimate the window function

2

for an arbitral function f(x). Now the Eq. (1) becomes

P̂!(k) =
2!+ 1

2Anorm
[D!(k)D

∗
!=0(k)− S!] , (8)

where

D!(k) ≡
Ng∑

i

{wc(xi)− α′}wFKP(xi)e
ik·xiL!(k̂ · x̂i), (9)

Anorm =

Ng∑

i

n′
g(xi)wc(xi)w

2
FKP(xi). (10)

The only approximation made up to here is that the line-of-sight direction for each galaxy pair is set to x̂h where
xh = (x1 + x2)/2, and then the so-called plain-parallel approximation, x̂h ≈ x̂i is adopted. It is not necessary to
assume a line of sight as one fixed direction as usually done in the FKP method. The FKP method can utilize the
Fast-Fourier Transformation (FFT) because of the fixed line-of-sight-direction, while the estimator, Eq. (8) cannot
use FFT and so the Fourier coefficients are rigorously summed up.
We then finally obtain the measurement of the multipole power spectrum by averaging over the wavenumber bin,

P̂!(k) =
1

Nmode

∑

k−∆k
2 <|k|<k+∆k

2

P̂!(k). (11)

Notice that the disadvantage of this method is computational speed. This algorithm has O(N2
g ), while the complexity

of the FKP method is O(Nc logNc) where Nc is the number of FFT grids. On the other hand, the advantage of this
estimator is that it does not suffer from the aliasing effect since FFT is not used. One may be aware of the fact that
the results could be biased due to the gridding in k-space at large scales. However, this can be easily estimated using
the model power spectrum. Namely, we can easily correct the estimator as [4]

P̂!(k) → P̂!(k) + Pmodel
! (k)− Pmodel,grid

! (k), (12)

where

Pmodel
! (k) =

(2!+ 1)

2

∫ 1

−1
dµPmodel(k, µ)L!(µ), (13)

Pmodel,grid
! (k) =

(2!+ 1)α′

2Anorm

Nran∑

i=1

n′
g(xi)w

2
FKP(xi)P

model(k, k̂ · x̂i)L!(k̂ · x̂i). (14)

II. THE SURVEY WINDOW FUNCTION

The multipole power spectrum measured in the previous section is not straightforward to be compared with the
model power spectrum, since it is convolved with the survey geometry. More explicitly, one may write down the power
spectrum as

P conv(k) =

∫
d3k′

(2π)3
P true(k′)

∣∣W (k − k′)
∣∣2 − |W (k)|2

∫
d3k′

(2π)3
P true(k′)

∣∣W (k′)
∣∣2 (15)

where the survey window function is defined by

∣∣W (k − k′)
∣∣2 =

Nran∑

i $=j

wFKP(xi)wFKP(xj)e
i(k−k′)·xie−i(k−k′)·xj . (16)

The first term in Eq. (15) describes mode mixing due to the window function, while the second term arises from the
so-called integral constraint.
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II. THE SURVEY WINDOW FUNCTION

The multipole power spectrum measured in the previous section is not straightforward to be compared with the
model power spectrum, since it is convolved with the survey geometry. More explicitly, one may write down the power
spectrum as
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where the survey window function is defined by
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Nran∑
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wFKP(xi)wFKP(xj)e
i(k−k′)·xie−i(k−k′)·xj . (16)

The first term in Eq. (15) describes mode mixing due to the window function, while the second term arises from the
so-called integral constraint.

where the full window function is complexity

3

A. The survey window function in the Legendre expansion

In this subsection let us focus on the first term in Eq. (15) and show how to efficiently evaluate the survey window
function in practice. The full evaluation of Eq. (16) is obviously time-consuming, since we have to compute O(N2

ran)
at each k and k′. However, what we want here is the Legendre coefficient of the full power spectrum, and then the
equations can be reduced to

P conv
! (k) =

∫
k′2dk′

2π2

∑

L

PL(k
′)W!L(k, k

′), (17)

where the double Legendre moment of the window function W!L(k, k′) is defined by

W!L(k, k
′) ≡ 2"+ 1

4

∫ 1

−1
dµ

∫ 1

−1
dµ′ ∣∣W (k − k′)

∣∣2 L!(µ)LL(µ
′), (18)

where µ ≡ k̂ · x̂h and µ′ ≡ k̂′ · x̂h. W!L(k, k′) clearly describes the coupling among different multipoles. For instance,
W20(k, k′) represents the leakage from monopole to quadrupole due to the survey window. A nice thing in Eq. (18)
is that it can be analytically integrated over µ and µ′, resulting in

W!L(k, k
′) = 4π2i!(−i)L(2"+ 1)

Nran∑

i #=j

j!(k |∆xij |)jL(k′ |∆xij |)L!(∆x̂ij · x̂h)LL(∆x̂ij · x̂h), (19)

where ∆xij ≡ xi − xj . Note that the window function should be normalized with
∫

d3k

(2π)3

∫
d3k′

(2π)3
∣∣W (k − k′)

∣∣2 =

∫
k2dk

2π2

k′2dk′

2π2
W00(k, k

′) = 1. (20)

B. The integral constraint

Let us next move to the second term in in Eq. (15). The starting point of the integral constraint is

δ′(x) = δ(x)−
∫

d3x δ(x)W (x), (21)

where δ′ and δ denotes the true and the measured density field, respectively. This equation just tells you that we
should ensure 〈δ〉 = 0 by subtracting the so-called DC mode. In order to derive Eq. (21), we need to define the density
fields as follows:

δ′(x) =
ntrue(x)− n̄meas

n̄true
, (22)

δ(x) =
ntrue(x)− n̄true

n̄true
. (23)

Then the convolved density field in Fourier space is given by

δ′conv(k) =

∫
d3q δ′(q)W (k − q)

=

∫
d3q δ(q)W (k − q)−W (k)AIC. (24)

Taking the ensemble average, 〈δ′conv(k)δ′conv(k′)
∗〉, we obtain Eq. (15)

P conv(k) =

∫
d3q P true(q)|W (k − q)|2 − |W (k)|2A2

IC. (25)

Imposing that P conv(k → 0) = 0, we finally have

A2
IC =

∫
d3q P true(q)|W (−q)|2

|W (0)|2 =

∫
q2dq/(2π)2

∑
L P true

L (q)W!L(0, q)

W00(0, 0)
. (26)

Note that the integral constraint obviously contribute only to monopole, since the Legendre component of Eq. (15)
at " ≥ 2 is just zero for both sides in the limit of k → 0.
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at " ≥ 2 is just zero for both sides in the limit of k → 0.

coupling b/w multipoles

7



Survey window function in CMASS DR11
BOSS: Testing Gravity with the power spectrum multipoles 9
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Figure 6. The window function multipoles of CMASS-DR11 north required in eq. 30 and calculated using eq. 31. The window function
multipoles are plotted as a function of k for fixed values of k0 = (0.0275, 0.0775, 0.1275, 0.1775) (black dashed lines).

tion 28 as a convolution with the spherically averaged win-
dow function, W

s

(see e.g. Laix & Starkman 1997; Percival
et al. 2001; Cole et al. 2005; Percival et al. 2007; Blake et
al. 2011a)

P conv(k) =
1
V
k

Z
d~k0

Z
d~✏P (~k0 + ~✏)W

s

(~✏), (29)

which assumes an isotropic power spectrum. In our analysis
we want to measure anisotropic signals in the power spec-
trum (AP e↵ect and RSD), and hence the assumptions of
isotropy seem contradictory.
In a recent analysis, Sato et al. (2013) suggested splitting
the survey into sub-regions, which are small enough that the
plane parallel approximation can be applied. In this case the
window function can be calculated using FFTs. However, the
window function e↵ect on the power spectrum in any sub-
region will be larger than in the original survey, and there is
a trade-o↵ between keeping the window function(s) compact
and making the plane parallel approximation work. These
problems become especially prominent for the higher order
multipoles. In addition to the enhanced window function ef-
fects, splitting the survey will discard large scale modes.
In this section we will present a treatment of the convolution
of the power spectrum with the window function without
any assumptions regarding isotropy and without the need

for splitting the survey into sub-regions. Our approach has
a complexity of only O(N2

ran

) where the size of the random
catalogue, N

ran

, can be quite small, if the window function is
compact. We believe that our approach is more rigorous and
allows a more e�cient use of the available data, compared
to the methods discussed above.

