Advanced European Infrastructures for Detectors at Accelerators

WP8.2.2 Test beams infrastructure at Frascati

on behalf of INFN-LNF, INFN-Perugia, INFN-Ferrara and UiB BTF-AIDA team

Contents:

- Overview
- Status
- Summary

color code: ✓ done; ✓ in progress; ✓ seriously delayed; ✓ on schedule

AIDA is co-funded by the European Commission within the Framework Programme 7 Capacities Specific Programme, Grant Agreement 262025

Frascati Facility (BTF)

- At least 20 teams/year
- Average of 8 days/team
- Average of 220 beam-days/year
- 30% of foreigner users
- Typically, two calls/year (November and May)
- TNA funding in FP6 and FP7 (HadronPhysics)
 average funding: 150 man-days and 15-20 travels/year
- About 40% of beam requests rejection in 2013

BTF users

Test of detectors or beam diagnostics

- Any kind of detector: calorimeter,s scintillators, fibers, drift chambers, micropattern gas detectors (GEM, MSGC), RPC, diamond, silicon pixels, silicon micro-strips, fluorescence detectors, Cerenkov, RICH, ...
- HEP, nuclear and astro-particle communities mainly
 - 25% large or very large collaborations, e.g. sub-detector groups from ATLAS, CMS, ALICE, LHCb, ...
 - > 50% from intermediate-size collaborations, e.g. NA62, KLOE, MEG, UA9, AGILE, Auger, JLAB, ...
 - Remaining fraction smaller groups for detector/readout/diagnostics dedicated R&D programs

Real <u>experiments</u> using the electron or positron beam

- Thermo-acoustic expansion of materials due to ionizing particles (RAP)
- Absolute air and Nitrogen fluorescence yield (AIRFLY)
- Microwave emission from e.m. showers (AMY)
- Electron and positron channeling, parametric radiation

Task 8.2.2- Frascati

Upgrade of the Beam Test Facility:

- equip the BTF with a remote trolley
- equip the BTF with a GEM tracking chambers (res<100 μm)
- use the LYSO calorimeter to measure the beam energy spread
- improve multi purpose DAQ

AIDA Remote Trolley & DAQ

disposable area 600x600 mm
min height 915 mm
max height 1250 mm
horiz. excursion 1000 mm
max load 200 Kg
accuracy < 1 mm²

AIDA-NOTE-2012-003

- ✓ Up to now, the DAQ system is fully operative with a standalone software now working at 25Hz bunch rate in !CHAOS MEMCACHED live data storage
- ✓ A MEDIPIX detector (Timepix) has been tested to increase transverse beam detection quality and qualify the BTF calorimeters over a wide range of multiplicity.
- ✓ Preliminary study for the porting of the BTF DAQ and the main subsystem of the BTF device in !CHAOS environments has been started.

TPC GEM tracker

✓ The prototype of the TPC GEM tracker has been replaced by a fully operative system completed of all service elements (gas system, electronics, etc).

Measurement @BTF of positron beam splitting through a crystal

- Al the functionality of the GEM system (CANBUS via KVASER in HVGEM) runs temporary on virtualized environment and we are still developing of CANBUS over Ethernet software.
- Some preliminary test to study the relation among HVGEM currents and particle multiplicity has been started to obtain an independent beam current monitor over a wide range.

LYSO Calorimeter

✓ Analysis of the data collected during the test beam has been performed. A reasonable agreement between data and Monte Carlo has been obtained.

- Beam spread at 500MeV fixed at 1%
- Only one point at this energy, BS can't be extracted
- Measured beam spread:
 - ▶ 4.8% at 100MeV
 - > 2.7% at 200MeV
 - 2.1% at 300MeV
 - ▶ 1.4% at 400MeV

LYSO matrix resolution

$$rac{oldsymbol{\sigma_E}}{E} = rac{1.1\%}{\sqrt{\mathrm{E}(\mathrm{GeV})}} \oplus rac{0.4\%}{\mathrm{E}(\mathrm{GeV})} \oplus 1.2\%$$

- ✓ 9 LYSO crystals have been readout with 36 (4 per crystal) and tested at the BTF line with energy range from from 100 up to 500 MeV
- ✓ also in this configuration, with a constant term of about 2%

AIDA Beam Radiation Monitor

- The goal is to build a beam radiation monitor for Da⊕ne at Frascati
- The detector consists of an array of 8 LYSO crystals arranged in a ring around the beam pipe to record beam radiation photons in the 100 keV energy range
- Each crystal (dimensions of 0.5 cm x 0.5 cm x 4 cm) is wrapped in Tyvec paper and is read out with a SiPM from KTEK with an active area of 0.3 cm x 0.3 cm
- The mechanical support structure requires visit to Frascati to inspect beam area, as many cables are tied to the beam pipe
- SiPMs, LYSO crystals, reflector and sources (133Ba, 57Co, 22Na, 137Cs) are in Bergen
- We have performed first readout of LYSO crystal with SiPM yesterday due to late arrival of LYSO crystals and leaving postdoc
- Replacement for Eric starts early April (lost 6-7 weeks)
 - G. Eigen Aida meeting, 26/03/2014

AIDA Readout of LYSO Crystal

- Wrap LYSO crystal in Tyvec
- Cover front face with silver mirror
- Attach SiPM to backside via optical grease
- Use KETEK MP20 V4-W8 SiPM instead of 12-W1 TR planned for the project
- Amplify and invert SiPM signal
- Trigger on negative edge
- Record signal with 14 bit ADC that is read out by Labview
- Measure spectra of sources G. Eigen Aida meeting, 26/03/2014

Next Steps

- Analyze source spectra to determine resolution
 - Understand why purchased KETEK SiPMs behave worse than tested samples
- Perform R&D on the LYSO crystal readout to optimize light collection (adapt preamp to SiPM, optimize diffuse reflector, place mirror on uncovered back face, modify trigger, select best SiPM)- April
- Equip all 8 crystals with SiPMs and test performance- April/May
- Design mechanical support structure after visit to Frascati- May
- Construction of mechanical support structure at UiB- June
- Install detector at DaΦne and test it with beam- fall
- Write report

G. Eigen Aida meeting, 26/03/2014

AIDA Task 8.2.2 - Conclusion

Status and future work

- ✓ remote trolley done (see AIDA-NOTE-2012-003)
- ✓ **GEM tracker** with a resolution less the 100 µm **is completed:** the prototype of the TPC GEM tracker has been replaced by a fully operative system completed of all service elements
- ✓ LYSO calorimeter beam energy spread measurements is completed: LYSO resolution data normalized by energy beam spread are fitting optimally the Monte Carlo data; UV optimized SiPM has been tested showing a reduction of SNR reproducing a ~2% of energy resolution for the beam line as previously measured.
- multi purpose **DAQ system is in progress**: neutron detectors, environmental detectors, and beam diagnostic detectors has been implemented; GEM tracker system in under integration in the BTF controls.

Status of Milestones & Deliverables

✓ D8.8 [m48] "All equipment ready" is on schedule