Calculation of absolute neutrino masses in the seesaw extension

D. Jurčiukonis, T. Gajdosik and A. Juodagalvis

Vilnius University, Institute of Theoretical
Physics and Astronomy
－Seesaw mechanism
－One－loop corrections
－Case $n_{R}=1$
－Case $n_{R}=2$
－Conclusions
－Seesaw mechanism
－One－loop corrections
－Case $n_{R}=1$
－Case $n_{R}=2$
－Conclusions

Content

\square正
－Seesaw mechanism
－One－loop corrections
－Case $n_{R}=1$
－Case $n_{R}=2$
－Conclusions

 \qquad
• Seesaw mechanism
• One－loop corrections
－Case $n_{R}=1$
－Case $n_{R}=2$
－Conclusions
－Seesaw mechanism
－One－loop corrections
－Case $n_{R}=1$
－Case $n_{R}=2$
－Conclusions
－Seesaw mechanism
－One－loop corrections
－Case $n_{R}=1$
－Case $n_{R}=2$
－Conclusions
－Seesaw mechanism
－One－loop corrections
－Case $n_{R}=1$
－Case $n_{R}=2$
－Conclusions

－Seesaw mechanism
－One－loop corrections
－Case $n_{R}=1$
－Case $n_{R}=2$
－Conclusions

Seesaw Mechanism

- The original SM has massless neutrinos, but the observation of neutrino oscillations requires that neutrinos are massive.
- The seesaw mechanism than suggests an explanation for the observed smallness of neutrino masses.
- The simple extesion of adding gauge singlet fermions to the particle spectrum allows normal Yukawa mass terms for neutrinos:

$$
\mathscr{L}_{\mathrm{Y}}=-\sum_{k=1}^{2}\left(\Phi_{k}^{\dagger} \bar{\ell}_{R} \Gamma_{k}+\tilde{\Phi}_{k}^{\dagger} \bar{v}_{R} \Delta_{k}\right) D_{L}+\text { H.c. }
$$

- The mass terms for the neutrino are:

$$
-\bar{\nu}_{R} M_{D} \nu_{L}-\frac{1}{2} \bar{\nu}_{R} C M_{R} \bar{\nu}_{R}^{T}+\text { Н.с. }
$$

left-handed lepton doublet $D_{L}=\left(\nu_{L} \ell_{L}\right)^{T}$
right-handed leptons

Yukawa coupling Γ_{k} are $n_{L} \times n_{L}$ matrices

Seesaw Mechanism

- In this model (with 2 Higgs doublets), spontaneous symmetry breaking of the SM gauge group is achieved by the vacuum expectation values

$$
\left\langle\Phi_{k}\right\rangle_{\mathrm{vac}}=\binom{0}{v_{k} / \sqrt{2}}
$$

Which satisfy the condition:

$$
v=\sqrt{\left|v_{1}\right|^{2}+\left|v_{2}^{2}\right|} \simeq 246 \mathrm{GeV}
$$

- Without loss of generality we are free to choose certain bases for the various fields. By a unitary rotation of the Higgs doublets, we can achieve

$$
\left\langle\Phi_{1}^{0}\right\rangle_{\mathrm{vac}}=v / \sqrt{2}>0 \quad\left\langle\Phi_{2}^{0}\right\rangle_{\mathrm{vac}}=0
$$

- The charged-lepton mass matrix
- The Dirac neutrino mass matrix

$$
M_{\ell}=\frac{v}{\sqrt{2}} \Gamma_{1}
$$

$$
M_{D}=\frac{v}{\sqrt{2}} \Delta_{1}
$$

with assumption that: $\quad M_{\ell}=\operatorname{diag}\left(m_{e}, m_{\mu}, m_{\tau}\right)$