Since the window function is symmetric around the az-
imuthal angle �, we can express eq. 28 in terms of amplitude
k = |~k| and angle µ:

P conv

`

(k) =
2`+ 1
2A

w

Z
dµ

Z
d~k0P true(~k0)|W (~k � ~k0)|2L

`

(µ)

=
2⇡
A

w

Z
k02dk0

X

L

P
L

(k0)|W (k, k0)|2
`L

(30)

where the window function is

|W (k, k0)|2
`L

= 8⇡2i`(�i)L(2`+ 1)
N

ranX

ij,i 6=j

w
FKP

(~x
i

)w
FKP

(~x
j

)

j
`

(k|�~x|)j
L

(k0|�~x|)L
`

(~̂x
h

·�~̂x)L
L

(~̂x
h

·�~̂x).

(31)

In this equation j
`

represents the spherical Bessel function
of order `, �~x = ~x

i

� ~x
j

(for a detailed derivation of this
equation see appendix B). In Figure 6 show these window
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                  describes the leakage from 
monopole(L=0) to quadrupole(l=2).
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Figure 7. A model monopole (black dashed line) and quadrupole (red dashed line) power spectrum using PLANCK cosmological
parameters and the linear kaiser e↵ect. The solid lines show the same models convolved with the CMASS-DR11 window functions
for the north (left) and the south (right). The black dotted lines show the convolved monopole power spectra where the quadrupole
contribution to the monopole has been ignored and the red dotted lines shows the convolved quadrupole power spectra where the
monopole contribution to the quadrupole has been ignored. At small k the integral constraint e↵ect causes a damping of power. The
bottom panel shows the same power spectra relative to the original linear power spectra including the kaiser e↵ect (dashed lines in the
top panels).

functions for the monopole-monopole, monopole-quadrupole
quadrupole-monopole and quadrupole-quadrupole case.
Eq. 31 shows that there are cross terms between di↵er-
ent multipoles, meaning that there is a contribution from
e.g. the monopole to the convolved quadrupole. These cross
terms are neglected in the simplified treatment of eq. 29.
The normalisation for the window function is given by

A
w

= (4⇡)2
Z

dk k2

Z
dk0k02|W (k, k0)|2

00

(32)

= 4⇡

Z
dk0k02|W (k0)|2

0

. (33)

In Figure 7 we show a model monopole and quadrupole
power spectrum (dashed lines) convolved with the CMASS-
DR11 window function (solid lines). The dotted lines
show the monopole power spectrum convolution ignoring
the quadrupole contribution in eq. 30 (black dotted line)
and the quadrupole power spectrum convolution ignoring
the monopole contribution (red dotted line). While the
quadrupole contribution to the monopole seems negligible,
there is a small monopole contribution to the quadrupole.
All window function e↵ects seem quite small in CMASS-
DR11, because of the very compact window function.
Whether the full treatment of eq. 30 and eq. 31 is needed,
or whether one of the approximation discussed in the begin-
ning of this section can be employed, needs to be tested for
each galaxy survey.
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Figure 8. The window function monopole (solid lines) and
quadrupole (dashed lines) for CMASS-DR11 north (black lines)
and south (red lines) calculated using eq. 36. The CMASS-
DR11 north multipoles peak at smaller wave-numbers k and show
weaker oscillations, which is a result of the larger sky coverage (see
Figure 2).
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The leakage from monopole to quadrupole
is ~15%@k=0.01, and ~1%@k=0.05
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Modeling nonlinear RSDA difficulty in modeling of RSD 
in a nonlinear regime

9

48 3. COSMOLOGY AND MASSIVE NEUTRINOS: UP TO LINEAR THEORY

Figure 3.5: A schematic picture of redshift distortions. Arrows denote direction and magnitude
of velocity fields of galaxies. At large scales where the peculiar velocity of galaxies can be
treated at linear level, the galaxy density fields squash along the line-of-sight. In the case of
nonlinear collapse at small scales, galaxies have large velocity with random direction. As a
result, the structure become elongated, which is so called the Finger-of-God effect. The FOG
effect suppress the clustering for direction of line-of-sight.

where ẑ is an unit vector in the line-of-sight direction. We have adopted the distant-observer
approximation, which ignores the radial dependence of redshift-space distortion. The number
of galaxies in a particular region is preserved, i.e., ns(xs)d3xs = n(x)d3x, and the Jacobian of
this transformation is given by

J =

∣∣∣∣∣
dx

ds

∣∣∣∣∣ =

(

1 +
∂

∂z

[
"v · ẑ

aH(a)

])−1 (

1 +
"v · ẑ

aH(a)x

)−2

. (3.107)

The second bracket can be safely approximated to be unity, since the derivative term in the
first bracket is larger than the second by a factor of kx and we are interested only in the modes
of kx ! 1 [110]. Then, the Jacobian becomes

J "
(

1 +
∂

∂z

[
"v · ẑ

aH(a)

])−1

. (3.108)

Thus the transformation to redshift space is nonlinear mapping, which make it difficult to model
the nonlinear power spectrum in redshift space.

Intuitively, the redshift distortion effect is understood in two ways. Fig. 3.5 illustrates the
two redshift distortion effects, separately. At sufficiently large scales, a slightly overdense region
appears squashed toward the center of overdense region. On the other hand, in more collapsed
object seen at small scales, the so-called Fingers-of-God (FOG) effect is attributed to random

nonlinear w.r.t. velocity field

Essentially originating the fact that mapping is nonlinear 

Exact form of redshift-space power spectrum

PS(k, µ) =
�

d3x eik·x �
e�ikµf�uz{�(r)� f�zuz(r)}{�(r�)� f�zuz(r�)}

�

uz = (�v · ẑ)/(aH)�uz = uz(r)� uz(r�)x = r� r�

Scoccimarro, 2004Empirical approach

PS(k, µ) = e�(kfµ�v)2 [P��(k) + 2fµ2P��(k) + f2µ4P��(k)]
FOG effect:  σv is 1d velocity dispersion Nonlinear Kaiser

PS(k, µ) = e�k2f2�2
Vµ2

[P��(k) + 2fµ2P��(k) + f2µ4P��(k) + A(k, µ) + B(k, µ)]
4

FIG. 1: Monopole (top) and quadrupole (bottom) moments of
matter power spectra in redshift space at z = 1. The results
are divided by the smooth reference spectrum, P (S)

!,no-wiggle,
and are compared with the N-body results (symbols) taken
from the wmap5 simulations of Ref. [35]. The reference spec-

trum P (S)
!,no-wiggle is calculated from the no-wiggle approxima-

tion of the linear transfer function [36] with the linear theory
of the Kaiser effect taken into account. Solid and dot-dashed
lines represent the results of improved PT calculations based
on the model of redshift distortion (14), but the terms A and
B are ignored in the dot-dashed lines. In both cases, the
one-dimensional velocity dispersion σv was determined by fit-
ting the predictions to the N-body simulations, using the data
below the wavenumber indicated by the vertical arrow. The
best-fit values of σv are σv = 395 kms−1 and 285 km s−1, with
and without the A and B terms, respectively.

III. MODEL AND ASSUMPTIONS

Given the formulae for Fisher matrix analysis, we now
move to the discussion on the parameter forecast study
using the multipole power spectra, and compare the re-
sults with those obtained from the full 2D spectrum. Be-
fore doing this, in this section, we briefly describe the
model and assumptions for redshift-space power spec-
trum relevant for spectroscopic measurement of BAOs.

