

AGH UNIVERSITY OF SCIENCE AND TECHNOLOGY

AIDA IP blocks activities at AGH-UST

Marek Idzik AGH-UST

Faculty of Physics and Applied Computer Science AGH University of Science and Technology

AIDA 3rd Annual Meeting, Vienna 26-28 March 2014

Outline and Status of IP blocks at AGH-UST

- Design Kit for 65 nm not yet released by CERN
 - We are still waiting to start design in 65 nm. We hope for submission this year...
- At the beginning of AIDA AGH-UST proposed to develop some blocks in IBM 130 nm
 - Fast (>40 Msps) 6-bit
 - Fast 10-bit SAR ADC
 - Variable frequency PLL
 - SLVS interface
- All above blocks were designed in IBM 130 nm,
 1st prototypes were produced, the result are summarized in next slides...

IP blocks needed for multichannel readout Example: SALT chip architecture

- Readout of silicon strip detectors in LHCb Upgrade or LumiCal detector in future ILC will contain front-end and ADC in each channel, and fast serialization of output data.
- Among the key blocks in these readouts, which can be also used as IP cores, are ADC, PLL, SLVS
- First prototypes of these blocks are available the performed measurements are discussed in this talk

6-bit SAR ADC for SALT chip in LHCb Upgrade Architecture&Design considerations

Architecture of ADC:

- Differential segmented/split DAC with MCS switching scheme ultra low power
- Dynamic comparator no static power consumption, power pulsing for free
- Asynchronous logic no clock tree *power saving, allows asynchronous sampling*
- Dynamic SAR logic *much faster than conventional static logic*

Design considerations:

• Resolution 6 bits

• Variable sampling frequency up to ~80 MS/s

Power consumption at 40 MS/s
 0.35 mW

• pitch, ready for multichannel integration 40 μm

K. Świentek, M. Firlej, T. Fiutowski, M. Idzik, J. Moroń, T. Szumlak "SALT – new silicon strip readout chip for the LHCb Upgrade". TWEPP2013 23-27 September 2013. Perugia Italy

6-bit SAR ADC Post-layout simulations

6-bit SAR ADC Static tests – linearity (@50 MS/s)

Transfer function

INL/DNL measurements

- Measurements show that ADC works very well
- At 50MHz sampling frequency good linearity INL, DNL < 0.4 is seen

DNL [LSB]

NL [LSB]

6-bit SAR ADC Dynamic tests – ENOB effective resolution

Example DFT Spectrum @50MS/s

Sampling frequency sweep

- Measurements show very good dynamic behaviour.
- Measured ENOB is between 5.7 5.9 bits
- ADC works well for sampling frequencies beyond 80 MHz

10-bit SAR ADC for LumiCal at ILC Architecture&Design considerations

Architecture of ADC:

- Differential segmented/split DAC with MCS switching scheme ultra low power
- Dynamic comparator no static power consumption, power pulsing for free
- Asynchronous logic no clock tree *power saving, allows asynchronous sampling*
- Dynamic SAR logic much faster than conventional static logic

Design considerations:

• Resolution 10 bits

• Variable sampling frequency up to ~50 MS/s

Power consumption at 40 MS/s
 ~1 mW

• pitch, ready for multichannel integration 146 µm J. Moron, M. Firlej, T. Fiutowski, M. Idzik, Sz. Kulis, K. Swientek. "Development of variable sampling rate low power 10-bit SAR ADC in IBM 130 nm technology", TWEPP2013 23-27 September 2013, Perugia Italy

10-bit SAR ADC for Lumical

Simulated performance of 10 bit ADC:

- Simulated ENOB ~ 9.5-9.7 bits
- Maximum sampling rate ~50 MS/s
- Power consumption ~ 1mW @ 40 MS/s

10-bit SAR ADC for LumiCal Static measurement results

Transfer function

1024 896 768 640 512 384 256 128 0 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 Vin [V]

INL/DNL measurements

- ADC works well in the whole input signal range
- Generally, good linearity is measured, although for a few codes improvement is still needed

10-bit SAR ADC for LumiCal Dynamic measurement results (@20 MS/s)

Example DFT Spectrum

Input frequency sweep

ENOB~9.3 up to Nyquist input frequency for $f_{sample} \sim 20MHz$

ADC works for f_{sample} beyond 40 MS/s, but above 20 MS/s ENOB start to decrease. Problem with jitter above 20 MS/s found..., will be fixed in next submission.

