
AIDA Beam Telescope Requirements for a Common DAQ
Hanno Perrey

1 AIDA Beam Telescope DAQ Requirements

2 EUDAQ 2.0

3 Device-under-Test Integration into EUDAQ 2.0

Hanno Perrey (DESY) AIDA Beam Telescope DAQ AIDA 3rd Annual Meeting 3/2014 1 / 9

AIDA Beam Telescope DAQ Requirements

From EUDET to AIDA Beam Telescope
EUDET style: “Event-based”

• One trigger per slowest DAQ
system in the telescope

• No triggers from TLU while at
least one system is BUSY
(e.g. Mimosa26 double-frame
readout: 115.2 µs)

• Data is written in single stream
• Low rates/data-taking
efficiency for fast (LHC-type)
DAQ systems

AIDA style: “Particle-based”
• TLU issues trigger for every
particle (i.e. scintillator signal)

• Triggers stop only on VETO
from any DAQ

• High-rate studies possible
• Much higher data-taking
efficiency at high-rate beams

• Telescope DAQ needs to cope
with high data rates
(e.g. continuous readout of
Mimosa28 quad-planes)
Data in asynchronous streams
from various DAQs

Hanno Perrey (DESY) AIDA Beam Telescope DAQ AIDA 3rd Annual Meeting 3/2014 2 / 9

AIDA Beam Telescope DAQ Requirements

Implications and To-do List for Telescope Framework
Hardware

• Integrate with AIDA TLU (common clock, timestamp triggers)
• Mimosa-based planes with fast device (FEI4/TimePix) for
timestamping of hits in reconstruction

• Continuous readout of Mimosa planes (if triggers present)
DAQ Software (EUDAQ)

• Reduce disk IO/network bottlenecks: DAQs (can) store data locally
• Add all available timing (meta) information (from TLU/DAQ clocks)
into data format

• Need hooks for online data verification and monitoring (next slides)
Analysis Software (EUTelescope)

• Merge data streams from different DAQs based on timing information
and hits (already done by many groups)

• Output timetagged tracks
Hanno Perrey (DESY) AIDA Beam Telescope DAQ AIDA 3rd Annual Meeting 3/2014 3 / 9

EUDAQ 2.0

Reminder: EUDAQ Goals and Features

• Generic framework for data acquisition
• OS independent: Linux, Mac OSX, Windows
• Modular and flexible design
• Provides central DAQ control, data handling and storage, log
collection, online monitoring

• Components communicate via TCP/IP and can run on different
networked machines

• Focused on easy and flexible integration of the device under test
including pre-existing DAQs

• All hardware communication done by “Producers” with equal rights

Hanno Perrey (DESY) AIDA Beam Telescope DAQ AIDA 3rd Annual Meeting 3/2014 4 / 9

EUDAQ 2.0

AIDA Beam Telescope DAQ: EUDAQ 2.0

• Accepts data packets from DAQs covering:
I single trigger (“classic mode”)
I list of (timestamped) triggers
I time range (shutter/data driven devices)
I both time range and trigger list

• Writes data into multiple streams e.g. DAQ local storage
• Online verification in this scheme:

I separate on-the-fly event building (full or partial for specific triggers)
I cross-check timestamps e.g. against TLU information
I merged data can be used for online monitoring/immediate offline

analysis
• Will be backward-compatible to old integration efforts
(no more than a recompilation should be needed)
Easier integration with a wider range of DAQ concepts

Hanno Perrey (DESY) AIDA Beam Telescope DAQ AIDA 3rd Annual Meeting 3/2014 5 / 9

EUDAQ 2.0

Schematic Layout of EUDAQ 2.0 (preliminary)

TLU

DUT DAQ

Telescope DAQ

Hardware

DUT
Producer

TLU
Producer

Telescope
Producer

Run Control

Data Collector 1

Data Collector 2

Log Collector

Run Monitor
m
eta

data
&

requested
events

write

write

Hanno Perrey (DESY) AIDA Beam Telescope DAQ AIDA 3rd Annual Meeting 3/2014 6 / 9

Device-under-Test Integration into EUDAQ 2.0

Integrating a Device into Telescope/EUDAQ 2.0
TLU

• Receive clock, trigger and/or shutter signals
• Timestamp events (trigger, shutter open/close, . . .)

Producer to interact with RunControl and Hardware
• Implemented in C++, but Python interface exists (see backup)
• Receives commands from RunControl (Configure, Run Start/Stop)
• Talks to the DAQ hardware, receives data from there
• Sends its data to a DataCollector (optional)
• Gain flexibility with new event format and multiple data streams

⇒ wider range of devices suitable for (full) integration

Optional: Data Converter Plugin
• Converters native device format into defined structure
• Used for conversion into LCIO and for online monitoring

Hanno Perrey (DESY) AIDA Beam Telescope DAQ AIDA 3rd Annual Meeting 3/2014 7 / 9

Device-under-Test Integration into EUDAQ 2.0

Status of EUDAQ development

• A lot of maintenance has been done on EUDAQ over last months and
is ongoing (git, CMake, platform-independence, Python interface, . . .)