In redshift space, clustering statistics generally suffer
from the two competitive effects, i.e., enhancement and
suppression of clustering amplitude, referred to as the
Kaiser and Finger-of-God effects, respectively. While the
Kaiser effect comes from the coherent motion of the mass
(or galaxy), the Finger-of-God effect is mainly attributed
to the virialized random motion of the mass residing at
a halo. On weakly non-linear regime, a tight correlation
between velocity and density fields still remains, and a
mixture of Kaiser and Finger-of-God effects is expected
to be significant. Thus, a careful treatment is needed for

accurately modeling anisotropic power spectrum.
Recently, we have presented an improved prescription

for matter power spectrum in redshift space taking ac-
count of both the non-linear clustering and redshift dis-
tortion [32]. Based on the perturbation theory calcu-
lation, the model can give an excellent agreement with
results of N-body simulations, and a percent level preci-
sion is almost achieved over the scales of our interest on
BAOs. The full 2D power spectrum of this model is very
similar to the one proposed by Ref. [37], but includes the
corrections:

P (k, µ) = e−(kµ fσv)
2
{
Pδδ(k) + 2 f µ2 Pδθ(k)

+ f2 µ4 Pθθ(k) +A(k, µ; f) +B(k, µ; f)
}

(14)

with the quantity f being the growth-rate parameter.
Here, the power spectra Pδδ, Pθθ and Pδθ denote the auto
power spectra of density and velocity divergence, and
their cross power spectrum, respectively. The velocity di-
vergence θ is defined by θ ≡ −∇v/(aHf). The quantity
σv denotes the one-dimensional velocity dispersion[51],
and the exponential prefactor characterizes the damping
behavior by the Finger-of-God effect. For the purpose to
model the shape and structure of BAOs in power spec-
trum, σv may be treated as a free parameter, and deter-
mine it by fitting the predictions to the observations.
A salient property of the model (14) is the presence

of the terms A and B, which represent the higher-order
couplings between velocity and density fields, usually ne-
glected in the phenomenological models of redshift dis-
tortion. The explicit expressions for these terms are de-
rived based on the standard treatment of perturbation
theory, and the results are presented in Ref. [32]. A de-
tailed investigation in our previous paper [32] reveals that
the corrections A and B can give an important contribu-
tion to the acoustic structure of BAOs over the scales
k ∼ 0.2hMpc−1, which give rise to a slight uplift in the
amplitude of monopole and quadrupole spectra. With
the improved treatment of the perturbation theory to
compute Pδδ, Pθθ and Pδθ (e.g., [35, 38]), the model (14)
can give a better prediction than the existing models of
redshift distortion. Fig. 1 plots the illustrated example
showing that the model (14) reproduces the N-body re-
sults of monopole and quadrupole spectra quite well, and
the precision of the agreement between prediction and
simulation reaches a percent-level. Hence, in this paper,
we adopt the model (14) as a fiducial model for matter
power spectrum in redshift space.
Note that the model (14) generically produces the non-

vanishing higher multipole spectra of # > 4, due to the
damping factor, e−(kµ fσv)

2

. Furthermore, the correc-
tions A and B are expanded as power series of µ, which
include the powers up to µ6 for the A term, µ8 for the
B term. This indicates that the corrections addition-
ally contribute to the higher multipoles, at least, up to
# = 8. In this sense, the model (14) provides an inter-
esting testing ground to estimate the extent to which the

A & B terms are important at very large scales.

FoG factor is treated empirically, and σV is treated as a free parameter.

PS(k, µ) = e�k2f2�2
Vµ2

[P��(k) + 2fµ2P��(k) + f2µ4P��(k) + A(k, µ) + B(k, µ)]
4

FIG. 1: Monopole (top) and quadrupole (bottom) moments of
matter power spectra in redshift space at z = 1. The results
are divided by the smooth reference spectrum, P (S)

!,no-wiggle,
and are compared with the N-body results (symbols) taken
from the wmap5 simulations of Ref. [35]. The reference spec-

trum P (S)
!,no-wiggle is calculated from the no-wiggle approxima-

tion of the linear transfer function [36] with the linear theory
of the Kaiser effect taken into account. Solid and dot-dashed
lines represent the results of improved PT calculations based
on the model of redshift distortion (14), but the terms A and
B are ignored in the dot-dashed lines. In both cases, the
one-dimensional velocity dispersion σv was determined by fit-
ting the predictions to the N-body simulations, using the data
below the wavenumber indicated by the vertical arrow. The
best-fit values of σv are σv = 395 kms−1 and 285 km s−1, with
and without the A and B terms, respectively.

III. MODEL AND ASSUMPTIONS

Given the formulae for Fisher matrix analysis, we now
move to the discussion on the parameter forecast study
using the multipole power spectra, and compare the re-
sults with those obtained from the full 2D spectrum. Be-
fore doing this, in this section, we briefly describe the
model and assumptions for redshift-space power spec-
trum relevant for spectroscopic measurement of BAOs.

In redshift space, clustering statistics generally suffer
from the two competitive effects, i.e., enhancement and
suppression of clustering amplitude, referred to as the
Kaiser and Finger-of-God effects, respectively. While the
Kaiser effect comes from the coherent motion of the mass
(or galaxy), the Finger-of-God effect is mainly attributed
to the virialized random motion of the mass residing at
a halo. On weakly non-linear regime, a tight correlation
between velocity and density fields still remains, and a
mixture of Kaiser and Finger-of-God effects is expected
to be significant. Thus, a careful treatment is needed for

accurately modeling anisotropic power spectrum.
Recently, we have presented an improved prescription

for matter power spectrum in redshift space taking ac-
count of both the non-linear clustering and redshift dis-
tortion [32]. Based on the perturbation theory calcu-
lation, the model can give an excellent agreement with
results of N-body simulations, and a percent level preci-
sion is almost achieved over the scales of our interest on
BAOs. The full 2D power spectrum of this model is very
similar to the one proposed by Ref. [37], but includes the
corrections:

P (k, µ) = e−(kµ fσv)
2
{
Pδδ(k) + 2 f µ2 Pδθ(k)

+ f2 µ4 Pθθ(k) +A(k, µ; f) +B(k, µ; f)
}

(14)

with the quantity f being the growth-rate parameter.
Here, the power spectra Pδδ, Pθθ and Pδθ denote the auto
power spectra of density and velocity divergence, and
their cross power spectrum, respectively. The velocity di-
vergence θ is defined by θ ≡ −∇v/(aHf). The quantity
σv denotes the one-dimensional velocity dispersion[51],
and the exponential prefactor characterizes the damping
behavior by the Finger-of-God effect. For the purpose to
model the shape and structure of BAOs in power spec-
trum, σv may be treated as a free parameter, and deter-
mine it by fitting the predictions to the observations.
A salient property of the model (14) is the presence

of the terms A and B, which represent the higher-order
couplings between velocity and density fields, usually ne-
glected in the phenomenological models of redshift dis-
tortion. The explicit expressions for these terms are de-
rived based on the standard treatment of perturbation
theory, and the results are presented in Ref. [32]. A de-
tailed investigation in our previous paper [32] reveals that
the corrections A and B can give an important contribu-
tion to the acoustic structure of BAOs over the scales
k ∼ 0.2hMpc−1, which give rise to a slight uplift in the
amplitude of monopole and quadrupole spectra. With
the improved treatment of the perturbation theory to
compute Pδδ, Pθθ and Pδθ (e.g., [35, 38]), the model (14)
can give a better prediction than the existing models of
redshift distortion. Fig. 1 plots the illustrated example
showing that the model (14) reproduces the N-body re-
sults of monopole and quadrupole spectra quite well, and
the precision of the agreement between prediction and
simulation reaches a percent-level. Hence, in this paper,
we adopt the model (14) as a fiducial model for matter
power spectrum in redshift space.
Note that the model (14) generically produces the non-

vanishing higher multipole spectra of # > 4, due to the
damping factor, e−(kµ fσv)

2

. Furthermore, the correc-
tions A and B are expanded as power series of µ, which
include the powers up to µ6 for the A term, µ8 for the
B term. This indicates that the corrections addition-
ally contribute to the higher multipoles, at least, up to
# = 8. In this sense, the model (14) provides an inter-
esting testing ground to estimate the extent to which the

A & B terms are important at very large scales.

FoG factor is treated empirically, and σV is treated as a free parameter.

Taruya, Nishimichi, S.S. (2010)

◎ Pros:

× Cons:

widely used in mock or real galaxy clustering studies

we introduce additional free parameter, 

Blake et al. (2011), de la Torre et al. (2012), Ishikawa et al. (2013), Oka, S.S. et al. (2013) etc. 



Modeling Galaxy/Halo Bias

10

How to relate             with       ?