Seesaw Mechanism

- Neutral fermion mass matrix is given by:
$M_{D}=v Y_{\nu}$ Dirac mass term for SM neutrinos
M_{L} Majorana mass term for SM neutrinos
- it does not exist at tree level $\left.M_{L}\right|_{\text {tree }}=0$

$$
M_{\nu}=\left(\begin{array}{ll}
M_{L} & M_{D}^{T} \\
M_{D} & M_{R}
\end{array}\right) \quad\left(n_{L}+n_{R}\right)
$$

- it can be generated at the loop level $\left.\delta M_{L}\right|_{\text {loop }} \neq 0$
- Diagonalization with unitary matrix U gives rise to a split spectrum consisting of heavy and

$$
U^{T} M_{\nu} U=\hat{m}=\operatorname{diag}\left(m_{1}, m_{2}, \ldots, m_{n_{L}+n_{R}}\right)
$$ light states of neutrino masses

- In order to implement seesaw mechanism we assume:

Seesaw Mechanism

- It is useful to decompose the unitary matrix U to two submatrices U_{L} and U_{R}
- where the submatrices have dimensions:

$$
\begin{aligned}
& U_{L} \Longleftrightarrow n_{L} \times\left(n_{L}+n_{R}\right) \\
& U_{R} \longmapsto n_{R} \times\left(n_{L}+n_{R}\right)
\end{aligned}
$$

- and fulfill unitarity relations:

$$
U_{L} U_{L}^{\dagger}=\mathbb{1}_{n_{L}} \quad U_{L}^{*} \hat{m} U_{L}^{\dagger}=0
$$

$$
\begin{array}{lll}
& U_{R} U_{R}^{\dagger}=\mathbb{1}_{n_{R}} & U_{R} \hat{m} U_{R}^{T}=M_{R} \\
U_{L}^{\dagger} U_{L}+U_{R}^{T} U_{R}^{*}=\mathbb{1}_{n_{L}+n_{R}} & U_{L} U_{R}^{T}=0_{n_{L} \times n_{R}} & U_{R} \hat{m} U_{L}^{\dagger}=M_{D}
\end{array}
$$

- with these submatrices, the left- and right-handed neutrinos are written as linear superpositions of the physical Majorana neutrino fields χ_{i}

$$
\begin{aligned}
\nu_{R} & =U_{R} P_{R} \chi \\
\nu_{L} & =U_{L} P_{L} \chi
\end{aligned}
$$

One-loop corrections

- The one-loop corrections to the tree mass matrix are determined by the neutrino intereactions with the Z bozon, the neutral Goldstone boson (G^{0}), and the Higgs boson (H^{0})
- The interaction of the Z bozon with the neutrinos is given by:
- The Yukawa coupling of the Higgs boson and the neutrinos is given by:

$$
\mathcal{L}_{\mathrm{nc}}^{(\nu)}=\frac{g}{4 c_{w}} Z_{\mu} \bar{\chi} \gamma^{\mu}\left[P_{L}\left(U_{L}^{\dagger} U_{L}\right)-P_{R}\left(U_{L}^{T} U_{L}^{*}\right)\right] \chi
$$

where g is the $\operatorname{SU}(2)$ gauge coupling constant and c_{w} is the cosine of Weinberg angle

$$
\begin{aligned}
\mathcal{L}_{\mathrm{Y}}^{(\nu)}\left(H^{0}\right)= & -\frac{1}{2 \sqrt{2}} \sum_{b} H_{b}^{0} \bar{\chi}\left[\left(U_{R}^{\dagger} \Delta_{b} U_{L}+U_{L}^{T} \Delta_{b}^{T} U_{R}^{*}\right) P_{L}\right. \\
& \left.+\left(U_{L}^{\dagger} \Delta_{b}^{\dagger} U_{R}+U_{R}^{T} \Delta_{b}^{*} U_{L}^{*}\right) P_{R}\right] \chi
\end{aligned}
$$

