Chip Development Progress

Andreu Montiel, Raimon Casanova, Oscar Alonso, Eva Vilella and Angel Diéguez

Systems Instrumentation and Communications (SIC) Department of Electronics, University of Barcelona (UB) C/ Martí i Franquès 1, 08028 – Barcelona, Spain

evilella@el.ub.edu

≻<u>Outline</u>

1. Reminder of the general structure of the readout system

2. Shaper design

- MOSFET based solution
- Noise comparison

3. ADC design

- Problem of typical Wilkinson ADCs
- Incremental data converters
- Comparison

1. General structure of the readout circuit.

Addition circuit + comparator

2. Shaper design. MOSFET based solution.

2. Shaper design. Noise comparison.

- Noise comparison:

 $ENC = A + B \cdot C_d$ - A, B = noise parameters $-C_{d} = detector capacity$

- Simulation conditions:

- Dynamic range: 30 MIPs
- Different sensor thickness
- 2µs of peaking time

Comparison with other front-ends:

Department

B Universitat de Barcelona

		sensor thickness	А	В	Noise at 20pF
	Poly. resistors	300µm	260e-	4.9e-/pF	350e-
		200µm	188e-	4.5e-/pF	272e-
	Current mirror based	300µm	180e-	7.7e-/pF	326e-
		200µm	228e-	7.7e-/pF	374e-
	MOSFET based	300µm	148e-	6.3e-/pF	266e-
		200µm	129e-	5.5e-/pF	233.1e-

<u>parison with other</u>	Front-end	A (e-)	B(e-/pF)	Shaping time
<u>-enus</u> .	APV25	246	36	50 ns
	MX6	340	20	
	VA1	200	8	1µs
	Beetle	303	33,6	25 ns
	KPix	300	35	
	This des., polysilicon	260	4.9	2µs
Simulated data \longrightarrow	This des., current scaling	180	7,7	2µs
	This des., quasi-floating gate	148	6,3	2µs

AIDA 3rd ANNUAL MEETING

Vienna (Austria) 26-28 March 2014

3. ADC design. Problem of typical Wilkinson ADCs.

- <u>Preferred ADC option</u> \rightarrow multi-channel parallel <u>Wilkinson ADC</u>.

- Problem \rightarrow sensitive to parameter spread in nm technologies + limited speed (time=2^{nbits} clock cycles).

- <u>Proposed solution</u> \rightarrow <u>Incremental data converter (IDC)</u>.

- Sigma-delta converter with stop/reset (to fit ILC timeline).
- Insensitive to parameter spread.
 - Highly digital circuits.
- Higher operating frequencies (1 order of magnitude faster than Wilkinson ADCs).
 - Possibility to multiplex several channels per ADC + reduction of area.

AIDA 3rd ANNUAL MEETING Vienna (Austria) 26-28 March 2014

3. ADC design. Incremental data converters.

- Possible architectures:

- First order (1 integrator + 1 comparator) \rightarrow long conversion times of 2^{nbits} clock cycles
- Second and higher orders by cascading integrators (Cascaded-Integrators Feed-Forward or CIFF)

- Advantages of CIFF architectures:

- Short conversion times $\rightarrow \sqrt{\frac{2^{nbits+1}}{c_1 \cdot b}}$ clock cycles (2nd order), $\sqrt[3]{\frac{3 \cdot 2^{nbits+1}}{c_2 \cdot c_1 \cdot b}}$ clock cycles (3rd order)

- Less sensitive to non-linearities.
- Less voltage swing.
- 1 DAC only (less matching problems).

Universitat de Barcelona

AIDA 3rd ANNUAL MEETING Vienna (Austria) 26-28 March 2014

3. ADC design. Comparison.

- **<u>Number of clock cycles or n</u>** (assuming b, c₁ and c₂ = 1):

	n bits	n			
		Wilkinson	second order	third order	1
	8	256	23	12	1
	9	512	32	15	1
	10	1024	45	19	
	11	2048	64	23	
Γ	12	4096	91	29	
	13	8192	128	37	
	14	16384	181	47]

- <u>Inputs</u>:

B

- 256 channels

of Electronics

Universitat de Barcelona

- 8 hits per strip (expected)
- 8 samples to reconstruct each hit
- 12 bits of resolution (n bits)
- 40 MHz of clock frequency

 $8 \frac{hits}{stripe} \cdot 8 \frac{samples}{hit} \cdot n \cdot \frac{1}{clock \ frequency}$

Results per channel:

6.5 ms (256 channels parallel Wilkinson ADC)

0.14 ms (2nd order IDC) \rightarrow 45 times faster! (area \downarrow)

 $0.046 \text{ ms} (3 \text{ rd order IDC}) \rightarrow 141 \text{ times faster!} (area \downarrow \downarrow)$

AIDA 3rd ANNUAL MEETING Vienna (Austria) 26-28 March 2014

3. ADC design. Comparison.

- **<u>Number of clock cycles or n</u>** (exact value of b, c₁, c₂, a₁ and a₂?):

order	b	<i>c</i> ₁	<i>c</i> ₂	<i>a</i> ₁	<i>a</i> ₂	п
2	0.7	0.6	-	1.107	0.515	139
3	0.35	0.5	0.65			60

The coefficients must be set below 1 to avoid the saturation of the integrators
Coefficients simulated with Matlab (Sigma Delta Toolbox)

Results :

 $8 \frac{\text{hits}}{\text{stripe}} \cdot 8 \frac{\text{samples}}{\text{hit}} \cdot \mathbf{n} \cdot \frac{1}{\text{clock frequency}} = \frac{6.5 \text{ ms} (256 \text{ channels parallel Wilkinson ADC})}{0.22 \text{ ms} (2nd \text{ order IDC}) \rightarrow 0.056 \text{ s per 256 channels}} = \frac{6.5 \text{ ms} (256 \text{ channels parallel Wilkinson ADC})}{0.096 \text{ ms} (3rd \text{ order IDC}) \rightarrow 0.024 \text{ s per 256 channels}}$

- IDCs offer higher conversion rates than Wilkinson ADCs (at the same clock frequency)
- In IDCs, it is possible to multiplex several channels per ADC (area ↓, same conversion time):

- 256 channels parallel Wilkinson ADC
- 2nd order IDC \rightarrow 9 IDCs (9 ADCs) for a conversion time of \approx 6.5 ms (28 channels per ADC)
- 3rd order IDC \rightarrow 4 IDCs (4 ADCs) for a conversion time of \approx 6.5 ms (64 channels per ADC)

AIDA 3rd ANNUAL MEETING Vienna (Austria) 26-28 March 2014

Thank you for your attention