Widely-used assumption is ‘local bias’
Fly & Gaztanaga (1993)
McDonald (2006)
Jeong & Komatsu (2006,2009)
Nishizawa, Takada, Nishimichi (2013) etc

e.g., Pollack et al. (2013)

A new method to measure galaxy bias 15

Figure 9. Marginal probability distributions for the single bias parameters b1 (left), b2 (center) and R (right) obtained fitting various
halo statistics (from top to bottom: Phh, Phm, Bhhh, Bhhm, Bhmm). Results obtained with the full non-linear model (black) are compared
with those derived using tree-level SPT (red).

can be defined (Dekel & Lahav 1999):

r(k) ≡
P̂hm(k)√

P̂hh(k)P̂mm(k)
=

bhm(k)
bhh(k)

. (52)

If δh is a deterministic linear function of δ, then r = ±1.
However, if there is uncorrelated random noise present, i.e.
δh(x) = bδ(x) + ε(x), then the halo power spectrum would
be Phh(k) = b2P (k) + Pε(k), where Pε denotes the power
spectrum of the noise distribution. This leads to:

r(k) =

(
1 +

Pε(k)
b2

)−1/2

< 1 . (53)

We note that non-linearity in the bias relationship will also
introduce deviations of r away from unity: consider the
quadratic relation δh(x) = b1δ(x) + b2 δ

2(x)/2, then one

finds that the cross-correlation can be written:

r =

[
1 +

c2
2

P(2,1)

P(1,1)

] [
1 + c2

P(2,1)

P(1,1)
+

c22
4

P(2,2)

P(1,1)

]−1/2

(54)

≈ 1−
c22
8

P(2,2)

P(1,1)
. (55)

where c2 ≡ b2/b1 and where the second equality follows for
the case where P(2,1) $ P(1,1) and P(2,2) $ P(1,1).

In this case, we see that the cross-correlation function
can be either greater or less than unity depending on the
sign and magnitude of c2.

Figure 10 shows the cross-correlation coefficient esti-
mated from our ensemble of N-body simulations along with
the standard errors on the mean. The open symbols show
the result before we correct Phh for shot noise, the solid sym-
bols show the result after the usual inverse number-density
correction. We see that before correcting for the shot noise
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How to tackle?

b1 x PNLm

2nd-order

3rd-order

Nonlinear gravitational evolution naturally induces ‘non-local’ bias

McDonald & Roy (2010), Matsubara (2011),  Chuen Chang et al. (2012)
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Renormalization Approach
✔ (halo density)-(matter density) McDonald & Roy (2010)

2

where P (k) denotes the linear matter power spectrum, and σ2 is defined by σ2 ≡
∫
q2dq P (q)/(2π)2. Note that the

s3 term vanishes and cs3 is irrelevant here. The 1st and 2nd lines can be renormalized as shown in [? ]. Since, in the
limit of k → 0, all the terms proportional to P (k) should behave as linear bias parameter multiplied by P (k), we find

cδP (k) + cδP
(13)
δδ (k) + cδP

(22)
δδ (k) +

34

21
cδ2σ

2P (k) +
1

2
cδ3σ

2P (k) +
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where PNL
δδ (k) ≡ P (k) + P (22)

δδ (k) + P (13)
δδ (k) here but it can be generalized at any orders of perturbation. One of the

most important findings in [? ] is that the rest of terms proportional to P (k), i.e., 5th, 6th and 7th lines in Eq. (??),
can be also renormalized to one bias parameter even though they include three bias parameters, cs2 , cst, and cψ. In
order to see this, let us first take k → 0 limit of the integrals,
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These terms thus behaves as constants at k → 0 and hence can be renormalized to linear bias parameters just as
Eq. (??). In addition, these integrals exactly match each other and behaves as a filter function, once constants in
k → 0 limit are separated out and normalization factors are properly chosen.

∫
d3q

(2π)3
P (q)F (2)

S (−q,k)S(2)(q,k − q) = − 8

21
σ2
3(k) +

34

63
σ2, (6)

∫
d3q

(2π)3
P (q)D(2)

S (−q,k)S(2)(q,k − q) =
16

105
σ2
3(k)−

8

63
σ2, (7)

∫
d3q

(2π)3
P (q)

[
3

2
D(3)

S (q,−q,−k)− 2F (2)
S (−q,k)D(2)

S (q,k − q)

]
=

256

2205
σ2
3(k), (8)

where we define σ2
3(k) as

σ2
3(k) ≡ k3

∫
r2dr

2π2
P (kr)IR(r), (9)

where, for instance in the case of Eq. (??), IR(r) is described as,

IR(r) = −21

8

[
1

2

∫ 1

−1
dµ

{
5

7
− µ

2

(
r +

1

r

)
+

2

7
µ2

}{
(µ− r)2

1 + r2 − 2rµ
− 1

3

}
− 34

63

]
. (10)

IR(r) is a filtering function satisfying IR(r) → 1 at r → 0 and IR(r) → 0 at r → ∞ (see Fig.2 in [? ]). Using the
considerations above all, we finally find
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Figure 2. Weighting kernel over which ∆2 (q = r k) is integrated to obtain the contribution of
several terms to Pmg (k). The dotted line shows I (r), defined by eq. (2.14), which is sensitive to high-
k power. The solid line shows the kernel after renormalization of the linear bias, IR (r) = I (r) + 5/6,
which now acts as a filter to produce the variance of the density field smoothed on scale k.
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where P (k) denotes the linear matter power spectrum, and σ2 is defined by σ2 ≡
∫
q2dq P (q)/(2π)2. Note that the

s3 term vanishes and cs3 is irrelevant here. The 1st and 2nd lines can be renormalized as shown in [11]. Since, in the
limit of k → 0, all the terms proportional to P (k) should behave as linear bias parameter multiplied by P (k), we find
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These terms thus behaves as constants at k → 0 and hence can be renormalized to linear bias parameters just as
Eq. (2). In addition, these integrals exactly match each other and behaves as a filter function, once constants in k → 0
limit are separated out and normalization factors are properly chosen.
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IR(r) is a filtering function satisfying IR(r) → 1 at r → 0 and IR(r) → 0 at r → ∞ (see Fig.2 in [1]). Using the
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2nd-order local

2nd-order non-local

3rd-order non-local

2) After properly subtracting out k→0 limit, 
   the rest of non-local terms can be summarized 
   into only 1 term, ‘b3nl’.

✔ This is also the case for density-momentum
S.S. et al., in prep



Measurement of “b3nl”
✦ ~halos in BOSS CMASS (z=0.5)

- non-zero detection of b3nl for fairly 
  wide range of redshift and mass bin

- the b3nl term can simultaneously 
  explain both of 

- Note 1.53[(Gpc/h)3] x 11 realizations.

4%@k=0.1
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Theoretical predictions of non-local bias

5

Collecting all the terms in Eqs. (21) and (25), we finally obtain

P hm
01 (k) = b1

{
PNL
δθ (k) +Bb1(k)

}
+ b2 {Pb2,θ(k) +Bb2(k)}

+bs2 {Pbs2,θ(k) +Bbs2(k)}+ b3nl σ
2
3(k)P (k). (29)

Thus the cross spectrum between halo density and matter momentum also includes only the b3nl term as a 3rd-order
non-local bias. Note that the first bracket,

{
PNL
δθ +Bb1(k)

}
, is nothing but the cross spectrum between matter density

and momentum, Pmm
00 (k), which is easily measured from simulations.