- The Yukawa coupling of the Goldstone boson and the neutrinos is given by:

$$
\begin{aligned}
\mathcal{L}_{\mathrm{Y}}^{(\nu)}\left(G^{0}\right)= & -\frac{1}{2 \sqrt{2}} G^{0} \bar{\chi}\left[\left(U_{R}^{\dagger} \Delta_{b_{Z}} U_{L}+U_{L}^{T} \Delta_{b_{Z}}^{T} U_{R}^{*}\right) P_{L}\right. \\
& \left.+\left(U_{L}^{\dagger} \Delta_{b_{Z}}^{\dagger} U_{R}+U_{R}^{T} \Delta_{b_{Z}}^{*} U_{L}^{*}\right) P_{R}\right] \chi
\end{aligned}
$$

One-loop corrections

- In 2 Higgs doublets model neutral scalars are characterized by 4 complex unit vectors $b_{k}, k=1,2,3$ and b_{z}

$$
\begin{gathered}
\Delta_{b}=\sum_{k} b_{k} \Delta_{k} \\
\left(b_{Z}\right)_{k}=i \frac{v_{k}}{v}
\end{gathered}
$$

The b_{k} vectors characterize states of neutral Higgses

The b_{z} vector characterize Goldstone boson

For the chosen basis b_{z} vector receive precise form

$$
b_{Z}=\binom{i}{0}
$$

- Vectors have to fulfill the orthogonality conditions:

$$
\begin{array}{ll}
\sum_{j} \operatorname{Re}\left(b_{j}\left(b_{Z}\right)_{j}\right)=0 \quad \sum_{b} b_{j} b_{k}+\left(b_{Z}\right)_{j}\left(b_{Z}\right)_{k}=0 & \sum_{b} \operatorname{Re} b_{k} \operatorname{Re} b_{k^{\prime}}=\sum_{b} \operatorname{Im} b_{k} \operatorname{Im} b_{k^{\prime}}=\delta_{k k^{\prime}} \\
\sum_{k}\left(\operatorname{Re} b_{k} \operatorname{Re} b_{k}^{\prime}+\operatorname{Im} b_{k} \operatorname{Im} b_{k}^{\prime}\right)=\operatorname{Re}\left(b^{\dagger} b^{\prime}\right)=\delta_{b b^{\prime}} & \sum_{b} \operatorname{Re} b_{k} \operatorname{Im} b_{k^{\prime}}=0
\end{array}
$$

- Once one-loop corrections are taken into account the neutral fermion mass matrix is given by:

$$
M_{\nu}^{(1)}=\left(\begin{array}{cc}
\delta M_{L} & M_{D}^{T}+\delta M_{D}^{T} \\
M_{D}+\delta M_{D} & \hat{M}_{R}+\delta M_{R}
\end{array}\right) \approx\left(\begin{array}{cc}
\delta M_{L} & M_{D}^{T} \\
M_{D} & \hat{M}_{R}
\end{array}\right)
$$

where the $0_{3 \times 3}$ submatrix appearing in tree level is replaced by the contribution δM_{L}

One-loop corrections

- The self energy functions arise from the self-energy Feynman diagrams (evaluated at zero external momentum) involving the Z, the neutral Goldstone (G^{0}), and the Higgs (h^{0}) bosons

$$
-i \Sigma_{L}^{S}(0)=-i\left[\Sigma_{L}^{S(Z)}(0)+\Sigma_{L}^{S\left(G^{0}\right)}(0)+\Sigma_{L}^{S\left(h^{0}\right)}(0)\right]
$$

- The Z and Goldstone $\left(G^{0}\right)$ bosons contributes as:

$$
\begin{aligned}
& \delta M_{L}(Z)=i \frac{g^{2}}{4 c_{w}^{2}} \int \frac{d^{D} k}{(2 \pi)^{D}}\left[\frac{D}{k^{2}-m_{Z}^{2}}+\frac{1}{m_{Z}^{2}}\left(\frac{k^{2}}{k^{2}-\xi_{Z} m_{Z}^{2}}-\frac{k^{2}}{k^{2}-m_{Z}^{2}}\right)\right] U_{L}^{*} \frac{\hat{m}}{k^{2}-\hat{m}^{2}} U_{L}^{\dagger} \\
& \delta M_{L}\left(G^{0}\right)=-\frac{i g^{2}}{4 m_{W}^{2}} \int \frac{d^{D} k}{(2 \pi)^{D}} \frac{1}{k^{2}-\xi_{Z} m_{Z}^{2}} U_{L}^{*} \frac{\hat{m}^{3}}{k^{2}-\hat{m}^{2}} U_{L}^{\dagger}
\end{aligned}
$$