• RunControl can already assign a different DataCollector to each
Producer and the resulting files can be merged offline

• Implementation of new event format started
• Best strategy for online (partial) event building being investigated
• A handful of developers committed to this task (both PhD and
seniors)

Hanno Perrey (DESY) AIDA Beam Telescope DAQ AIDA 3rd Annual Meeting 3/2014 8 / 9

Summary

Summary and Outlook

• EUDAQ is a very flexible DAQ framework and has been used
successfully for a long time with EUDET-family of telescopes

• Support one-trigger-per-particle operation of AIDA beam telescope
requires extension of EUDAQ and removal of IO/network bottlenecks

• Key changes: timestamped events, multiple data streams
• Makes integration with EUDAQ 2.0 easier and more flexible than
before

• Development on EUDAQ is ongoing, contributions are welcome!

Download the newest version and follow the development at
http://eudaq.github.io

Hanno Perrey (DESY) AIDA Beam Telescope DAQ AIDA 3rd Annual Meeting 3/2014 9 / 9

http://eudaq.github.io

Overview Backup Slides

4 Integrating a Device under Test into EUDAQ
5 Running EUDAQ

Hanno Perrey (DESY) AIDA Beam Telescope DAQ AIDA 3rd Annual Meeting 3/2014 10 / 9

Integrating a Device under Test into EUDAQ

Integrating a DUT into EUDAQ

The Anatomy of a Producer
• A Producer needs to implement command receiving methods of the

Producer base class:
I OnConfigure, OnStartRun, OnStopRun, Terminate

• It configures the hardware according to the config received from
RunControl

• It (optionally) sends its data to the data collector:
either in raw format or converted to a custom StandardEvent class

• It (optionally) logs status/error messages

Example code is provided!
→ see also shortened examples on the following slides

Hanno Perrey (DESY) AIDA Beam Telescope DAQ AIDA 3rd Annual Meeting 3/2014 11 / 9

Integrating a Device under Test into EUDAQ

Example C++ (Pseudo-) Code for a EUDAQ Producer
class ExampleProducer : public eudaq :: Producer {

public :
ExampleProducer (){}
virtual void OnConfigure (const eudaq :: Configuration & config) {

// configure your hardware
}
virtual void OnStartRun (unsigned param) {

// prepare for and start run
}
virtual void OnStopRun () {

// stop your DAQ
}
void ReadoutLoop () {

while (true) {
// while running :
// get raw data , put it into RawDataEvent and send

}
}

};
int main(int /* argc */ , const char ** argv) {

ExampleProducer producer (); // Create a producer
producer . ReadoutLoop (); // And set it running ...
return 0;

}
Hanno Perrey (DESY) AIDA Beam Telescope DAQ AIDA 3rd Annual Meeting 3/2014 12 / 9

Integrating a Device under Test into EUDAQ

Example Python Code for a EUDAQ Producer
#!/ usr/bin/env python2
execfile (’PyEUDAQWrapper .py ’) # load the ctypes wrapper
from time import sleep
import numpy # for data handling
create PyProducer instance
pp = PyProducer (" testproducer ","tcp :// localhost :44000 ")

wait for CONFIGURE cmd from RunControl
while not pp. Configuring :

sleep (1)
.... do your config stuff here ...
pp. Configuring = True
check for RUNSTART cmd from RunControl
while not pp. StartingRun :

sleep (1)
... prepare your system for the immanent run start
pp. StartingRun = True
starting to run main DAQ loop
while not pp. Error and not pp. StoppingRun and not pp. Terminating :

prepare an numpy array for raw data storage
data = numpy . ndarray (shape =[1 ,3] , dtype = numpy . uint64)
.... get your data from your hardware ...
pp. SendEvent (data) # send event off

Hanno Perrey (DESY) AIDA Beam Telescope DAQ AIDA 3rd Annual Meeting 3/2014 13 / 9

Running EUDAQ

Running EUDAQ
• OS independent (Linux, Mac OSX, Windows)
• Components can be run on different networked machines
• Different interfaces available: Qt GUI, console, Python

Run Control
Online Monitor

Log Monitor
Hanno Perrey (DESY) AIDA Beam Telescope DAQ AIDA 3rd Annual Meeting 3/2014 14 / 9

	AIDA Beam Telescope DAQ Requirements
	EUDAQ 2.0
	Device-under-Test Integration into EUDAQ 2.0
	Appendix
	Integrating a Device under Test into EUDAQ
	Running EUDAQ