C. The bispectrum and the bias renormalization

So far we have observed that the 4 bias parameters, i.e., (b1, b2, bs2 , b3nl) are introduced to describe the cross power
spectrum between halo density and matter density, or the one between halo density and matter momentum at the
next-to-leading order when the non-local bias terms are considered. As is discussed in Ref. [2], the bispectrum at the
lowest order (i.e., at tree level) demands perturbations only up to the 2nd order, described as

Bhmm
000 (k1,k2,k3) = b1B

mmm
000 (k1,k2,k3) + P (k1)P (k2)

[
b2 + bs2

(
µ2
k1,k2

− 1

3

)]
, (30)

where µk1,k2 is cosine of the angle between k1 and k2, and the 3 arguments satisfy k1+k2+k3 = 0. In order to derive
this as well as Eq. (25), there seems a non-trivial approximation, namely, b1 " c1 if one starts with Eq. (A10). However,
Ref. [4] argued that this is not the case. As we have seen in the renormalization procedure, all the renormalized terms
originate from those in the limit of k → 0. This fact means that a physical biased field should be defined so that
homogeneous mean density is recovered at k → 0. In other words, we should start with

δh(x) = b1δm(x) +
1

2
b2

[
δm(x)

2 − 〈δm(x)2〉
]
+

1

2
bs2

[
s(x)2 − 〈s(x)2〉

]
+ . . . , (31)

rather than Eq. (A10), and hence Eqs. (25) and (30) are naturally derived.
Ref. [2] shows that the specific µk1,k2 dependence in Eq. (30) enables us to reliably determine both of the 2nd-order

bias parameters, b2 and bs2 at the same time from the large-scale bispectrum. In Appendix. [???], we repeat and
present such measurements, focusing on the simulations used in this work. It is thus powerful to determine all 4 bias
parameters if we can properly utilize the power spectrum up to next-to-leading order, combining with the bispectrum
at the leading order.

D. Coevolution of halos and dark matter up to 3rd order

So far we have discussed what kind of non-local bias terms are allowed in terms of symmetry in the fields set by
gravity. Another way of studying the non-local bias terms induced by nonlinear gravitational evolution is to pertur-
batively solve the coupled equations between halos and dark matter. This coevolution picture was first introduced
by [11], followed by e.g., [2, 12–14]. Assuming no velocity bias and a conservation of halo number, the continuity and
the Euler equations combined with the Poisson equation for a matter-halo system are given by

δh(k, y)
′ − θ(k, y) =

∫
d3q

(2π)3
α(q,k − q)θ(q, y)δh(k − q, y), (32)

δm(k, y)
′ − θ(k, y) =

∫
d3q

(2π)3
α(q,k − q)θ(q, y)δm(k − q, y), (33)

{fθ(k, η)}′ +
(
1 +

H′

H2

)
θ(k, y)− 3

2f
Ωm(y)δm(k, y) = f

∫
d3q

(2π)3
β(q,k − q)θ(q, η)θ(k − q, η), (34)

where we introduce y ≡ d lnD(η) as a time variable rather than the conformal time η, and the dash denotes derivative

w.r.t y. The linear-order solutions for this system are give by δ(1)m (k, y) = eyδ0(k, yi), θ(1)(k, y) = δ(1)(k, y), and

δ(1)h (k, y) = bE1 (y)e
yδ0(k, yi) where

bL1 (y)

bL1 (yi)
=

bE1 (y)− 1

bE1 (yi)− 1
=

eyi

ey
. (35)

S.S++ in prep

see also,
  Baldauf++(2012)
  Chen-Chan++(2012)
  Sheth++(2013)

✔ A simple co-evolution picture of halo’s and DM’s fields

where

✔ Comparison b/w simulation results and co-evolution prediction

3rd order

2nd order
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Figure 12. The best fitting values for fk, f? and f�8/[f�8]fid

for the di↵erent systematics tests performed in this analysis us-
ing the fitting range k = 0.01 - 0.15h/Mpc and k = 0.01 -
0.20h/Mpc. The data points have been shifted away slightly from
kmax = 0.15h/Mpc and kmax = 0.20h/Mpc for clarity. The black
data points are obtained from the comparison with N-body sim-
ulations (see section 7.1). The blue data points show the result
when using 1-loop perturbation theory (see section 7.2). The red
data points show the result when varying the underlying HOD
(see section 7.3). For this plot we restrict ourself to the case
Msat�1� = 5⇥1013M�/h, which has the largest deviation from
the CMASS HOD. The blue and black data points have error-
bars a factor of ⇠

p
999 smaller than the plotted statistical error

(gray line). The HOD tests have been performed on the mean of
20 mock catalogues and hence have errors ⇠

p
20 smaller than

the statistical errors.

tral galaxies (Hikage, Takada & Spergel 2012a; Hikage et al.
2012b; Hikage & Yamamoto 2013) and the kinematical fea-
tures of the satellite galaxies (Masaki et al. 2012; Nishimichi
& Oka 2013). These issues are beyond the scope of this
paper and should be addressed using the galaxy cluster-
ing or the galaxy-galaxy lensing signal at somewhat smaller
scales where the 1-halo term is more dominant (for CMASS
see Miyatake et al. 2013; Reid et al. in prep.). Nevertheless,
we believe that our results should be fairly robust against
such e↵ects, since we do not confirm any significant di↵er-
ences when changing the fitting range (see Table 2 and the
discussion in section 8.2).
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Figure 13. We plot the mean of the power spectrum monopole
and quadrupole measured from 20 CMASS mock catalogues with
varying HOD relative to the power spectrum monopole using the
fiducial HOD parametrisation of section 4. The red lines show the
power spectrum multipoles where we varied ↵ (see section 7.3 for
details) while the blue and black lines show variations in �logM

and Msat, respectively.

7.4 Uncertainty in the underlying linear matter
power spectrum

The BOSS dataset, like all galaxy redshift survey datasets,
cannot constraint all ⇤CDM parameters just by itself. Only
the latest CMB datasets are able to do that. Our analy-
sis therefore makes use of the information coming from the
analysis of the CMB, in a sense that we take the cosmo-
logical parameters found in Planck and use them as initial
conditions. We than test whether such initial conditions lead
to the clustering signal measured with our dataset. In our
model we are using a power spectrum with fixed cosmologi-
cal parameters. The assumption here is, that the Planck un-
certainty in most of the parameters which define the shape of
the power spectrum is much smaller than the uncertainty of
our measurement and hence can be neglected. This assump-
tion has been found to be reasonable for the CMASS-DR9
dataset combined with WMAP7 (Reid et al. 2012). We re-
peat the test of Reid et al. (2012), where we only consider
the Planck uncertainty in !c = ⌦ch

2, representing the least
well constrained parameter important for our analysis. We
than calculate the quantity

s =
�p

�!c

�!c

�p
, (63)

where �p stands for the change in our parameter constraint
when changing !c by �!c and �p is the uncertainty in
the parameter p at fixed !c. The uncertainty in p when
marginalised over !c is increased by

p
1 + s2 assuming Gaus-

sian probability distribution functions. By fitting the mean
of the 999 mock catalogues and using the fitting range
k = 0.01 - 0.20h/Mpc we found �p = (0.031, 0.016, 0.038)
for fk, f? and f(ze↵)�8(ze↵), respectively. For �!c = 0.02
we found �fk = 0.015 , �f? = 0.016 and �f(ze↵)�8(ze↵) =
0.008 leading to s = 0.07, s = 0.14 and s = 0.03, respec-
tively. These results imply, that the error in f? would in-
crease by only 1.0% if the Planck errors are propagated to
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Table 1. Summary of systematic uncertainties of fk, f? and f(ze↵)�8(ze↵). The shift parameters fk and f? are closely related to
H(ze↵) and DA(ze↵), respectively. The di↵erent lines in this table are: Comparison to N-body simulations (see section 7.1), comparison
between 1-loop and 2-loop perturbation theory (PT) (see section 7.2) and varying the underlying HOD (see section 7.3). In case of the
HOD test we include the result for Msat � 1� = 5⇥ 1013M�/h, which represents the largest variation compared to the CMASS HOD.
We find significant systematic uncertainties only for f(ze↵)�8(ze↵). Based on these uncertainties we chose kmax = 0.20h/Mpc, since
this is where the error on f(ze↵)�8(ze↵) is minimised (using the quadrature sum of the statistical and the largest systematic error). For
comparison in the last row we included the expected statistical uncertainty for each parameter with di↵erent kmax, which we obtained
by fitting the mean of the 999 mock catalogues using the data covariance matrix.

source fk [H(ze↵)] f? [DA(ze↵)] f(ze↵)�8(ze↵)
kmax [h/Mpc] 0.15 0.20 0.15 0.20 0.15 0.20

model test 0.11± 0.13% 0.00± 0.10% 0.352± 0.061% 0.052± 0.049% �0.66± 0.29% �3.08± 0.26%
PT test 0.04± 0.14% �0.32± 0.12% �0.075± 0.074% 0.168± 0.060% �0.65± 0.33% �1.01± 0.30%
HOD test �1.07± 0.89% 0.21± 0.67% �0.09± 0.42% 0.50± 0.38% 2.6± 2.4% 1.5± 2.1%

statistical error 4.0% 3.1% 1.9% 1.6% 9.1% 8.3%

shift ze↵ = 0.57 with a Planck cosmological model we get
kcrit = 0.28h/Mpc.