- Finally the finite contributions from the Z and Higgs self-energy functions reads:

$$
\begin{aligned}
\delta M_{L}= & \sum_{b} \frac{1}{32 \pi^{2}} \Delta_{b}^{T} U_{R}^{*} \hat{m}\left(\frac{\hat{m}^{2}}{m_{H_{b}^{0}}^{2}}-\mathbb{1}\right)^{-1} \ln \left(\frac{\hat{m}^{2}}{m_{H_{b}^{0}}^{2}}\right) U_{R}^{\dagger} \Delta_{b} \\
& +\frac{3 g^{2}}{64 \pi^{2} m_{W}^{2}} M_{D}^{T} U_{R}^{*} \hat{m}\left(\frac{\hat{m}^{2}}{m_{Z}^{2}}-\mathbb{1}\right)^{-1} \ln \left(\frac{\hat{m}^{2}}{m_{Z}^{2}}\right) U_{R}^{\dagger} M_{D}
\end{aligned}
$$

Infinities parts and the contribution from the neutral Goldstone boson cancels after summation of all terms

Case $n_{R}=1$

- For this case (toy model) we consider the minimal extension of standard model adding only one right-handed v_{R} field to the three left-handed fields contained in v_{L}
we use parametrization of $\quad \Delta_{1}=\frac{\sqrt{2} m_{D}}{v} \vec{a}_{1}^{T} \quad \Delta_{2}=\frac{\sqrt{2} m_{D}}{v} \vec{a}_{2}^{T}$

$$
U^{T} M_{\nu} U=U^{T}\left(\begin{array}{cccc}
0 & 0 & 0 & m_{D} a_{1} \\
0 & 0 & 0 & m_{D} a_{2} \\
0 & 0 & 0 & m_{D} a_{3} \\
m_{D} a_{1} & m_{D} a_{2} & m_{D} a_{3} & m_{R}
\end{array}\right) U=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & m_{l} & 0 \\
0 & 0 & 0 & m_{h}
\end{array}\right)
$$

- after diagonalization we receive one light and one heavy states of neutrino masses

$$
M_{l}=\operatorname{diag}\left(0,0, m_{l}\right) \quad M_{h}=m_{h}
$$

the non zero masses are determined analytically by finding eigenvalues of the hermitian matrix $M_{\nu} M_{\nu}^{\dagger}$ which are the squares of the masses of the neutrinos
these analytical solutions correspond to the seesaw mechanism:

$$
\begin{aligned}
& m_{D}^{2}=m_{h} m_{l} \\
& m_{R}^{2}=\left(m_{h}-m_{l}\right)^{2} \sim m_{h}^{2}
\end{aligned}
$$

Case $n_{R}=1$

- We can construct the diagonalization matrix U for the tree level from two diagonal matrices of phases and three rotation matrices

$$
U_{\text {tree }}=U_{\phi}\left(\phi_{i}\right) U_{12}\left(\alpha_{1}\right) U_{23}\left(\alpha_{2}\right) U_{34}(\beta) U_{i}
$$