Prototypes of SAR ADC vs State-of-the-Art Performance of first prototypes

Main features:	LHCb	LumiCal
Resolution [bits]	6	10
Sampling frequency [MS/s]	>80	20 (50*)
Power cons. [mW]@ 40 MS/s	0.35	1
 Size [mm²] Dim. [µm] 	0.016 40 x 400	0.087 146x600
• DNL/INL [LSB]	<0.4	~1.0
SINAD@40MS/s [dB] ENOB [bits]	37.5 5.8	>56 9.3
FOM [f]/conv]	~150	~50

Performance of our ADCs is similar to State-of-the-Art designs

AGH-UST data were added to Table taken from "this work": P.Nuzzo, C. Nani, at el., "A 6-Bit 50-MS/s Threshold Configuring SAR ADC in 90-nm Digital CMOS",

IEEE Trans. On Circuits and Systems I vol.59 pp.80-92 January 2012

Low power PLL in 130 nm CMOS Architecture and specifications

300 x 300 um

PLL features:

- General purpose PLL block
- Very wide output frequency range (10MHz - 3.5GHz)
- 16 VCO modes Automatically (or manually) changed
- Power consumption ~0.6mW@1GHz
- Different loop division factors:
 6,8,10 and 16

Low power PLL in 130 nm CMOS Measurements

- •Measurements confirm proper circuit operation in frequency range 20MHz-1.6GHz
- All four division factors work properly
- Power consumption scales linearly with PLL clock frequency (two rings → two curves)
- Gaps in frequency and Jitter need to be improved

Multichannel ADC aspects Design of SLVS interface

Specifications:

- Architecture
 - Driver based on Boni paper
 - Receiver based on self-biased amplifier (Bazes paper)
- Technology CMOS 130 nm
- Maximum frequency ~1GHz
- Pitch matched to pads. Driver/receiver integrated with 2 pads (146um pitch)

Functionality verified during ADC and PLL test up to ~1.5 GHz. Dedicated quantitative tests not yet done (waiting in line...)

Summary

- Two low power ADCs (6-bit, 10-bit), general purpose PLL and SLVS interface were designed in 130 nm, fabricated and tested.
- All blocks are fully functional, quantitative tests show excellent results for 6-bit ADC and good results for 10-bit ADC and PLL.
- Improved versions were submitted in February 2014

Thank you for attention

Multichannel SAR ADC with serialization Architecture

Specifications & implementation issues:

- 8 channels of 6-bit SAR ADC
- Technology 130 nm CMOS
- Multimode digital multiplexer/serializer:
 - Full serialization: one data link per all channels (external clk division or PLL clk generation)
 - Partial serialization: one data link per channel (external clk division or PLL clk generation)
 - Test mode: single channel output (max fsmp ~50 Msps)
- High speed SLVS interface (>1GHz)
- Multiple clock generation schemes (with or without PLL)
- PLL for data serialization
- Power pulsing

6-bit SAR ADC Layout of prototype ASIC

2340um x 1380um

ADC prototype contains:

- 8 channels of 6-bit SAR ADC in 40um pitch
- Multiplexing&Serialization circuitry
- PLL prototype (discussed later...)
- SLVS I/O circuitry (discussed later...)
- Staggered pads

Prototypes were fabricated in 2012. FPGA based test setup was developed. Measurements of ADC performance have been completed...

ADC testing Measurement setup

Differential function generator – Agilent 81160A DFT and data analysis custom software Power supply Input sine Results Sample clock Sampled data (low bitrate) Sampled data (high bitrate) DAQ – receives fast transmission from ADC

(up to 500 Mb/s), captures the data and sends

to PC via Ethernet for offline analysis

19