To get a rough upper limit on the uncertainty of us-
ing corrections only up to second order, we calculate the
power spectra at 1-loop order and measure the amplitude
di↵erences of the power spectra at di↵erent wave-numbers.
We found �P�� of (0.5, 0.2, 3.2)% at k =(0.10, 0.15,
0.20)h/Mpc. The corresponding values for �P�✓ are (3.4,
5.2, 4.8)% and for �P✓✓ we find (6.3, 10.3, 12.2)%. While
these di↵erences seem very significant, we are actually only
interested in the bias these uncertainties introduce in our
cosmological parameters. We use the 1-loop power spectra
calculated from RegPT instead of the 2-loop power spectra
and build our model following section 6.1. We then fit this
model to the mean of the 999 QPMmock power spectra. The
shifts in the cosmological parameters are shown in Table 1
and Figure 10 (right). We see a shift of 1.0% in f(ze↵)�8(ze↵)
when using the fitting range k = 0.01 - 0.20h/Mpc, while
the shifts in fk and f? are much smaller.

Figure 10 (right) shows the extended TNS model using
2-loop and 1-loop perturbation theory. The 1-loop case has
a larger amplitude in the quadrupole, while the monopole is
much less a↵ected. These uncertainties are caused mainly by
the big changes in P✓✓ going from the 2-loop to 1-loop calcu-
lation. Most of this di↵erence can be absorbed by nuisance
parameters like �v. This is also included in Figure 10 (right)
as the dotted blue line, where we use the 1-loop calculations,
but changed �v from 4.0Mpc/h to 4.2Mpc/h bringing the
model in good agreement with the 2-loop calculation (solid
magenta line). This is the reason, why the large di↵erence in
the power spectrum amplitude does not transfer into large
di↵erences in the actual parameter constraints.

7.3 The impact of di↵erent HODs

Here we want to test how sensitive our power spectrum
model is to the underlying HOD. Ideally one would want to
constrain the HOD parameters together with the cosmolog-
ical parameters, by using all information in the galaxy clus-
tering, down to very small scales. However, current model
uncertainties do not allow such studies.

The CMASS-DR11 mock catalogues which we intro-
duced in section 4 are populated with a specific HOD model.

The question is, whether our ability to extract the correct
cosmological parameters does depend on this HOD?

To test this, we create CMASS-DR11 catalogues, based
on the same original simulation box as the mock cata-
logues used in section 4, but populated with di↵erent HODs.
We vary the three HOD parameters (�logM , ↵ and Msat)
by the 1� uncertainties reported in White et al. (2011).
The explicit variations are (��

log M = 0.04, �↵ = 0.2 and

�M
sat

= 1.3 ⇥ 1013M�/h). We choose Mmin so that the
number density is kept fixed. Because White et al. (2011)
used a dataset about 10 times smaller than CMASS-DR11,
the real uncertainties on the HOD parameters should be
significantly smaller. For each new set of HOD parameters
we create 20 mock catalogues. We calculate the mean of
the 20 power spectra and fit our model to it. We show the
power spectrum monopole and quadrupole for the di↵erent
HODs in Figure 13. As expected, di↵erent HODs mainly
a↵ect the amplitude of the monopole, but do not cause sig-
nificant changes in the shape even at k = 0.20h/Mpc.

All parameter fits resulted in constraints on fk, f?
and f(z)�8(z) in fairly good agreement with the original
HOD parameterisation (black dashed line in Figure 13).
Since we are only fitting the mean of 20 mock catalogues
for each HOD model, we are only sensitive to shifts ⇠ 5
times smaller than our measurement uncertainties2. How-
ever, we consider this level of accuracy to be su�cient
for the purpose of this analysis. We include the result for
Msat � 1� = 5 ⇥ 1013M�/hin Table 1 and Figure 12, since
this is where we found the largest deviation from the CMASS
HOD.

RSDs are induced by the peculiar velocities which are
assumed to follow the underlying dark matter field. Vio-
lations of this assumption are usually called velocity bias.
In our analysis we do not consider the issues related to
the velocity bias, which could have a non-negligble impact.
We here simply assume that the galaxies follow the veloc-
ity field of dark matter halos. There are various scenarios,
which could a↵ects the galaxy peculiar velocity field, such
as the velocity bias related to the peak formation (Bardeen
et al. 1986; Desjacques & Sheth 2010), the o↵set of the cen-

2 Since we are using the same cosmic volume as in the original
mock catalogues our sensitivity is a little bit better than just a
factor of 5.

c� 0000 RAS, MNRAS 000, 000–000

F. Beutler, S.S., H.J. Seo++

✔ Against mock catalog (LCDM simulation+HOD)

✔ 7 Free parameters

    - parameters of interest: 

    - galaxy bias: 

    - FoG suppression:

✔ Passed 3 types of tests

    - our fiducial model (also WMAP/Planck)

    - PT uncertainties in theoretical modeling

    - HOD uncertainties in mock catalog



Conclusion

• The anisotropic P(k) in BOSS DR11 provides us with a great 
opportunity to tackle cosmic acceleration via RSDs & AP test.

• We measured the multipole Pl(k) for the first time (*)           
in a consistent manner in the sense of the survey window.

• We showed that non-local bias, naturally induced by nonlinear 
gravitational evolution, can simultaneously explain P(k) & B(k). 
The model seems to work against the CMASS mock catalog. 
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BOSS DR11 Galaxy Clustering 
Papers will come out on ~Dec 10th

• Aadowolf et al.: main alphabetical BAO paper

• Beutler, S.S., Seo et al.: RSD & AP in Fourier space

• Samushia et al., Chuang et al.: RSD & AP in configuration space

• Percival et al.: Inverse covariance matrix & optimal binning                      
-already submitted and (almost-)accepted to MNRAS
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Renormalization in density-momentum P(k)
✔ Also, interesting to see momentum power spectrum, PLL’(k)

e.g., Seljak & McDonald (2011)

14

where each independent variable is defined as

sij(x) ≡ ∂i∂jφ(x)−
1

3
δKijδm(x) =

[
∂i∂j∂

−2 − 1

3
δKij

]
δm(x), (A11)

tij(x) ≡ ∂ivj −
1

3
δKijθm(x)− sij(x) =

[
∂i∂j∂

−2 − 1

3
δKij

]
[θ(x)− δm(x)], (A12)

ψ(x) ≡ [θ(x)− δm(x)]−
2

7
s(x)2 +

4

21
δm(x)

2. (A13)

Note that tij is zero at 1st order, and ψ is zero up to 2nd order. In Fourier space, the halo density contrast is given
by

δh(k) = cδδ0(k) (A14)

+cδ

∫
d3q

(2π)3
F (2)
S (q,k − q)δ0(q)δ0(k − q)

+
1

2
cδ2

∫
d3q

(2π)3
δ0(q)δ0(k − q)

+
1

2
cs2

∫
d3q

(2π)3
S(2)(q,k − q)δ0(q)δ0(k − q) (A15)

+cδ

∫
d3q1
(2π)3

d3q2
(2π)3

F (3)
S (q1, q2,k − q1 − q2)δ0(q1)δ0(q2)δ0(k − q1 − q2)

+cδ2

∫
d3q1
(2π)3

d3q2
(2π)3

F (2)
S (q1,k − q1 − q2)δ0(q1)δ0(q2)δ0(k − q1 − q2)

+
1

3!
cδ3

∫
d3q1
(2π)3

d3q2
(2π)3

δ0(q1)δ0(q2)δ0(k − q1 − q2)

+cs2

∫
d3q1
(2π)3

d3q2
(2π)3

S(2)(q1,k − q1)F
(2)
S (q2,k − q1 − q2)δ0(q1)δ0(q2)δ0(k − q1 − q2)