- detailed expressions of matrices:

$$
U_{12}=\left(\begin{array}{cccc}
\cos \left(\alpha_{1}\right) & \sin \left(\alpha_{1}\right) & 0 & 0 \\
-\sin \left(\alpha_{1}\right) & \cos \left(\alpha_{1}\right) & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \quad U_{23}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \cos \left(\alpha_{2}\right) & \sin \left(\alpha_{2}\right) & 0 \\
0 & -\sin \left(\alpha_{2}\right) & \cos \left(\alpha_{2}\right) & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \quad U_{34}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & \cos (\beta) & \sin (\beta) \\
0 & 0 & -\sin (\beta) & \cos (\beta)
\end{array}\right)
$$

$$
U_{\phi}=\left(\begin{array}{cccc}
\arg \left(a_{1}\right) & 0 & 0 & 0 \\
0 & \arg \left(a_{2}\right) & 0 & 0 \\
0 & 0 & \arg \left(a_{3}\right) & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

the values of α_{i} and φ_{i} can be chosen to cover variations in M_{D}

$$
\begin{aligned}
& \alpha_{1}=\arctan \left(\frac{a_{1}}{a_{2}}\right) \\
& \alpha_{2}=\arctan \left(\frac{\sqrt{a_{1}^{2}+a_{2}^{2}}}{a_{3}}\right)
\end{aligned}
$$

the angle β is determined by the masses of light and heavy neutrinos

$$
\beta=\operatorname{arccot}\left(\sqrt{\frac{m_{h}}{m_{l}}}\right)
$$

$U_{i}=\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & i & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$

Case $n_{R}=1$

- The final expression for \boldsymbol{U} is as follows:

$$
U_{\text {tree }}=\left(\begin{array}{cccc}
e^{i \phi_{1}} \cos \left(\alpha_{1}\right) & e^{i \phi_{1}} \sin \left(\alpha_{1}\right) \cos \left(\alpha_{2}\right) & i e^{i \phi_{1}} \sin \left(\alpha_{1}\right) \sin \left(\alpha_{2}\right) \cos (\beta) & e^{i \phi_{1}} \sin \left(\alpha_{1}\right) \sin \left(\alpha_{2}\right) \sin (\beta) \\
-e^{i \phi_{2}} \sin \left(\alpha_{1}\right) & e^{i \phi_{2}} \cos \left(\alpha_{1}\right) \cos \left(\alpha_{2}\right) & i e^{i \phi_{2}} \cos \left(\alpha_{1}\right) \sin \left(\alpha_{2}\right) \cos (\beta) & e^{i \phi_{2}} \cos \left(\alpha_{1}\right) \sin \left(\alpha_{2}\right) \sin (\beta) \\
0 & -e^{i \phi_{3}} \sin \left(\alpha_{2}\right) & i e^{i \phi_{3}} \cos \left(\alpha_{2}\right) \cos (\beta) & e^{i \phi_{3}} \cos \left(\alpha_{2}\right) \sin (\beta) \\
0 & 0 & -i \sin (\beta) & \cos (\beta)
\end{array}\right)
$$

- neutral fermion mass matrix expressed by angles:
$M_{\nu}=\left(\begin{array}{cccc}0 & 0 & 0 & \frac{1}{2} e^{i \phi_{1}} m_{R} \sin \left(\alpha_{1}\right) \sin \left(\alpha_{2}\right) \tan (2 \beta) \\ 0 & 0 & 0 & \frac{1}{2} e^{i \phi_{2}} m_{R} \cos \left(\alpha_{1}\right) \sin \left(\alpha_{2}\right) \tan (2 \beta) \\ 0 & 0 & 0 & \frac{1}{2} e^{i \phi_{3}} m_{R} \cos \left(\alpha_{2}\right) \tan (2 \beta) \\ \frac{1}{2} e^{i \phi_{1}} m_{R} \sin \left(\alpha_{1}\right) \sin \left(\alpha_{2}\right) \tan (2 \beta) & \frac{1}{2} e^{i \phi_{2}} m_{R} \cos \left(\alpha_{1}\right) \sin \left(\alpha_{2}\right) \tan (2 \beta) & \frac{1}{2} e^{i \phi_{3}} m_{R} \cos \left(\alpha_{2}\right) \tan (2 \beta) & m_{R}\end{array}\right)$
- diagonalization of the mass matrix after calculation of one-loop corrections is performed with unitary matrix $U_{\text {loop }}$