+
1

3!
cs3

∫
d3q1
(2π)3

d3q2
(2π)3

S(3)(q1, q2,k − q1 − q2)δ0(q1)δ0(q2)δ0(k − q1 − q2)

+
1

2
cδs2

∫
d3q1
(2π)3

d3q2
(2π)3

S(2)(q2,k − q1 − q2)δ0(q1)δ0(q2)δ0(k − q1 − q2)

+cψ

∫
d3q1
(2π)3

d3q2
(2π)3

{
D(3)

S (q1, q2,k − q1 − q2)− 2F (2)
S (q1,k − q1 − q2)D

(2)
S (q2,k − q2)

}

×δ0(q1)δ0(q2)δ0(k − q1 − q2)

+2cst

∫
d3q1
(2π)3

d3q2
(2π)3

S(2)(q1,k − q1)D
(2)
S (q2, q1 − q2)δ0(q1)δ0(q2)δ0(k − q1 − q2), (A16)

where

S(2)(q1, q2) =

(
q1 · q2

q1q2

)2

− 1

3
, (A17)

S(3)(q1, q2, q3) =
(q1 · q2)(q2 · q3)(q3 · q1)

q21q
2
2q

2
3

− 1

3

(q1 · q2)
2

q21q
2
2

− 1

3

(q2 · q3)
2

q22q
2
3

− 1

3

(q3 · q1)
2

q23q
2
1

+
2

9
, (A18)

D(N) ≡ G(N) − F (N). (A19)

3. Distribution function approach

In the distribution function approach to the redshift-space distortion proposed in [2], the redshift-space power
spectrum, P S(k), is expanded into infinite sum of momentum power spectrum,

P S(k) =
∑

LL′

(−1)L
′

L!L′!
(ik‖)

L+L′
PLL′(k), (A20)

- ingredient of redshift-space power spectrum
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where the momentum and its power spectrum are defined by

TL
‖ (x) ≡ {1 + δ(x)} v‖(x)L, (A21)

PLL′(k)(2π)3δD(k + k′) ≡ 〈TL
‖ (k)TL′

‖ (k′)〉. (A22)

Note that the velocity is defined in units of the Hubble velocity, and we define the velocity dispersion θ so that δ = θ
in linear regime. The velocity divergence θ is written in Fourier space as

v‖(k) = −if
k‖
k2
θ(k). (A23)
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where we define the terms associated with the 2nd-order bias as

Pb2,θ(k) ≡
∫

d3q

(2π)3
P (q)P (|k − q|)G(2)

S (q,k − q), (22)

Pbs2,θ(k) ≡
∫

d3q

(2π)3
P (q)P (|k − q|)G(2)

S (q,k − q)S(2)(q,k − q). (23)

A symmetric structure in integrations of the bispectrum allows us to write down the 2nd term in Eq. (18) as [12, 13]:
∫

d3q

(2π)3
q‖
q2

〈δh(k)θ(−q)δ(k′ + q)〉 =
µ

k
{cδBb1(k) + cδ2Bb2(k) + cs2Bbs2(k)} (2π)3δD(k + k′) (24)

% µ

k
b1

{
Bb1(k) + b̃2Bb2(k) + b̃s2Bbs2(k)

}
(2π)3δD(k + k′), (25)

where Bb1(k), Bb2(k) and Bbs2(k) are expressed as follows:

µ

k
Bb1(k) ≡

∫
d3q

(2π)3
q‖
q2

2
{
P (q)P (|k − q|)F (2)

S (q,k − q)

+P (q)P (k)F (2)
S (q,−k) + P (|k − q|)P (k)G(2)

S (k − q,−k)
}
, (26)

µ

k
Bb2(k) ≡

∫
d3q

(2π)3
q‖
q2

P (q)P (|k − q|), (27)

µ

k
Bbs2(k) ≡

∫
d3q

(2π)3
q‖
q2

P (q)P (|k − q|)S(2)(q,k − q). (28)

Collecting all the terms in Eqs. (21) and (25), we finally obtain

P hm
01 (k) = b1

{
PNL
δθ (k) +Bb1(k)

}
+ b2 {Pb2,θ(k) +Bb2(k)}

+bs2 {Pbs2,θ(k) +Bbs2(k)}+ b3nl σ
2
3(k)P (k). (29)

Note that the first bracket,
{
PNL
δθ +Bb1(k)

}
, is nothing but the cross spectrum between matter density and momen-

tum, Pmm
00 (k).

B. Halo-halo power spectrum

The auto power spectrum of halo is similarly given by

P hh
00 (k) = b21

[
PNL
δδ (k) + 2b̃2Pb2,δ(k) + 2b̃s2Pbs2,δ(k) + 2b̃3,nl σ

2
3(k)P (k)

+ b̃22Pb22(k) + 2b̃2b̃s2Pb2s2(k) + b̃2s2Ps22(k)
]
+N, (30)

where

Pb22(k) ≡ 1

2

∫
d3q

(2π)3
P (q) {P (|k − q|)− P (q)} , (31)

Pb2s2(k) ≡ 1

2

∫
d3q

(2π)3
P (q)

{
P (|k − q|)S(2)(q,k − q)− 2

3
P (q)

}
, (32)

Pbs22(k) ≡ 1

2

∫
d3q

(2π)3
P (q)

{
P (|k − q|)S(2)(q,k − q)2 − 4

9
P (q)

}
. (33)

Here we subtract the constant terms like
∫
d3q P (q)2 to keep nonlinear corrections vanishing in the limit of k → 0.

Also, cross spectrum between halo density and halo momentum is given by

P hh
01 (k) = b1f

[{
PNL
δθ (k) +Bb1(k)

}
+ (b1 − 1)Bb1(k) + b̃2 {Pb2,θ(k) + b1Bb2(k)}

+b̃s2 {Pbs2,θ(k) + b1Bbs2(k)}+ b̃3,nl σ
2
3(k)P (k)

]
, (34)

where

measurable in N-body P(k)!

(halo density)-(matter momentum)
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Collecting all the terms in Eqs. (21) and (25), we finally obtain

P hm
01 (k) = b1

{
PNL
δθ (k) +Bb1(k)

}
+ b2 {Pb2,θ(k) +Bb2(k)}

+bs2 {Pbs2,θ(k) +Bbs2(k)}+ b3nl σ
2
3(k)P (k). (29)

Thus the cross spectrum between halo density and matter momentum also includes only the b3nl term as a 3rd-order
non-local bias. Note that the first bracket,

{
PNL
δθ +Bb1(k)

}
, is nothing but the cross spectrum between matter density

and momentum, Pmm
00 (k), which is easily measured from simulations.

C. The bispectrum and the bias renormalization

So far we have observed that the 4 bias parameters, i.e., (b1, b2, bs2 , b3nl) are introduced to describe the cross power
spectrum between halo density and matter density, or the one between halo density and matter momentum at the
next-to-leading order when the non-local bias terms are considered. As is discussed in Ref. [2], the bispectrum at the
lowest order (i.e., at tree level) demands perturbations only up to the 2nd order, described as

Bhmm
000 (k1,k2,k3) = b1B

mmm
000 (k1,k2,k3) + P (k1)P (k2)

[
b2 + bs2

(
µ2
k1,k2

− 1

3

)]
, (30)

where µk1,k2 is cosine of the angle between k1 and k2, and the 3 arguments satisfy k1+k2+k3 = 0. In order to derive
this as well as Eq. (25), there seems a non-trivial approximation, namely, b1 " c1 if one starts with Eq. (A10). However,
Ref. [4] argued that this is not the case. As we have seen in the renormalization procedure, all the renormalized terms
originate from those in the limit of k → 0. This fact means that a physical biased field should be defined so that
homogeneous mean density is recovered at k → 0. In other words, we should start with

δh(x) = b1δm(x) +
1

2
b2

[
δm(x)

2 − 〈δm(x)2〉
]
+

1

2
bs2

[
s(x)2 − 〈s(x)2〉

]
+ . . . , (31)

rather than Eq. (A10), and hence Eqs. (25) and (30) are naturally derived.
Ref. [2] shows that the specific µk1,k2 dependence in Eq. (30) enables us to reliably determine both of the 2nd-order

bias parameters, b2 and bs2 at the same time from the large-scale bispectrum. In Appendix. [???], we repeat and
present such measurements, focusing on the simulations used in this work. It is thus powerful to determine all 4 bias
parameters if we can properly utilize the power spectrum up to next-to-leading order, combining with the bispectrum
at the leading order.