We use singular value

$$
U_{\text {loop }}=U_{\text {egv }} U_{\varphi}\left(\varphi_{1}, \varphi_{2}, \varphi_{3}\right)
$$ decomposition (SVD) for calculation of $U_{\text {loop }}$

where $U_{\text {egv }}$ is an eigenmatrix of $M_{\nu}^{(1)} M_{\nu}^{(1) \dagger}$ and U_{φ} is a phase matrix

Case $n_{R}=1$

in general case we use	$\Delta_{1}=\frac{\sqrt{2} m_{D}}{v} \vec{a}_{1}^{T}$
parametrization:	$\Delta_{2}=\frac{\sqrt{2} m_{D}}{v} \vec{a}_{2}^{T}$

We vary: $\left\{m_{h}, m_{H_{2}}, m_{H_{3}}, \vec{a}_{1}, \vec{a}_{2}\right\}$
We fix:
$\left\{m_{l_{1}}^{\text {tree }}=5 \times 10^{-11} \mathrm{GeV}, m_{H_{1}}=125 \mathrm{GeV}\right\}$

Set of b vectors used for numerical calculations

$$
b_{1}=\binom{1}{0} \quad b_{2}=\binom{0}{i} \quad b_{3}=\binom{0}{1}
$$

- masses of two light neutrinos as a function of the heavy neutrino mass m_{h}

- Masses of the light neutrino scattered in their 3σ-band
- Here we do not sort values according 3σ-band of oscillation angles
- For this case $\min \left(m_{h}\right)=830 \mathrm{GeV}$

Case $n_{R}=1$ (reduced)

A basis transformation on v_{l} can be performed in such a way that: $\quad \Delta_{i}=\left(\sqrt{2} m_{D} / v\right) \vec{a}_{i}^{T}$

$$
\begin{array}{ll}
\vec{a}_{1}^{T}=(0,0,1) \quad \vec{a}_{2}^{T}=\left(0, n, n^{\prime}\right) \quad \begin{array}{l}
m_{D}, n>0 \\
\\
n^{\prime} \in \mathbb{C}
\end{array}
\end{array}
$$

We use orthogonal vectors

$$
\vec{a}_{1}^{T}=(0,0,1) \quad \vec{a}_{2}^{T}=\left(0, n, e^{i \phi} \sqrt{1-n^{2}}\right)
$$

Set of b vectors used for numerical calculations:

$$
\begin{array}{ll}
b_{Z}=\binom{i}{0}, & b_{1}=\binom{0}{i} \\
b_{2}=\binom{0}{1}, & b_{3}=\binom{1}{0} .
\end{array}
$$

- masses of two light neutrinos and Higgses as a function of the heavy neutrino mass $\boldsymbol{m}_{\boldsymbol{h}}$

Case $n_{R}=1$ (reduced)

- We select values which fulfill $\Delta \mathrm{m}^{2}{ }_{\text {atm, }} \Delta \mathrm{m}^{2}{ }_{\text {sol }}$ and θ_{23} experimental 3σ-band
- Model parameters n and φ forms two sets of Higgs masses but they are independent from m_{h}

Case $n_{R}=2$

- For this case we consider the minimal extension of standard model adding two right-handed v_{R} fields to the three left-handed fields contained in v_{L}
in general case we use parametrization:

$$
\begin{array}{lll}
\Delta_{1}=\frac{\sqrt{2}}{v}\binom{m_{D_{2}} \vec{a}_{1} T}{m_{D_{1}} \vec{b}_{1}^{T}} & \begin{array}{l}
\text { orthogonality of vectors } \\
\text { reduce the number of }
\end{array} & |\vec{a}|=1 \\
\Delta_{2}=\frac{\sqrt{2}}{v}\binom{m_{D_{2}} \vec{a}_{2}^{T}}{m_{D_{1}} \vec{b}_{2}^{T}} & \text { the parameters } & |\vec{b}|=1
\end{array}
$$