D. Coevolution of halos and dark matter up to 3rd order

So far we have discussed what kind of non-local bias terms are allowed in terms of symmetry in the fields set by
gravity. Another way of studying the non-local bias terms induced by nonlinear gravitational evolution is to pertur-
batively solve the coupled equations between halos and dark matter. This coevolution picture was first introduced
by [11], followed by e.g., [2, 12–14]. Assuming no velocity bias and a conservation of halo number, the continuity and
the Euler equations combined with the Poisson equation for a matter-halo system are given by

δh(k, y)
′ − θ(k, y) =

∫
d3q

(2π)3
α(q,k − q)θ(q, y)δh(k − q, y), (32)

δm(k, y)
′ − θ(k, y) =

∫
d3q

(2π)3
α(q,k − q)θ(q, y)δm(k − q, y), (33)

{fθ(k, η)}′ +
(
1 +

H′

H2

)
θ(k, y)− 3

2f
Ωm(y)δm(k, y) = f

∫
d3q

(2π)3
β(q,k − q)θ(q, η)θ(k − q, η), (34)

where we introduce y ≡ d lnD(η) as a time variable rather than the conformal time η, and the dash denotes derivative

w.r.t y. The linear-order solutions for this system are give by δ(1)m (k, y) = eyδ0(k, yi), θ(1)(k, y) = δ(1)(k, y), and

δ(1)h (k, y) = bE1 (y)e
yδ0(k, yi) where

bL1 (y)

bL1 (yi)
=

bE1 (y)− 1

bE1 (yi)− 1
=

eyi

ey
. (35)

✔ Bispectrum SHOULD be described by renormalized bias

!b2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=hL0; L0i

q
; !bs2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=hL2; L2i

q
: (48)

We compared these errors with the standard deviation of
the bias constraints obtained from the single realizations
and found good agreement.

IV. RESULTS

Figure 1 shows the matter bispectrum and matter-matter-
halo bispectra for our four mass bins for one configuration
of k1 ¼ 0:052 hMpc"1, k2 ¼ 0:06 hMpc"1 as a function
of the opening angle !. The matter bispectrum is in quite
good agreement with the theoretical prediction in Eq. (32).
There is some small tension for positive !, but this should
not be a problem for our study since our bias constraints
are not relying on this theoretical modeling since we are
subtracting out the matter bispectrum measured from the
simulations.

We also plot the matter-matter-halo cross bispectrum
and the theoretical model of Eq. (7). To visualize the effect
of the contributions of the bias parameters, we plot the

model with vanishing b2 and bs2 , with vanishing bs2 and
the full model. The nonvanishing bias parameters for the
theory lines were chosen according to our best-fit model
discussed below.While the k values were chosen quite high
to reduce the errors, there is still too much scatter in the
data points to decide whether the model with and without
bs2 gives a better description of the data. This motivated the
careful combination of all the information available by
weighting the modes accordingly, as described above.
Our main reason to study lowest order nonlinear biasing

in the bispectrumwas that these terms are the leading-order
terms on large scales. As one includes higher momenta,
loop corrections gain importance and need to be modeled
accordingly. To assess the importance of higher-order cor-
rections and to show the convergence of our fitting proce-
dure, we perform our parameter estimation as a function of
the maximum wave number and show the results in Fig. 2.
The error bars clearly shrink as we go to higher k and the
inferred bias parameters are almost always consistent with
our fiducial result shown by the horizontal lines. In these
plots we also show the scale up to which we have a

FIG. 3 (color online). Residual shape dependence of the halo bispectrum for our reduced bispectrum defined in Eq. (35). The blue
data points with error bars show the result of the combined reduced bispectrum defined in Eq. (37) including all the configurations up
to kmax ¼ 0:07 hMpc"1. The horizontal dashed line shows the model including b2 only, and the solid blue line shows the model
including both b2 and bs2 .

EVIDENCE FOR QUADRATIC TIDAL TENSOR BIAS FROM . . . PHYSICAL REVIEW D 86, 083540 (2012)

083540-9

✔ Stable measurements of 2nd-order bias (b2, bs2) from Bhmm(k)

complete measurement of all the modes by the vertical
dashed line and highlight the kmax that we use for the
primary reported parameter values by the vertical shaded
region.

Figure 3 shows our reduced bispectrum !Mð!Þ defined in
Eq. (37) as a function of opening angle! and the combined
errors according to Eq. (38). We overplot the b2-only
model and the model including both b2 and bs2 . These
plots show clear evidence for the presence of the tidal
term except for the lowest mass bin, for which the
b2-only model gives an acceptable description of the
angular dependence.

In Table I, we give the best-fit values of the first- and
second-order bias parameters for our four halo mass
bins obtained considering all the modes up to kmax ¼
0:07 hMpc$1. Figure 4 shows the bias parameters as a
function of mass together with the corresponding
predictions of the spherical collapse model. Note that we

are plotting 2b̂2, which corresponds to the second-order

Eulerian bias [see Eq. (26)]. The b̂1 measurements from the
halo-matter cross power spectrum are in good agreement
with the theoretical predictions. The measured b̂s2 are
slightly lower than the theoretical predictions for the two
central mass bins, but the trend with mass is well repro-
duced by the theory. The b̂2 measurements are less well
reproduced by the theoretical bias function, especially
mass bins II and III which are well below the theory. The
theoretical predictions for b1 and bs2 are given by first
derivatives of the mass function and do not reproduce the
data perfectly. Thus one would naturally expect some
corrections for the second derivatives. The disagreement
could also be an indication for a failure of the spherical
collapse picture at second order. Specifically, the fact that
the predicted bs2 disagrees with the measurements suggests

that Lagrangian bðLÞ
s2

is not zero, as predicted by the ellip-

soidal collapse model [26–29].
The right panel of Fig. 4 shows the ratio of halo-matter

and matter-matter power spectra used for the inference of
the first-order bias. We are fitting for b̂1 on large scales to
avoid the regime where the nonlinear corrections become
important. These corrections are affecting the highest mass
bin quite strongly already starting at k % 0:05 hMpc$1. The
corrections are stronger for higher mass objects, in accor-
dancewith the general mass dependence of the second-order
bias parameters derived here, but a full discussion of all the
terms entering at one-loop level must also include the third-
order terms, which is beyond the scope of this paper.
As in the power spectrum analysis, the bispectrum is

increasingly affected by loop corrections as one increases
the maximum momentum in the problem. The relevant
quantity here is the largest external momentum involved

TABLE I. Best-fit bias parameters, their errors and mean
mass for our four mass bins. The bias parameters are compared
to the theoretical bias functions in Fig. 4. The first-order bias b1
is extracted from the halo-matter cross power spectrum and
the second-order bias parameters are inferred from the cross
bispectrum.

b1 "b1 b2 "b2 bs2 "bs2 M½h$1M'(
I 1.142 0.002 $0:37 0.01 $0:07 0.03 9:68) 1012

II 1.409 0.002 $0:42 0.01 $0:21 0.04 2:90) 1013

III 1.954 0.004 $0:12 0.02 $0:38 0.06 8:58) 1013

IV 2.889 0.010 1:25 0.03 $0:63 0.11 2:48) 1014

FIG. 4 (color online). Left panel: Mass dependence of the bias parameters and theoretical predictions. The points with error bars are
our best-fit parameters for b̂1, 2b̂2 and b̂s2 . The numerical values of the data points are given in Table I. The curves show the
corresponding theoretical bias functions as calculated using the relations in Sec. II E. The measurements for b̂1 are in good agreement
with the theory; there is a clear deviation for the b̂s2 and b̂2 measurement for the two central mass bins. Right panel: Ratio of the
simulation halo matter and matter power spectra P̂hmðkÞ=P̂mmðkÞ and first-order bias parameters inferred using the data points
highlighted by the shaded region.
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