$U^{T} M_{\nu} U=U^{T}\left(\begin{array}{ccccc}0 & 0 & 0 & m_{D_{1}} a_{1} & m_{D_{2}} b_{1} \\ 0 & 0 & 0 & m_{D_{1}} a_{2} & m_{D_{2}} b_{2} \\ 0 & 0 & 0 & m_{D_{1}} a_{3} & m_{D_{2}} b_{3} \\ m_{D_{1}} a_{1} & m_{D_{1}} a_{2} & m_{D_{1}} a_{3} & M_{R_{1}} & 0 \\ m_{D_{2}} b_{1} & m_{D_{2}} b_{2} & m_{D_{2}} b_{3} & 0 & M_{R_{2}}\end{array}\right) U=\left(\begin{array}{ccccc}0 & 0 & 0 & 0 & 0 \\ 0 & M_{l_{1}} & 0 & 0 & 0 \\ 0 & 0 & M_{l_{2}} & 0 & 0 \\ 0 & 0 & 0 & M_{h_{1}} & 0 \\ 0 & 0 & 0 & 0 & M_{h_{2}}\end{array}\right)$

- after diagonalization we receive two light and two heavy states of neutrino masses at tree level
the diagonalization matrix for the tree level:

$$
U_{\text {tree }}=U_{12}\left(\alpha_{1}, \alpha_{2}\right) U_{\text {egv }}\left(\beta_{i}\right) U_{\phi}\left(\phi_{i}\right)
$$

where $U_{\text {egv }}$ is an eigenmatrix of $M_{\nu}^{(1)} M_{\nu}^{(1) \dagger}$
the non zero masses are determined by the seesaw mechanism

$$
\begin{aligned}
m_{D_{i}}^{2} & \approx m_{h_{i}} m_{l_{i}} \\
m_{R_{i}}^{2} & \approx m_{h_{i}}^{2}
\end{aligned}
$$

Case $n_{R}=2$

In numerical analysis we fix $\mathrm{m}_{\mathrm{H} 1}=125 \mathrm{GeV}$, but $m_{\mathrm{H} 2}$ and $\mathrm{m}_{\mathrm{H} 3}$ we generate randomly in the range 1 to 2000 GeV

Set of b vectors used for numerical calculations

$$
b_{1}=\binom{1}{0} \quad b_{2}=\binom{0}{i} \quad b_{3}=\binom{0}{1}
$$

- The masses of the light neutrinos as functions of the heaviest right-handed neutrino mass.

wide solid line indicate the place of the most frequent values of the scatter data one of heavy neutrino is fixed: $m_{h_{1}}=100 \mathrm{GeV}$

Case $n_{R}=2\left(\right.$ with $\left.Z_{4}\right)$

- The idea is substituting the lepton-number symmetry $L_{e}-L_{\mu}-L_{T}$ by a discrete symmetry Z_{4}

Parametrization with the Z_{4} symmetry (complex parameters):

$$
\Delta_{1}=\frac{\sqrt{2} m_{D}}{v}\left(\begin{array}{cc}
a_{1} & 0 \\
0 & a_{2} \\
0 & a_{3}
\end{array}\right)^{\mathrm{T}} \quad \Delta_{2}=\frac{\sqrt{2} m_{D}}{v}\left(\begin{array}{cc}
0 & b_{1} \\
b_{2} & 0 \\
b_{3} & 0
\end{array}\right)^{\mathrm{T}}
$$

Set of b vectors used for numerical calculations

$$
b_{1}=\binom{0}{i} \quad b_{2}=\binom{\frac{1}{2}}{\frac{\sqrt{3}}{2}} \quad b_{3}=\binom{-\frac{\sqrt{3}}{2}}{\frac{1}{2}}
$$

$M_{R}=\left(\begin{array}{cc}0 & m_{r} \\ m_{r} & 0\end{array}\right)$
For this case is possible to find analytical solutions:

$$
\begin{aligned}
& m_{D}^{2}=m_{h} m_{l} \\
& m_{R}^{2}=\left(m_{h}-m_{l}\right)^{2} \sim m_{h}^{2}
\end{aligned}
$$

Only inverted hierarchy is possible for this case

Case $n_{R}=2$ (reduced)

- The case with minimal number of free parameters which fulfill experimental boundaries
reduced parametrization with real parameters:

$$
\begin{aligned}
\Delta_{1} & =\frac{\sqrt{2} m_{D_{1}}}{v}\left(\begin{array}{ccc}
a_{1} & \sqrt{1-a_{1}^{2}} & 0 \\
0 & b_{1} & \sqrt{1-b_{1}^{2}}
\end{array}\right) \\
\Delta_{2} & =\frac{\sqrt{2} m_{D_{2}}}{v}\left(\begin{array}{ccc}
0 & a_{2} & \sqrt{1-a_{2}^{2}} \\
b_{2} & \sqrt{1-b_{2}^{2}} & 0
\end{array}\right)
\end{aligned}
$$

Set of b vectors used for numerical calculations

$$
\begin{array}{ll}
b_{Z}=\binom{i}{0}, & b_{1}=\binom{0}{i} \\
b_{2}=\binom{0}{1}, & b_{3}=\binom{1}{0} .
\end{array}
$$

631.00
1848.00
5412.00
15850.00

Case $n_{R}=2$ (reduced)

- The plots of free parameters
- parameters are real and orthogonal
- they are selected according to 3σ-band of experimental data
- they have weak dependence from m_{h}

Case $n_{R}=2$ (reduced)

- The plots of oscillation angles
- the angles are calculated by parametrizing diagonalization matrix $U_{\text {loop }}$ with parameters from $U_{\text {PMNS }}$
- they are selected according 3σ-band of experimental data
- the histograms shows that they have weak dependence from m_{h}

Case $n_{R}=2(\mu-\tau$ symmetry $)$

- We introduce symmetry to the mass matrix which reduce number of the free parameters
- at tree level $\mu-\tau$ symmetry disagrees with experiment but radiative corrections break $\mu-\tau$ symmetry and we receive correct values
- for this case we receive light neutrino masses and oscilation angles which fulfill 3σ-band of experimental data
- by choosing real and orthogonal parameters we have only 4 free parameters
- work in progress...

Texture which agrees with experimental data:

$$
\begin{array}{ll}
\Delta_{1}=\left(\begin{array}{cc}
m_{R_{1}} & m_{R_{2}} \\
m_{R_{2}} & m_{R_{1}}
\end{array}\right) & \Delta_{2}=\frac{\sqrt{2} m_{D_{1}}}{v}\left(\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
a_{1} & a_{3} & a_{2}
\end{array}\right) \\
M_{D_{2}} & \left(\begin{array}{ccc}
b_{1} & b_{2} & b_{3} \\
-b_{1} & -b_{3} & -b_{2}
\end{array}\right)
\end{array}
$$

Set of b vectors used for numerical calculations:

$$
\begin{array}{rlr}
b_{Z}=\binom{i}{0}, & b_{1}=\binom{0}{i} \\
b_{2}=\binom{0}{1}, & b_{3}=\binom{1}{0} .
\end{array}
$$

Conclusions

- For the case $n_{R}=1$ we can receive two states for light neutrino but the third neutrino remains massless. Only normal ordering of neutrino masses is possible.
- In the case $n_{R}=2$ we obtain three non vanishing masses of light neutrinos for normal and inverted hierarchies.
- The radiative corrections generate the lightest neutrino mass and have a big impact on the second lightest neutrino mass.
- By introducing special symmetries and reducing the number of free parameters it is possible to obtain some dependence between Higgses and parameters.
- The case with $\mu-\boldsymbol{T}$ symmetry is interesting and promising...

Thank You...

